首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The level of model complexity that can be effectively supported by available information has long been a subject of many studies in hydrologic modelling. In particular, distributed parameter models tend to be regarded as overparameterized because of numerous parameters used to describe spatially heterogeneous hydrologic processes. However, it is not clear how parameters and observations influence the degree of overparameterization, equifinality of parameter values, and uncertainty. This study investigated the impact of the numbers of observations and parameters on calibration quality including equifinality among calibrated parameter values, model performance, and output/parameter uncertainty using the Soil and Water Assessment Tool model. In the experiments, the number of observations was increased by expanding the calibration period or by including measurements made at inner points of a watershed. Similarly, additional calibration parameters were included in the order of their sensitivity. Then, unique sets of parameters were calibrated with the same objective function, optimization algorithm, and stopping criteria but different numbers of observations. The calibration quality was quantified with statistics calculated based on the ‘behavioural’ parameter sets, identified using 1% and 5% cut‐off thresholds in a generalized likelihood uncertainty estimation framework. The study demonstrated that equifinality, model performance, and output/parameter uncertainty were responsive to the numbers of observations and calibration parameters; however, the relationship between the numbers, equifinality, and uncertainty was not always conclusive. Model performance improved with increased numbers of calibration parameters and observations, and substantial equifinality did neither necessarily mean bad model performance nor large uncertainty in the model outputs and parameters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Computerized sediment transport models are frequently employed to quantitatively simulate the movement of sediment materials in rivers. In spite of the deterministic nature of the models, the outputs are subject to uncertainty due to the inherent variability of many input parameters in time and in space, along with the lack of complete understanding of the involved processes. The commonly used first-order method for sensitivity and uncertainty analyses is to approximate a model by linear expansion at a selected point. Conclusions from the first-order method could be of limited use if the model responses drastically vary at different points in parameter space. To obtain the global sensitivity and uncertainty features of a sediment transport model over a larger input parameter space, the Latin hypercubic sampling technique along with regression procedures were employed. For the purpose of illustrating the methodologies, the computer model HEC2-SR was selected in this study. Through an example application, the results about the parameters sensitivity and uncertainty of water surface, bed elevation and sediment discharge were discussed.  相似文献   

3.
Complex hydrological models are being increasingly used nowadays for many purposes such as studying the impact of climate and land‐use change on water resources. However, building a high‐fidelity model, particularly at large scales, remains a challenging task, due to complexities in model functioning and behaviour and uncertainties in model structure, parameterization, and data. Global sensitivity analysis (GSA), which characterizes how the variation in the model response is attributed to variations in its input factors (e.g., parameters and forcing data), provides an opportunity to enhance the development and application of these complex models. In this paper, we advocate using GSA as an integral part of the modelling process by discussing its capabilities as a tool for diagnosing model structure and detecting potential defects, identifying influential factors, characterizing uncertainty, and selecting calibration parameters. Accordingly, we conduct a comprehensive GSA of a complex land surface–hydrology model, Modélisation Environmentale–Surface et Hydrologie (MESH), which combines the Canadian land surface scheme with a hydrological routing component, WATROUTE. Various GSA experiments are carried out using a new technique, called Variogram Analysis of Response Surfaces, for alternative hydroclimatic conditions in Canada using multiple criteria, various model configurations, and a full set of model parameters. Results from this study reveal that, in addition to different hydroclimatic conditions and SA criteria, model configurations can also have a major impact on the assessment of sensitivity. GSA can identify aspects of the model internal functioning that are counter‐intuitive and thus help the modeller to diagnose possible model deficiencies and make recommendations for improving development and application of the model. As a specific outcome of this work, a list of the most influential parameters for the MESH model is developed. This list, along with some specific recommendations, is expected to assist the wide community of MESH and Canadian land surface scheme users, to enhance their modelling applications.  相似文献   

4.
How much data is needed for calibration of a hydrological catchment model? In this paper we address this question by evaluating the information contained in different subsets of discharge and groundwater time series for multi‐objective calibration of a conceptual hydrological model within the framework of an uncertainty analysis. The study site was a 5·6‐km2 catchment within the Forsmark research site in central Sweden along the Baltic coast. Daily time series data were available for discharge and several groundwater wells within the catchment for a continuous 1065‐day period. The hydrological model was a site‐specific modification of the conceptual HBV model. The uncertainty analyses were based on a selective Monte Carlo procedure. Thirteen subsets of the complete time series data were investigated with the idea that these represent realistic intermittent sampling strategies. Data subsets included split‐samples and various combinations of weekly, monthly, and quarterly fixed interval subsets, as well as a 53‐day ‘informed observer’ subset that utilized once per month samples except during March and April—the months containing large and often dominant snow melt events—when sampling was once per week. Several of these subsets, including that of the informed observer, provided very similar constraints on model calibration and parameter identification as the full data record, in terms of credibility bands on simulated time series, posterior parameter distributions, and performance indices calculated to the full dataset. This result suggests that hydrological sampling designs can, at least in some cases, be optimized. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A key point in the application of multi‐model Bayesian averaging techniques to assess the predictive uncertainty in groundwater modelling applications is the definition of prior model probabilities, which reflect the prior perception about the plausibility of alternative models. In this work the influence of prior knowledge and prior model probabilities on posterior model probabilities, multi‐model predictions, and conceptual model uncertainty estimations is analysed. The sensitivity to prior model probabilities is assessed using an extensive numerical analysis in which the prior probability space of a set of plausible conceptualizations is discretized to obtain a large ensemble of possible combinations of prior model probabilities. Additionally, the value of prior knowledge about alternative models in reducing conceptual model uncertainty is assessed by considering three example knowledge states, expressed as quantitative relations among the alternative models. A constrained maximum entropy approach is used to find the set of prior model probabilities that correspond to the different prior knowledge states. For illustrative purposes, a three‐dimensional hypothetical setup approximated by seven alternative conceptual models is employed. Results show that posterior model probabilities, leading moments of the predictive distributions and estimations of conceptual model uncertainty are very sensitive to prior model probabilities, indicating the relevance of selecting proper prior probabilities. Additionally, including proper prior knowledge improves the predictive performance of the multi‐model approach, expressed by reductions of the multi‐model prediction variances by up to 60% compared with a non‐informative case. However, the ratio between‐model to total variance does not substantially decrease. This suggests that the contribution of conceptual model uncertainty to the total variance cannot be further reduced based only on prior knowledge about the plausibility of alternative models. These results advocate including proper prior knowledge about alternative conceptualizations in combination with extra conditioning data to further reduce conceptual model uncertainty in groundwater modelling predictions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Finding an operational parameter vector is always challenging in the application of hydrologic models, with over‐parameterization and limited information from observations leading to uncertainty about the best parameter vectors. Thus, it is beneficial to find every possible behavioural parameter vector. This paper presents a new methodology, called the patient rule induction method for parameter estimation (PRIM‐PE), to define where the behavioural parameter vectors are located in the parameter space. The PRIM‐PE was used to discover all regions of the parameter space containing an acceptable model behaviour. This algorithm consists of an initial sampling procedure to generate a parameter sample that sufficiently represents the response surface with a uniform distribution within the “good‐enough” region (i.e., performance better than a predefined threshold) and a rule induction component (PRIM), which is then used to define regions in the parameter space in which the acceptable parameter vectors are located. To investigate its ability in different situations, the methodology is evaluated using four test problems. The PRIM‐PE sampling procedure was also compared against a Markov chain Monte Carlo sampler known as the differential evolution adaptive Metropolis (DREAMZS) algorithm. Finally, a spatially distributed hydrological model calibration problem with two settings (a three‐parameter calibration problem and a 23‐parameter calibration problem) was solved using the PRIM‐PE algorithm. The results show that the PRIM‐PE method captured the good‐enough region in the parameter space successfully using 8 and 107 boxes for the three‐parameter and 23‐parameter problems, respectively. This good‐enough region can be used in a global sensitivity analysis to provide a broad range of parameter vectors that produce acceptable model performance. Moreover, for a specific objective function and model structure, the size of the boxes can be used as a measure of equifinality.  相似文献   

7.
Deep seepage is a term in the hillslope and catchment water balance that is rarely measured and usually relegated to a residual in the water balance equation. While recent studies have begun to quantify this important component, we still lack understanding of how deep seepage varies from hillslope to catchment scales and how much uncertainty surrounds its quantification within the overall water balance. Here, we report on a hillslope water balance study from the H. J. Andrews Experimental Forest in Oregon aimed at quantifying the deep seepage component where we irrigated a 172‐m2 section of hillslope for 24·4 days at 3·6 ± 3 mm/h. The objective of this experiment was to close the water balance, identifying the relative partitioning of, and uncertainties around deep seepage and the other measured water balance components of evaporation, transpiration, lateral subsurface flow, bedrock return flow and fluxes into and out of soil profile storage. We then used this information to determine how the quantification of individual water balance components improves our understanding of key hillslope processes and how uncertainties in individual measurements propagate through the functional uses of the measurements into water balance components (i.e. meteorological measurements propagated through potential evapotranspiration estimates). Our results show that hillslope scale deep seepage composed of 27 ± 17% of applied water. During and immediately after the irrigation experiment, a significant amount of the irrigation water could not be accounted for. This amount decreased as the measurement time increased, declining from 28 ± 16% at the end of the irrigation to 20 ± 21% after 10 days drainage. This water is attributed to deep seepage at the catchment scale. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, we evaluate uncertainties propagated through different climate data sets in seasonal and annual hydrological simulations over 10 subarctic watersheds of northern Manitoba, Canada, using the variable infiltration capacity (VIC) model. Further, we perform a comprehensive sensitivity and uncertainty analysis of the VIC model using a robust and state-of-the-art approach. The VIC model simulations utilize the recently developed variogram analysis of response surfaces (VARS) technique that requires in this application more than 6,000 model simulations for a 30-year (1981–2010) study period. The method seeks parameter sensitivity, identifies influential parameters, and showcases streamflow sensitivity to parameter uncertainty at seasonal and annual timescales. Results suggest that the Ensemble VIC simulations match observed streamflow closest, whereas global reanalysis products yield high flows (0.5–3.0 mm day−1) against observations and an overestimation (10–60%) in seasonal and annual water balance terms. VIC parameters exhibit seasonal importance in VARS, and the choice of input data and performance metrics substantially affect sensitivity analysis. Uncertainty propagation due to input forcing selection in each water balance term (i.e., total runoff, soil moisture, and evapotranspiration) is examined separately to show both time and space dimensionality in available forcing data at seasonal and annual timescales. Reliable input forcing, the most influential model parameters, and the uncertainty envelope in streamflow prediction are presented for the VIC model. These results, along with some specific recommendations, are expected to assist the broader VIC modelling community and other users of VARS and land surface schemes, to enhance their modelling applications.  相似文献   

9.
In this study, a quantitative assessment of uncertainty was made in connection with the calibration of Australian Water Balance Model (AWBM) for both gauged and ungauged catchment cases. For the gauged catchment, five different rainfall data sets, 23 different calibration data lengths and eight different optimization techniques were adopted. For the ungauged catchment case, the optimum parameter sets obtained from the nearest gauged catchment were transposed to the ungauged catchments, and two regional prediction equations were used to estimate runoff. Uncertainties were ascertained by comparing the observed and modelled runoffs by the AWBM on the basis of different combinations of methods, model parameters and input data. The main finding from this study was that the uncertainties in the AWBM modelling outputs could vary from ?1.3% to 70% owing to different input rainfall data, ?5.7% to 11% owing to different calibration data lengths and ?6% to 0.2% owing to different optimization techniques adopted in the calibration of the AWBM. The performance of the AWBM model was found to be dominated mainly by the selection of appropriate rainfall data followed by the selection of an appropriate calibration data length and optimization algorithm. Use of relatively short data length (e.g. 3 to 6 years) in the calibration was found to generate relatively poor results. Effects of different optimization techniques on the calibration were found to be minimal. The uncertainties reported here in relation to the calibration and runoff estimation by the AWBM model are relevant to the selected study catchments, which are likely to differ for other catchments. The methodology presented in this paper can be applied to other catchments in Australia and other countries using AWBM and similar rainfall–runoff models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Urban stormwater is a major cause of urban flooding and natural water pollution. It is therefore important to assess any hydrologic trends in urban catchments for stormwater management and planning. This study addresses urban hydrological trend analysis by examining trends in variables that characterize hydrological processes. The original and modified Mann‐Kendall methods are applied to trend detection in two French catchments, that is, Chassieu and La Lechere, based on approximately 1 decade of data from local monitoring programs. In both catchments, no trend is found in the major hydrological process driver (i.e., rainfall variables), whereas increasing trends are detected in runoff flow rates. As a consequence, the runoff coefficients tend to increase during the study period, probably due to growing imperviousness with the local urbanization process. In addition, conceptual urban rainfall‐runoff model parameters, which are identified via model calibration with an event based approach, are examined. Trend detection results indicate that there is no trend in the time of concentration in Chassieu, whereas a decreasing trend is present in La Lechere, which, however, needs to be validated with additional data. Sensitivity analysis indicates that the original Mann‐Kendall method is not sensitive to a few noisy values in the data series.  相似文献   

11.
Abstract

The SWAT model was tested to simulate the streamflow of two small Mediterranean catchments (the Vène and the Pallas) in southern France. Model calibration and prediction uncertainty were assessed simultaneously by using three different techniques (SUFI-2, GLUE and ParaSol). Initially, a sensitivity analysis was conducted using the LH-OAT method. Subsequent sensitive parameter calibration and SWAT prediction uncertainty were analysed by considering, firstly, deterministic discharge data (assuming no uncertainty in discharge data) and secondly, uncertainty in discharge data through the development of a methodology that accounts explicitly for error in the rating curve (the stage?discharge relationship). To efficiently compare the different uncertainty methods and the effect of the uncertainty of the rating curve on model prediction uncertainty, common criteria were set for the likelihood function, the threshold value and the number of simulations. The results show that model prediction uncertainty is not only case-study specific, but also depends on the selected uncertainty analysis technique. It was also found that the 95% model prediction uncertainty interval is wider and more successful at encompassing the observations when uncertainty in the discharge data is considered explicitly. The latter source of uncertainty adds additional uncertainty to the total model prediction uncertainty.
Editor D. Koutsoyiannis; Associate editor D. Gerten

Citation Sellami, H., La Jeunesse, I., Benabdallah, S., and Vanclooster, M., 2013. Parameter and rating curve uncertainty propagation analysis of the SWAT model for two small Mediterranean watersheds. Hydrological Sciences Journal, 58 (8), 1635?1657.  相似文献   

12.
The need for accurate hydrologic analysis and rainfall–runoff modelling tools has been rapidly increasing because of the growing complexity of operational hydrologic and hydraulic problems associated with population growth, rapid urbanization and expansion of agricultural activities. Given the recent advances in remote sensing of physiographic features and the availability of near real‐time precipitation products, rainfall–runoff models are expected to predict runoff more accurately. In this study, we compare the performance and implementation requirements of two rainfall–runoff models for a semi‐urbanized watershed. One is a semi‐distributed conceptual model, the Hydrologic Engineering Center‐Hydrologic Modelling System (HEC‐HMS). The other is a physically based, distributed‐parameter hydrologic model, the Gridded Surface Subsurface Hydrologic Analysis (GSSHA). Four flood events that took place on the Leon Creek watershed, a sub‐watershed of the San Antonio River basin in Texas, were used in this study. The two models were driven by the Multisensor Precipitation Estimator radar products. One event (in 2007) was used for HEC‐HMS and GSSHA calibrations. Two events (in 2004 and 2007) were used for further calibration of HEC‐HMS. Three events (in 2002, 2004 and 2010) were used for model validation. In general, the physically based, distributed‐parameter model performed better than the conceptual model and required less calibration. The two models were prepared with the same minimum required input data, and the effort required to build the two models did not differ substantially. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A terrestrial hydrological model, developed to simulate the high‐latitude water cycle, is described, along with comparisons with observed data across the pan‐Arctic drainage basin. Gridded fields of plant rooting depth, soil characteristics (texture, organic content), vegetation, and daily time series of precipitation and air temperature provide the primary inputs used to derive simulated runoff at a grid resolution of 25 km across the pan‐Arctic. The pan‐Arctic water balance model (P/WBM) includes a simple scheme for simulating daily changes in soil frozen and liquid water amounts, with the thaw–freeze model (TFM) driven by air temperature, modelled soil moisture content, and physiographic data. Climate time series (precipitation and air temperature) are from the National Centers for Environmental Prediction (NCEP) reanalysis project for the period 1980–2001. P/WBM‐generated maximum summer active‐layer thickness estimates differ from a set of observed data by an average of 12 cm at 27 sites in Alaska, with many of the differences within the variability (1σ) seen in field samples. Simulated long‐term annual runoffs are in the range 100 to 400 mm year?1. The highest runoffs are found across northeastern Canada, southern Alaska, and Norway, and lower estimates are noted along the highest latitudes of the terrestrial Arctic in North America and Asia. Good agreement exists between simulated and observed long‐term seasonal (winter, spring, summer–fall) runoff to the ten Arctic sea basins (r = 0·84). Model water budgets are most sensitive to changes in precipitation and air temperature, whereas less affect is noted when other model parameters are altered. Increasing daily precipitation by 25% amplifies annual runoff by 50 to 80% for the largest Arctic drainage basins. Ignoring soil ice by eliminating the TFM sub‐model leads to runoffs that are 7 to 27% lower than the control run. The results of these model sensitivity experiments, along with other uncertainties in both observed validation data and model inputs, emphasize the need to develop improved spatial data sets of key geophysical quantities (particularly climate time series) to estimate terrestrial Arctic hydrological budgets better. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we analyse the uncertainty and parameter sensitivity of a conceptual water quality model, based on a travel time distribution (TTD) approach, simulating electrical conductivity (EC) in the Duck River, Northwest Tasmania, Australia for a 2-year period. Dynamic TTDs of stream water were estimated using the StorAge Selection (SAS) approach, which was coupled with two alternate methods to model stream water EC: (1) a solute-balance approach and (2) a water age-based approach. Uncertainty analysis using the Differential Evaluation Adoptive Metropolis (DREAM) algorithm showed that: 1. parameter uncertainty was a small contribution to the overall uncertainty; 2. most uncertainty was related to input data uncertainty and model structure; 3. slightly lower total error was obtained in the water age-based model than the solute-balance model; 4. using time-variant SAS functions reduced the model uncertainty markedly, which likely reflects the effect of dynamic hydrological conditions over the year affecting the relative importance of different flow pathways over time. Model parameter sensitivity analysis using the Variogram Analysis of Response Surfaces (VARS-TOOL) framework found that parameters directly related to the EC concentration were most sensitive. In the solute-balance model, the rainfall concentration Crain and in the age-based model, the parameter controlling the rate of change of EC with age (λ) were the most sensitive parameter. Model parameters controlling the age mixes of both evapotranspiration and streamflow water fluxes (i.e., the SAS function parameters) were influential for the solute-balance model. Little change in parameter sensitivity over time was found for the age-based concentration relationship; however, the parameter sensitivity was quite dynamic over time for the solute-balance approach. The overarching outcomes provide water quality modellers, engineers and managers greater insight into catchment functioning and its dependence on hydrological conditions.  相似文献   

15.
Landscape evolution models (LEMs) have the capability to characterize key aspects of geomorphological and hydrological processes. However, their usefulness is hindered by model equifinality and paucity of available calibration data. Estimating uncertainty in the parameter space and resultant model predictions is rarely achieved as this is computationally intensive and the uncertainties inherent in the observed data are large. Therefore, a limits-of-acceptability (LoA) uncertainty analysis approach was adopted in this study to assess the value of uncertain hydrological and geomorphic data. These were used to constrain simulations of catchment responses and to explore the parameter uncertainty in model predictions. We applied this approach to the River Derwent and Cocker catchments in the UK using a LEM CAESAR-Lisflood. Results show that the model was generally able to produce behavioural simulations within the uncertainty limits of the streamflow. Reliability metrics ranged from 24.4% to 41.2% and captured the high-magnitude low-frequency sediment events. Since different sets of behavioural simulations were found across different parts of the catchment, evaluating LEM performance, in quantifying and assessing both at-a-point behaviour and spatial catchment response, remains a challenge. Our results show that evaluating LEMs within uncertainty analyses framework while taking into account the varying quality of different observations constrains behavioural simulations and parameter distributions and is a step towards a full-ensemble uncertainty evaluation of such models. We believe that this approach will have benefits for reflecting uncertainties in flooding events where channel morphological changes are occurring and various diverse (and yet often sparse) data have been collected over such events.  相似文献   

16.
This paper proposes an approach to estimating the uncertainty related to EPA Storm Water Management Model model parameters, percentage routed (PR) and saturated hydraulic conductivity (Ksat), which are used to calculate stormwater runoff volumes. The methodology proposed in this paper addresses uncertainty through the development of probability distributions for urban hydrologic parameters through extensive calibration to observed flow data in the Philadelphia collection system. The established probability distributions are then applied to the Philadelphia Southeast district model through a Monte Carlo approach to estimate the uncertainty in prediction of combined sewer overflow volumes as related to hydrologic model parameter estimation. Understanding urban hydrology is critical to defining urban water resource problems. A variety of land use types within Philadelphia coupled with a history of cut and fill have resulted in a patchwork of urban fill and native soils. The complexity of urban hydrology can make model parameter estimation and defining model uncertainty a difficult task. The development of probability distributions for hydrologic parameters applied through Monte Carlo simulations provided a significant improvement in estimating model uncertainty over traditional model sensitivity analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Abstract

The water-centric community has continuously made efforts to identify, assess and implement rigorous uncertainty analyses for routine hydrological measurements. This paper reviews some of the most relevant efforts and subsequently demonstrates that the Guide to the expression of uncertainty in measurement (GUM) is a good candidate for estimation of uncertainty intervals for hydrometry. The demonstration is made by implementing the GUM to typical hydrometric applications and comparing the analysis results with those obtained using the Monte Carlo method. The results show that hydrological measurements would benefit from the adoption of the GUM as the working standard, because of its soundness, the availability of software for practical implementation and potential for extending the GUM to hydrological/hydraulic numerical simulations.

Editor D. Koutsoyiannis

Citation Muste, M., Lee, K. and Bertrand-Krajewski, J.-L., 2012. Standardized uncertainty analysis for hydrometry: a review of relevant approaches and implementation examples. Hydrological Sciences Journal, 57 (4), 643–667.  相似文献   

18.
In glacierized catchments, meteorological inputs driving surface melting are translated into runoff outputs mediated by the glacier hydrological system: analysis of the relationship between meteorology and diurnal and seasonal patterns of runoff should reflect the functioning of that system, with the role of meltwater storage likely to be of particular importance. Daily meltwater storage is determined for a glacier at 78 °N in the Svalbard archipelago, by comparing inputs calculated from a surface energy balance model with measured outputs (proglacial discharge). Solar radiation, air temperature, wind speed and proglacial discharge are then analysed by regression and time‐series methods, in order to assess the meteorology–discharge relationship and its variation at diurnal and seasonal time‐scales. The recorded discharge time‐series can be divided into two contrasting intervals: up to early August, proglacial discharge was high and variable, mean hydrographs showed little indication of diurnal cycling, ARIMA models of discharge indicated a non‐seasonal, moving‐average generating process, and there was a net loss of meltwater from storage; from early August, proglacial discharge was low and relatively invariable, but with clearer diurnal cycles, regression models of discharge showed substantially improved correlations with air temperature and solar radiation, ARIMA models indicated a non‐seasonal, autoregressive generating process, and eventually a seasonal component, and there was a net gain in meltwater storage. The transition between the two periods is brief compared with the duration of the melt season. The runoff response to meteorology therefore lacks the strongly progressive element previously identified in mid‐latitude glacierized catchments. In particular, the glacier hydrological system only appears responsive to diurnal forcing following the depletion of the seasonal snowpack meltwater store. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
A simple conceptual semi‐distributed modelling approach for assessing the impacts of climate change on direct groundwater recharge in a humid tropical river basin is investigated. The study area is the Chaliyar river basin in the state of Kerala, India. Many factors affecting future groundwater recharge include decrease or increase in precipitation and temperature regimes, coastal flooding, urbanization and changes in land use. The model is based on the water‐balance concept and links the atmospheric and hydrogeologic parameters to different hydrologic processes. It estimates daily water‐table fluctuation and is calibrated and validated using 10 years of data. Data for the first 6 years (2000 to 2005) is used for model calibration, and data for the remaining four years (2006 to 2009) is used for validation. For assessing the impact of predicted climate change on groundwater recharge during the period 2071–2100, temperature and precipitation data in two post climate change scenarios, A2 and B2, were predicted using the Regional Climate Model (RCM), PRECIS (Providing Regional Climates for Impact Studies). These data were then corrected for biases and used in a hydrologic model to predict groundwater recharge in the post climate change scenario. Due to lack of reliable data and proper knowledge as to the magnitude and extent of future climatic changes, it may not be possible to include all the possible effects quantitatively in groundwater recharge modelling. However, the study presents a scientific method to assess the impact of predicted climate change on groundwater recharge and would help engineers, hydrologists, administrators and planners to devise strategies for the efficient use as well as conservation of freshwater resources. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
ABSTRACT

Hydrological modelling has undergone constant growth with the increase in information processing capabilities. Hydrological models have traditionally been used to study the effects of climate change on management and land-use changes and for water resources planning, among other purposes. The aim of this study was to determine and analyse the advantages of the HBV and HYMOD models, which are commonly used in hydrology on daily and monthly time scales. A regional sensitivity analysis was used to compare the processes that take on greater importance at different time scales in the two models. As a result, it was found that quick precipitation–runoff processes prove to be better represented in the HBV model, while slow, time-aggregated processes are better represented by the HYMOD model. This study confirms that both models are adequate for rain-dominated basins, such as those of the study area. Additionally, the HBV model proved to be more robust in comparison to HYMOD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号