首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The global climate changings at the end of Pleistocene led to extinction of the typical representatives of Mammoth fauna–mammoth, woolly rhinoceros, wild horse, bison, muskox, cave lion, etc.–on the huge territories of Northern Eurasia. Undoubtedly the Mammoth fauna underwent pressure from the Upper Paleolithic Man, whose hunting activity also could play the role in decreasing the number of mammoths and other representatives of megafauna (large mammals). Archaeological data testify that the typical representatives of Mammoth fauna were the Man's hunting objects only till the end of the Pleistocene. Their bone remains are not usually found on the settlements of Mesolithic Man. Formerly it was supposed that the megafauna of ‘Mammoth complex’ was extinct by the beginning of Holocene. Nevertheless the latest data testify that the global extinction of the Mammoth fauna was sufficiently delayed in the north of Eastern Siberia. In the 1990s some radiocarbon data testified that the mammoths on the Wrangel Island existed for a long time during the Holocene from 8000 till 3700 y. BP. The present radiocarbon data show that wild horses inhabited the north of Eastern Siberia (the lower stream of the Enissey river, the Novosibirskie Islands, the East Siberian sea-shore) 3000–2000 y. BP. Musk-oxen lived on the Taimyr Peninsula and the Lena River delta about 3000 y. BP. Some bison remains from Eastern Siberia belong to the Holocene. The following circumstances could promote the process of preservation of the Mammoth fauna representatives. The cool and dry climate of this region promotes the maintenance of steppe associations – habitats of those mammals. The Late Paleolithic and Mesolithic settlements are not found in the Arctic zone of Eastern Siberia from the Taimyr Peninsula to a lower stream of the Yana River; they are very rare in the basins of the Indigirka and Kolyma Rivers. So, the small number of the Stone Age hunting tribes on the North of Eastern Siberia was another factor in the long-term preservation of some Mammoth fauna representatives.  相似文献   

2.
3.
The Holocene depositional setting of the Laptev Sea was studied using three marine sediment cores from water depths between 77 and 46 m. Based on sedimentary parameters (TOC content, δ13Corg, sedimentation rates) controlled by radiocarbon age models the palaeoenvironment of a strongly coupled river-shelf system was reconstructed since ˜11 ka BP. Caused by a transgressing sea after the last glaciation, all cores reveal progressive decreases in sedimentation rates. Using the sedimentary records of a core from the Khatanga-Anabar river channel in the western Laptev Sea, several phases of change are recognized: (1) an early period lasted until ˜10 ka BP characterized by an increased deposition of plant debris due to shelf erosion and fluvial runoff; (2) a transitional phase with consistently increasing marine conditions until 6 ka BP, which was marked at its beginning near 10 ka BP by the first occurrence of marine bivalves, high TOC content and an increase in δ13Corg; (3) a time of extremely slow deposition of sediments, commencing at ˜6 ka BP and interpreted as Holocene sea-level highstand, which caused a southward retreat of the depositional centres within the now submerged river channels on the shelf; (4) a final phase with the establishment of modern conditions after ˜2 ka BP.  相似文献   

4.
A 467-cm-long core from the inner shelf of the eastern Laptev Sea provides a depositional history since 9400 cal yr. B.P. The history involves temporal changes in the fluvial runoff as well as postglacial sea-level rise and southward retreat of the coastline. Although the core contains marine fossils back to 8900 cal yr B.P., abundant plant debris in a sandy facies low in the core shows that a river influenced the study site until 8100 cal yr B.P. As sea level rose and the distance to the coast increased, this riverine influence diminished gradually and the sediment type changed, by 7400 cal yr B.P., from sandy silt to clayey silt. Although total sediment input decreased in a step-like fashion from 7600 to 4000 cal yr B.P., this interval had the highest average sedimentation rates and the greatest fluxes in most sedimentary components. While this maximum probably resulted from middle Holocene climate warming, the low input of sand to the site after 7400 cal yr B.P. probably resulted from further southward retreat of the coastline and river mouth. Since about 4000 cal yr B.P., total sediment flux has remained rather constant in this part of the Laptev Sea shelf due to a gradual stabilization of the depositional regime after completion of the Holocene sea-level rise.  相似文献   

5.
Cryolithological, ground ice and fossil bioindicator (pollen, diatoms, plant macrofossils, rhizopods, insects, mammal bones) records from Bol'shoy Lyakhovsky Island permafrost sequences (73°20′N, 141°30′E) document the environmental history in the region for the past c. 115 kyr. Vegetation similar to modern subarctic tundra communities prevailed during the Eemian/Early Weichselian transition with a climate warmer than the present. Sparse tundra‐like vegetation and harsher climate conditions were predominant during the Early Weichselian. The Middle Weichselian deposits contain peat and peaty soil horizons with bioindicators documenting climate amelioration. Although dwarf willows grew in more protected places, tundra and steppe vegetation prevailed. Climate conditions became colder and drier c. 30 kyr BP. No sediments dated between c. 28.5 and 12.05 14C kyr BP were found, which may reflect active erosion during that time. Herb and shrubby vegetation were predominant 11.6–11.3 14C kyr BP. Summer temperatures were c. 4 °C higher than today. Typical arctic environments prevailed around 10.5 14C kyr BP. Shrub alder and dwarf birch tundra were predominant between c. 9 and 7.6 kyr BP. Reconstructed summer temperatures were at least 4 °C higher than present. However, insect remains reflect that steppe‐like habitats existed until c. 8 kyr BP. After 7.6 kyr BP, shrubs gradually disappeared and the vegetation cover became similar to that of modern tundra. Pollen and beetles indicate a severe arctic environment c. 3.7 kyr BP. However, Betula nana, absent on the island today, was still present. Together with our previous study on Bol'shoy Lyakhovsky Island covering the period between about 200 and 115 kyr, a comprehensive terrestrial palaeoenvironmental data set from this area in western Beringia is now available for the past two glacial–interglacial cycles.  相似文献   

6.
Levente Füköh 《GeoJournal》1995,36(2-3):255-259
Based on phylogenetical, palaeoecological and biostratigraphical studies on the Holocene malacofauna of Hungarian medium high mountains and flatlands, four faunal periods could be recognised in the mountains, while three ones on the flat regions. They are defined by correlation (using anthracotomical, palynological, vertebrate palaeontological, archaeological and radiometric data, as well as by the Central European malacozones) as biozones of regional value.The mollusc fauna may be regarded as the main palaeoecological indicator for the Hungarian Quaternary, because it is generally abundant, in contrast to the vertebrate fauna. On the other hand, the Hungarian Quaternary fauna mostly consists of species still living in the area. The ecological demands of recent species are generally well known. Most of the ecological data about the Quaternary formations were yielded by the examination of the Hungarian mollusc fauna.The Quaternary mollusc fauna is not only suitable for palaeoecological reconstructions but it helps in the stratigraphical division of the sequences, as well, mainly due to Endre Krolopp's activity (Krolopp 1983). This study and investigations of Holocene molluscs enabled us to make an attempt (Füköh 1990) in describing the history of the last ten thousand years.  相似文献   

7.
《International Geology Review》2012,54(11):1331-1343
We consider spatial relationships of complexes of the folded basement, the intermediate structural storey, and the koilogenic structural storey. A Hyperboreal Platform with a core of pre-Baykalian consolidation is surrounded on the south and east by Baykalian, Caledonian, and Cimmerian fold systems, and the region we discuss is limited to its southern slopes, in the koilogenic structural storey, we recognize the Laptev and East Siberian sedimentary basins and their constituent complexes, and establish their relationship with the underlying structural storeys. —Author.  相似文献   

8.
The biotic turnover in the Pliensbachian-Toarcian transition and changes in assemblages of bivalves, ostracodes, foraminifers, dinocysts, spores, and pollen are described. Only five of 24 bivalve genera and two of four ostracode genera cross the Pliensbachian-Toarcian boundary so that composition of genera and families to be entirely renewed at the base of the Harpoceras falciferum Zone. In the interval of three ammonite zones, diversity of foraminifers is reducing from 27 genera in the Amaltheus margaritatus Zone (upper Pliensbachian) to 17 and then to 15 genera in the Tiltoniceras antiquum (lower Toarcian) and Harpoceras falciferum zones, respectively. Single dinocysts of the Pliensbachian are replaced by their abundant specimens at the base of the Toarcian, and substantial changes in composition of palynological assemblages are simultaneously established. Factors responsible for “mass extinctions” of marine invertebrates are suggested to be the paleogeographic reorganization, anoxic events, eustatic sea-level changes, and climatic fluctuations. The biotic turnover in the Arctic region is interrelated mainly with thermal changes, which caused the southward displacements of taxa distribution areas during a rapid cooling and their gradual return to former habitat areas in the period of warming, rather than with extinction events.  相似文献   

9.
Four arctic species of Liostrea related to the European L. delta (Smith) form a distinct evolving lineage in the Anabar-Khatanga basin during Late Jurassic Early Cretaceous time These are, in ascending order: Liostrea ex. gr. delta (Early Kimmeridgian), L. plastics (Trautschold) (Kimmeridgian), L. praeanabarensis n. sp. (described) (Volgian), and L. anabarensis Bodyl. (Early Cretaceous). Their morphology is reviewed. The lineage is characterized by small, oval to falcate shells with strong posterior curvature, convex left valves, and flat to slightly concave right valves. Widely, subevenly spaced concentric lamellae cover the surface. Some species develop small dorsoposterior auricles. Population analysis of two species demonstrates considerable variability in valve outline and development of the attachment scar and auricle.. Chronologically successive species show up to 10 percent morphologic overlap, demonstrating their genetic relationship. Principal evolutionary trends in progressively Younger species are 1) reduction of attachment scar size, and presumably of duration of attachment during ornogeny; 2) elongation and upward curving of the posterior shell margin — change from oval to falcate outline; 3) development and subsequent loss of a dorsoposterior auricle. Elongation of the valve takes place only with reduction of attachment scar size in all species. These trends are adaptations to changing marine environments within the Anabar- Khatanga basin after its geographic and environmental restriction during the Late Jurassic. The lineage appears endemic to the basin. The adaptive value of many morphologic features is discussed at length.—E. J. Kauffman.  相似文献   

10.
Although recent studies have recognized peatlands as a sink for atmospheric CO2, little is known about the role of Siberian peatlands in the global carbon cycle. We have estimated the Holocene peat and carbon accumulation rate in the peatlands of the southern taiga and subtaiga zones of western Siberia. We explain the accumulation rates by calculating the average peat accumulation rate and the long-term apparent rate of carbon accumulation (LORCA) and by using the model of Clymo (1984, Philosophical Transactions of the Royal Society of London Series B 303, 605-654). At three key areas in the southern taiga and subtaiga zones we studied eight sites, at which the dry bulk density, ash content, and carbon content were measured every 10 cm. Age was established by radiocarbon dating. The average peat accumulation rate at the eight sites varied from 0.35 ± 0.03 to 1.13 ± 0.02 mm yr−1 and the LORCA values of bogs and fens varied from 19.0 ± 1.1 to 69.0 ± 4.4 g C m−2 yr−1. The accumulation rates had different trends especially during the early Holocene, caused by variations in vegetation succession resulting in differences in peat and carbon accumulation rates. The indirect effects of climate change through local hydrology appeared to be more important than direct influences of changes in precipitation and temperature. River valley fens were more drained during wetter periods as a result of deeper river incision, while bogs became wetter. From our dry bulk density results and our age-depth profiles we conclude that compaction is negligible and decay was not a relevant factor for undrained peatlands. These results contribute to our understanding of the influence of peatlands on the global carbon cycle and their potential impact on global change.  相似文献   

11.
Holocene changes in the benthic and planktic foraminiferal fauna (>63 µm) from a marine sediment core (ARC‐3 Canadian Arctic Archipelago, 74° 16.050′ N, 91° 06.380′ W, water depth 347 m) show that significant environmental and palaeoceanographic variations occurred during the last 10 ka. Foraminiferal assemblages are restricted to the ca. 4.5–10 ka interval as younger samples are mostly barren of foraminifera due to intense carbonate dissolution after ca. 4.5 ka. Foraminiferal assemblages in the ca. 4.5–10 ka interval are dominated by the benthic species Islandiella helenae and Cassidulina reniforme (57% of total), with Elphidium clavatum, Cibicides lobatulus and Buccella frigida also being common in this interval. The dominance of these species indicates a seasonal sea ice regime which is consistent with the occurrence of the sea ice diatom‐derived organic geochemical biomarker IP25 throughout the core. The abundances of C. reniforme and E. clavatum decline upcore; consistent with more frequent mixing of the Barrow Strait water column during the early Holocene. It is likely that the influence of CO2‐rich Arctic surface water masses have caused an increase in bottom water corrosivity after ca. 8.5 ka, and dissolution has been further enhanced by sea ice‐related processes after ca. 6 ka, concomitant with increased IP25 fluxes. Dissolution is strongest when IP25 fluxes are highest, suggesting a link between the sea ice and benthic systems. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Doklady Earth Sciences - The seismic structure of the complex underlying the stratified sedimentary cover in the Amundsen Basin in Siberia indicates that the formation of a large-scale rift-related...  相似文献   

13.
For a long time, “spelaeoid” (cave-bear-like) bears, Ursus (Spelearctos) spp., were believed to be almost purely European animals. Their geographic range has recently been extended to the east, in southern Siberia, Transbaikalia, Kirghizia, Mongolia and Korea. Two unexpected new findings, presented here in detail, significantly change existing views on the distribution of cave bears; both were found in North-Eastern Siberia, far beyond the Arctic Circle, more than 1500 km to the north-east of the previously accepted range.One of the fossils is a mandible, found near the town of Cherskiy at 68.73°N, 161.38°E. The analysis of local geology and accompanying mammal fossils suggests that it comes from the Olyorian Fauna (Early to early Middle Pleistocene). Morphologically, the Cherskiy mandible is closest to Ursus savini, a small middle Pleistocene cave bear from the British Cromer Forest-bed Formation, but differs in having a slightly more advanced dentition, and thus it is described as a new subspecies Ursus savini nordostensis. Another newly recognized fossil of the “spelaeoid” bear is an astragalus found at the Oskhordokh site at 67.54°N, 135.67°E, on a large gravel bar on the right bank of the Adycha River. This specimen is attributed to Ursus cf. deningeri.The paper also presents an interesting example of the interaction between classical and “molecular” palaeontology.The new finds significantly change existing ideas on the ecology and evolution of cave bears, some of the most remarkable members of the extinct Pleistocene megafauna.  相似文献   

14.
A sea ice record for Barrow Strait in the Canadian Arctic Archipelago (CAA) is presented for the interval 10.0–0.4 cal. kyr BP. This Holocene record is based primarily on the occurrence of a sea ice biomarker chemical, IP25, isolated from a marine sediment core obtained from Barrow Strait in 2005. A core chronology is based on 14C AMS dating of mollusc shells obtained from ten horizons within the core. The primary IP25 data are compared with complementary proxy data obtained from analysis of other organic biomarkers, stable isotope composition of bulk organic matter, benthic foraminifera, particle size distributions and ratios of inorganic elements. The combined proxy data show that the palaeo-sea ice record can be grouped according to four intervals, and these can be contextualised further with respect to the Holocene Thermal Maximum (HTM). Spring sea ice occurrence was lowest during the early–mid Holocene (10.0–6.0 cal. kyr BP) and this was followed by a second phase (6.0–4.0 cal. kyr BP) where spring sea ice occurrence showed a small increase. Between 4.0 and 3.0 cal. kyr BP, spring sea ice occurrence increased abruptly to above the median and we associate this interval with the termination of the HTM. Elevated spring sea ice occurrences continued from 3.0 to 0.4 cal. kyr BP, although they were more variable on shorter timescales. Within this fourth interval, we also provide evidence for slightly lower and subsequently higher spring sea ice occurrence during the Mediaeval Warm Period and the Little Ice Age respectively. Comparisons are made between our proxy data with those obtained from other palaeo-climate and sea ice studies for the CAA.  相似文献   

15.
The paper summarises materials on the mammal remains in northeastern Europe, dated by radiocarbon. Altogether, 23 local faunas of small mammals and 47 local faunas of large mammals were analysed. Multidimensional statistical analysis shows a strong correlation between changes in small mammal fauna composition and climate changes throughout time. The correlations with the spatial gradients, however, are less pronounced. The faunas are classified into three groups: (1) faunas of Holocene age; (2) Late Pleistocene ‘stadial’ assemblages; and (3) Late Pleistocene ‘interstadial’ assemblages. In some cases, changes in species abundance are better understood in terms of biotic interrelations rather than of climatic effects. The most pronounced change in small mammal fauna composition and structure occurred at the Preboreal/Boreal boundary, and a less conspicuous alteration took place at the LGM/Lateglacial transition. The most noticeable transformation in the large mammal fauna composition is dated to the early Holocene. Less significant changes are observed at the Middle Weichselian/LGM transition and at the LGM/Lateglacial transition. It is safely concluded that variations in the faunas of small and large mammals recorded in NE Europe during the last 35 000 years occurred synchronously and unidirectionally.  相似文献   

16.
17.
A narwhal (Monodon monoceros) tusk from 34 m above sea level and located at 82°N on the northwest coast of Ellesmere Island has been radiocarbon dated at 6,830 ± 50 B.P. It was collected from a narrow coastal strip which is isolated from the adjacent Arctic Ocean by glacier ice, ice shelf and multiyear pack ice. The specimen represents an early Holocene range extension of 400–700 km over the present. Because the narwhal requires abundant open water to survive, the Holocene tusk is an important independent item of proxy data on palaeoclimatic change. Contemporary migration routes are directly related to seasonal sea ice in the inter-island channels of the central Canadian Arctic archipelago. The presence of a narwhal on the northwest Ellesmere Island coast at 6,830 ± 50 B. P. suggests that sea ice and ice-shelf conditions were more favourable at that time. A comprehensive chronological framework for late Quaternary and Holocene geomorphic/climatic events from northern Ellesmere Island records a warm early Holocene characterized by abundant driftwood entry into the high Arctic. This was followed by a mid-Holocene climatic deterioration during which the ice shelves of the Ellesmere coast formed. Therefore, the narwhal tusk is further evidence that a period of maximum postglacial warmth occurred during the early Holocene in the Canadian high Arctic.  相似文献   

18.
A comprehensive lithological–geochemical study of Neopleistocene–Holocene sediments from Russian Arctic showed that these sediments formed in rather similar sedimentation conditions, which were common for polar lithogenesis. This is reflected in the lithology of bottom sediments and their relatively close compositions.  相似文献   

19.
20.
Doklady Earth Sciences - Carbonates of the Tomtor complex of ultramafic alkaline rocks and carbonatites (the northern part of the Republic of Sakha Yakutia) are distinguished by a wide range of...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号