首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The caesium-137 technique affords both an alternative to conventional measurement methods and an effective quantitative estimate of soil redistribution at the basin scale. Among the available calibration relationships which link the degree of increase or depletion of the 137Cs activity relative to the baseline 137Cs input and sediment yield, the mass balance approach has received increased application for its physical basis. First, the applicability of the refined simplified point-based mass balance (RSPMB) model of Zhang et al. (1999) at the scale of the morphological unit is proposed herein. The 137Cs spatial distribution measured in a small Sicilian basin and the spatial distribution of the sediment yield calculated by a sediment delivery distributed approach are used to estimate values of the two key parameters of the RSPMB model, φ1 and φ2, the fraction of 137Cs fallout incorporated into soil and a particle size correction factor, respectively. Finally, the best procedure for experimental testing of a distributed sediment yield model by using caesium-137 measurements is investigated.  相似文献   

2.
In this paper a spatially distributed model of the hillslope sediment delivery processes, named the sediment delivery distributed (SEDD) model, is initially reviewed; the model takes into account the sediment delivery processes due to both the hillslope sediment transport and the effects of slope curvature. Then the rainfall and sediment yield events measured at the experimental SPA2 basin, in Sicily, are used both to calibrate the SEDD model and to verify the predictive capability of the distributed sediment delivery approach at event scale. For the SPA2 basin discretized into morphological units and stream tubes, the SEDD model is calibrated at event scale using the measurements carried out at the outlet of the experimental basin in the period December 2000–January 2001. The model calibration is used to determine a relationship useful for estimating the unique coefficient βe of the model by rainfall erosivity factor Re at event scale. To test the predictive capability of the βe = f(Re) relationship, 20 events measured in the period September 2002–December 2005 are used; the comparison between measured sediment yield values and calculated ones for all monitored events shows that the sediment delivery distributed approach has a good predictive ability at event scale. The analysis also shows that estimating βe by the relationship βe = f(Re) gives a better agreement between measured and calculated sediment yields than obtained with the median value βe,m of all 27 calculated βe values. Finally the analysis at annual scale, for the period 2000–2005, allows the estimation of the median value βa,m representative of the annual behaviour. This analysis shows that the sediment delivery distributed approach also has a good predictive ability at annual scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Abstract

Because the properties of eroded soil affect the deposition phenomena and transport capacity of chemical materials by eroded particles, recent research is trying to link the grain-size distribution of the eroded sediment to that of the original soil in order to explain the enrichment of chemical content of the sediment with the respect to the parent soil. In this study, the spatial distribution of nitrogen, phosphorus and total organic carbon was firstly deduced using the measurements carried out in 47 soil samples distributed over a forested basin together with a kriging interpolation method. Then the load of each chemical was calculated at morphological unit and basin scales using the above-mentioned spatial distributions and sediment yield values calculated by the SEDD (SEdiment Delivery Distributed) model, which couples the universal soil loss equation with a spatial disaggregation criterion of sediment delivery processes. Finally, at basin scale, a new expression of the enrichment ratio of a given chemical was applied.  相似文献   

4.
The sediment delivery processes occurring in a small Sicilian basin are modelled using the spatially distributed SEDD model recently proposed by Ferro and Minacapilli. The model is applied by using soil data (grain-size distribution, organic matter content, etc.) of 129 samples uniformly distributed over the study area and compiling the available information (topographic map, soil data, etc.) into a Geographical Information System. Finally, the predictive capability of the distributed sediment delivery approach is tested experimentally using the caesium-137 measurement technique. The comparison between calculated sediment yield and the corresponding measured caesium-137 loss is used to validate the SEDD model at the scale of both the single morphological unit and the entire basin. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
An Erratum has been published for this article in Hydrological Processes 16(5) 2002, 1130–1131. Humid tropical regions are often characterized by extreme variability of fluvial processes. The Rio Terraba drains the largest river basin, covering 4767 km2, in Costa Rica. Mean annual rainfall is 3139±419sd mm and mean annual discharge is 2168±492sd mm (1971–88). Loss of forest cover, high rainfall erosivity and geomorphologic instability all have led to considerable degradation of soil and water resources at local to basin scales. Parametric and non‐parametric statistical methods were used to estimate sediment yields. In the Terraba basin, sediment yields per unit area increase from the headwaters to the basin mouth, and the trend is generally robust towards choice of methods (parametric and LOESS) used. This is in contrast to a general view that deposition typically exceeds sediment delivery with increase in basin size. The specific sediment yield increases from 112±11·4sd t km?2 year?1 (at 317·9 km2 on a major headwater tributary) to 404±141·7sd t km?2 year?1 (at 4766·7 km2) at the basin mouth (1971–92). The analyses of relationships between sediment yields and basin parameters for the Terraba sub‐basins and for a total of 29 basins all over Costa Rica indicate a strong land use effect related to intensive agriculture besides hydro‐climatology. The best explanation for the observed pattern in the Terraba basin is a combined spatial pattern of land use and rainfall erosivity. These were integrated in a soil erosion index that is related to the observed patterns of sediment yield. Estimated sediment delivery ratios increase with basin area. Intensive agriculture in lower‐lying alluvial fans exposed to highly erosive rainfall contributes a large part of the sediment load. The higher elevation regions, although steep in slope, largely remain under forest, pasture, or tree‐crops. High rainfall erosivity (>7400 MJ mm ha?1 h?1 year ?1) is associated with land uses that provide inadequate soil protection. It is also associated with steep, unstable slopes near the basin mouth. Improvements in land use and soil management in the lower‐lying regions exposed to highly erosive rainfall are recommended, and are especially important to basins in which sediment delivery ratio increases downstream with increasing basin area. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

River basin lag time (LAG), defined as the elapsed time between the occurrence of the centroids of the effective rainfall intensity pattern and the storm runoff hydrograph, is an important factor in determining the time to peak and the peak value of the instantaneous unit hydrograph, IUH. In the procedure of predicting a sedimentgraph (suspended sediment load as a function of time), the equivalent parameter is the lag time for the sedimentgraph (LAGs ), which is defined as the elapsed time between the occurrence of the centroids of sediment production during a storm event and the observed sedimentgraph at the gauging station. Results of analyses of rainfall, runoff and suspended sediment concentration event data collected from five small Carpathian basins in Poland and from a 2.31-ha agricultural basin, in central Illinois, USA have shown that LAGs was, in the majority of cases, smaller than LAG, and that a significant linear relationship exists between LAGs and LAG.  相似文献   

7.
The sediment delivery ratio was estimated for two periods (28 years and eight years) following reforestation of seven tributary catchments (0·33 to 0·49 km2) in the headwaters of the Waipaoa River basin, North Island, New Zealand. In these catchments, gully erosion, which largely resulted from clearance of the natural forest between 1880 and 1920, is the main source of sediment to streams. Reforestation commenced in the early 1960s in an attempt to stabilize hillslopes and reduce sediment supply. Efforts have been partially successful and channels are now degrading, though gully erosion continues to supply sediment at accelerated rates in parts of the catchment. Data from the area indicate that the sediment delivery ratio (SDR) can be estimated as a function of two variables, ψ (the product of catchment area and channel slope) and A g (the temporally averaged gully area for the period). Sediment input from gullies was determined from a well defined relationship between sediment yield and gully area. Sediment scoured from channels was estimated from dated terrace remnants and the current channel bed. Terrace remnants represent aggradation during major floods. This technique provides estimates of SDR averaged over periods between large magnitude terrace‐forming events and with the present channel bed. The technique averages out short‐term variability in sediment flux. Comparison of gully area and sediment transport between two periods (1960–1988 and 1988–1996) indicates that the annual rate of sediment yield from gullies for the later period has decreased by 77 per cent, sediment scouring in channels has increased by 124 per cent, and sediment delivered from catchments has decreased by 78 per cent. However, average SDR for the tributaries was found to be not significantly different between these periods. This may reflect the small number of catchments examined. It is also due to the fact that the volume of sediment scoured from channels was very small relative to that produced by gullies. According to the equation for SDR determined for the Waipaoa headwaters, SDR increases with increasing catchment area in the case where A g and channel slope are fixed. This is because the amount of sediment produced from a channel by scouring increases with increasing catchment area. However, this relationship does not hold for the main stem of the study catchments, because sediment delivered from its tributaries still continues to accumulate in the channel. Higher order channels are, in effect, at a different stage in the aggradation/degradation cycle and it will take some time until a main channel reflects the effects of reforestation and its bed adjusts to net degradation. Results demonstrate significant differences among even low order catchments, and such differences will need to be taken into consideration when using SDR to estimate sediment yields. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
The spatial scale effect on sediment concentration in runoff has received little attention despite numerous studies on sediment yield or sediment delivery ratio in the context of multiple spatial scales. We have addressed this issue for hilly areas of the Loess Plateau, north China where fluvial processes are mainly dominated by hyperconcentrated flows. The data on 717 flow events observed at 17 gauging stations and two runoff experimental plots, all located in the 3906 km2 Dalihe watershed, are presented. The combination of the downstream scour of hyperconcentrated flows and the downstream dilution, which is mainly caused by the base flow and is strengthened as a result of the strong patchy storms, determines the spatial change of sediment concentration in runoff during flood events. At the watershed scale, the scouring effect takes predominance first but is subordinate to the downstream dilution with a further increase in spatial scale. As a result, the event mean sediment concentration first increases following a power function with drainage basin area and then declines at the drainage basin area of about 700 km2. The power function in combination with the proportional model of the runoff‐sediment yield relationship we proposed before was used to establish the sediment‐yield model, which is neither the physical‐based model nor the regression model. This model, with only two variables (runoff depth and drainage basin area) and two parameters, can provide fairly accurate prediction of event sediment yield with model efficiency over 0·95 if small events with runoff depth lower than 1 mm are excluded. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
Abstract

Water discharge and suspended and dissolved sediment data from three rivers (Napo, Pastaza and Santiago) in the Ecuadorian Amazon basin and a river in the Pacific basin (Esmeraldas) over a 9-year period, are presented. This data set allows us to present: (a) the chemical weathering rates; (b) the erosion rates, calculated from the suspended sediment from the Andean basin; (c) the spatio-temporal variability of the two regions; and (d) the relationship between this variability and the precipitation, topography, lithology and seismic activity of the area. The dissolved solids load from the Esmeraldas basin was 2 × 106 t year-1, whereas for the Napo, Pastaza and Santiago basins, it was 4, 2 and 3 × 106 t year-1, respectively. For stations in the Andean piedmont of Ecuador, the relationship between surface sediment and the total sediment concentration was found to be close to one. This is due to minimal stratification of the suspended sediment in the vertical profile, which is attributed to turbulence and high vertical water speeds. However, during the dry season, when the water speed decreases, sediment stratification appears, but this effect can be neglected in the sediment flux calculations due to low concentration rates. The suspended sediment load in the Pacific basin was 6 × 106 t year-1, and the total for the three Amazon basins was 47 × 106 t year-1. The difference between these contributions of the suspended sediment load is likely due to the tectonic uplift and the seismic and volcanic dynamics that occur on the Amazon side.

Editor Z.W. Kundzewicz

Citation Armijos, E., Laraque, A., Barba, S., Bourrel, L., Ceron, C., Lagane, C., Magat, P., Moquet, J.-S., Pombosa, R., Sondag, F., Vauchel, P., Vera, A., and Guyot, J.L., 2013. Yields of suspended sediment and dissolved solids from the Andean basins of Ecuador. Hydrological Sciences Journal, 58 (7), 1478–1494.  相似文献   

10.
Abstract

Available data on suspended sediment transported by rivers in the Maghreb are reviewed for 130 drainage basins. These data allow a new estimate to be proposed for the delivery of river sediment to both the Atlantic Ocean and the Mediterranean Sea from the Maghreb region. The influences of several environmental factors (precipitation, runoff, drainage area size and lithology) on mechanical erosion and fluvial sediment transport are analysed. Finally, a multiple regression model is proposed to estimate the river sediment yields in the Maghreb.  相似文献   

11.
Abstract

An index (Fs) for sediment transfer function is introduced, based on the sediment budget at the channel scale. The purpose of this study is two-fold: to gain a deeper insight into how Fs is influenced by natural and human factors, and to provide some new knowledge for decision making in the management of the Upper Yellow River, China. Since 1960, the Fs of the Lanzhou to Toudaoguai reach of the Upper Yellow River shows a decreasing trend. At the drainage basin level, the decreased Fs can be explained by changes in precipitation and air temperature, as well as by a number of variables describing human activity, such as reservoir regulation, water diversion, and soil and water conservation. The higher temperature reduces the transfer function, while the larger runoff coefficient increases it. At the channel level, the decreased Fs can be explained by a number of variables of flow and sediment input. Three countermeasures for restoration of the Fs are suggested.
Editor Z.W. Kundzewicz  相似文献   

12.
《水文科学杂志》2013,58(6):1253-1269
Abstract

Although soil erosion has been recognized worldwide as a threat to the sustainability of natural ecosystems, its quantification presents one of the greatest challenges in natural resources and environmental planning. Precise modelling of soil erosion and sediment yield is particularly difficult, as soil erosion is a highly dynamic process at the spatial scale. The main objective of this study was to simulate soil erosion and sediment yield using two fundamentally different approaches: empirical and process-oriented. The revised form of the Universal Soil Loss Equation (RUSLE), along with a sediment delivery distributed model (SEDD) and the Modified Universal Soil Loss Equation (MUSLE), which are popular empirical models, were applied in a sub-basin of the Mun River basin, Thailand. The results obtained from the RUSLE/SEDD and MUSLE models were compared with those obtained from a process-oriented soil erosion and sediment transport model. The latter method involves spatial disaggregation of the catchment into homogeneous grid cells to capture the catchment heterogeneity. A GIS technique was used for the spatial discretization of the catchment and to derive the physical parameters related to erosion in the grid cells. The simulated outcomes from the process-oriented model were found to be closer to observations as compared to the outcomes of the empirical approaches.  相似文献   

13.
Abstract

The runoff and sediment of large rivers usually come from different source areas, which make different contributions to the sediment flux into the sea. This has been studied with the example of the Yellow River in China, whose suspended sediment flux into the Bohai Sea accounts for 19.4% of the world total. The drainage basin of this river can be divided into four major water and sediment source areas. The sediment flux into the sea is found to be closely related to the water and sediment from the different source areas in the drainage basin and, accordingly, an empirical regression model has been established to express this relationship. According to this model, in each tonne (t) of sediment from the fine sediment producing area (FSA), 0.85 t (for yearly series) and 0.72 t (for event series) can be transported into the sea; in each tonne of sediment from the coarse sediment producing area (CSA), only 0.21 t (for yearly series) and 0.34 t (for event series) can be transported into the sea. Since the 1970s, the Yellow River's sediment flux into the sea has declined markedly and this reduction can be attributed to a great degree to the soil control measures in the fine sediment producing area. Coupling the models of this study to the previously established models for estimating the impacts of soil control measures on water and sediment balance in the Yellow River basin, a quantitative prediction may be made for the change of sediment flux into the sea that might result from climate change and human activities in the future.  相似文献   

14.
Abstract

A measurement campaign was carried out in the Upper Tana basin (Kenya) to quantify soil erosion and reservoir sedimentation rates, including a bathymetric reservoir survey and sediment load sampling during one year. Then, distributed soil erosion modelling was performed to study sediment budgets throughout the basin and to evaluate the potential of upstream erosion control through vegetated contour strips and check dams. Finally, the areas where these measures would be most effective were identified and local stakeholder associations to implement them were prioritized. The influence of the scale of implementation was evaluated by using the model to consider three adoption scenarios. This study illustrates the relevance of distributed erosion models to target erosion control measures when sufficient information on the eroding areas is available from field surveys. Bathymetric surveys were fundamental to validate the long-term model response, while point measurements were valuable to verify the spatial variability of model predictions.

Editor Z.W. Kundzewicz; Associate editor G. Mahé

Citation Hunink, J.E., Niadas, I.A., Antonaropoulos, P., Droogers, P., and de Vente, J., 2013. Targeting of intervention areas to reduce reservoir sedimentation in the Tana catchment (Kenya) using SWAT. Hydrological Sciences Journal, 58 (3), 600–614.  相似文献   

15.
Abstract

The use of the bootstrap technique to estimate the reference level of137 Cs in an uneroded site is tested. The analysis is developed using 137Cs measurements made in a small experimental Sicilian basin. In the reference area the 137Cs activity is normally distributed with a known sample mean value, m equal to 94.4 mBq cm?2. The influence of137 Cs reference site sampling was determined generating samples having a fixed size, N and six different values of the sample coefficient of variation, CV, by a Monte Carlo technique. Then, for each size N, the probability distribution of the mean μ of the sequences generated by Monte Carlo technique is defined. The soil redistribution is determined, both at morphological unit and basin scale, using the proportional method of Martz & de Jong for calculating the net soil loss. The analysis showed that the spatial distribution of the net soil loss E i, and the basin value E b are independent of the sample size, N, and the coefficient of variation, CV, of the samples drawn from the reference area, if the bootstrap technique is applied for estimating the mean μ(μ) to use as reference value. The soil redistribution is also examined using as reference value the quantiles μ2.5, μ25, μ75, μ97.5 corresponding to a frequency F(μ) equal to 2.5, 25, 75 and 97.5%, respectively. In conclusion, the analysis established that a robust estimate of the reference value can be obtained even in fields where a small number of samples was drawn (high CV of the 137Cs activity of the field samples), using the bootstrap technique for generating sequences of reference values having known mean value m (the mean value of the 137Cs activity of the drawn field samples) and large sample size (N = 50).  相似文献   

16.
Abstract

A conceptual basin model of the instantaneous unit sediment graph was developed for sediment graph prediction from arid upland basins by routing mobilized sediments through a series of linear reservoirs. The sediment graphs generated by convolution of the instantaneous unit sediment graph compared reasonably well with the observed ones for four representative arid upland sub-basins in the Luni basin, India. The mobilized sediment during a storm was related to effective precipitation and the parameters of the model were estimated from observed events. The model can be applied to ungauged flow events through parameterization.  相似文献   

17.
During the operations of purging and disposal of sediments of a reservoir it is necessary to know the values of turbidity in the river downstream in natural condition,in the absence of dams or river training works.The paper shows that under these conditions the ratio of the average values of sediment discharge to the annual maximum value of water discharge is a function of the average annual turbidity.Turbidity can be considered as representative synthetic index of the climatic conditions,the lithological features and the land cover of the basin,and the geometric characteristics of the river network.The proposed relationship of sediment discharge as a function of water discharge were validated on the basis of data collected from different Italian regions that have very different morphological,geo-lithological and rainfall features and that are characterised by a basin area changing between a few dozen and thousands of square kilometres.The results can be considered satisfying.  相似文献   

18.
Vito Ferro 《水文研究》1998,12(12):1895-1910
An equation for evaluating the sediment transport capacity of overland flow is a necessary part of a physically based soil erosion model describing sediment detachment and transport as distributed processes. At first, for the hydraulic conditions of small-scale and large-scale roughness, the sediment transport capacity relationship used in the WEPP model is calibrated by Yalin and Govers' equation. The analysis shows that the transport coefficient Kt depends on the Shields parameter, Y, according to a semi-logarithmic (Yalin) or a linear (Govers) equation. The reliability of the semi-logarithmic equation is verified by Smart's, and Aziz and Scott's experimental data. Then the Low's formula, whose applicability is also proved by Smart's, and Aziz and Scott's data, is transformed as a stream power equation in which a stream power coefficient, KSP, depending on Shields parameter, slope, sediment and water-specific weight, appears. A relationship between transport capacity and effective stream power is also proposed. Finally, the influence of rainfall on sediment transport capacity and the prediction of critical shear stress corresponding to overland flow are examined. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

A GIS-based method is proposed for computation of temporal variation of sediment yield during isolated storm events. Data from three Indian catchments, namely Karso and Nagwa in Jharkhand and Kharkari in Rajasthan, have been used. The Integrated Land and Water Information System (ILWIS) GIS package was used for (a) catchment discretization into cell areas using grid networks, (b) evaluation of the spatial variation in catchment topographical characteristics and land use, and (c) presentation of the results obtained. The process of sediment delivery from grid cells to the catchment outlet is represented by the topographical characteristics of the cells. Unit sediment graphs for the catchments are derived by translation of the sediment yield from the grid cells and routing through a linear storage reservoir. The proposed method is found to provide satisfactory estimates of the temporal variation of sediment yield during isolated storm events. The total sediment yield of a storm event may also be computed using the proposed method.  相似文献   

20.
Sediment movement during erosion, transport and deposition greatly affects the ecosystem of river basins. However, there is presently no consensus as to whether particular river basins act as carbon dioxide (CO2) sources or sinks related to these processes. This paper introduces a rule‐of‐thumb coordinate system based on sediment delivery ratio (SDR) and soil humin content (SHC) in order to evaluate the net effect of soil erosion, sediment transport and deposition on CO2 flux in river basins. The SDR–SHC system delineates CO2 source and sink areas, and further divides the sink into strong and weak areas according to the world‐average line. The Yellow River Basin, most severely suffering soil erosion in the world, only appears to be a weak erosion‐induced CO2 sink in this system. The average annual CO2 sequestration is ~0·235 Mt from 1960 to 2008, a relatively small value considering its 3·1% contribution to the World's sediment discharge. The temporal analysis shows that the Yellow River Basin was once a source in the 1960s, but changed its role to become a weak sink in the past 40 years due to both anthropogenic and climatic influences. The spatial analysis identifies the middle sub‐basin as the main source region, and the lower as the main sink. For comparison, sediment‐movement‐related CO2 fluxes of eight other major basins in four continents are examined. It is found that the six basins considered in the Northern Hemisphere appear to be sinks, while the other two in the Southern Hemisphere act as sources. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号