首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Details of the discovery (in February 2004) and results of subsequent (in 2004–2009) INTEGRAL observations of the transient X-ray burster IGR J17380-3749 (IGR J17379-3747) are presented. Over the period of its observations, the INTEGRAL observatory recorded two hard X-ray flares and one type I X-ray burst from the source, which allowed the nature of IGR J17380-3749 to be determined. The burster radiation spectrum during the flares was hard—a power law with a photon index α = 1.8–2.0 or bremsstrahlung corresponding to a plasma with a temperature kT = 90–140 keV. The spectral shape at the flare peaks turned out to be the same, despite a more than twofold difference in flux (the peak flux recorded in the energy range 18–100 keV reached ∼20 mCrab). The upper limit on the flux from the source in its quiescent (off) state in the range of 18–40 keV was 0.15 mCrab (3σ).  相似文献   

2.
We present the latest results from a multi-epoch timing and spectral study of the Transient Anomalous X-ray Pulsar XTE J1810–197. We have acquired seven observations of this pulsar with the Newton X-ray Multi-mirror Mission (XMM-Newton) over the course of two and a half years, to follow the spectral evolution as the source fades from outburst. The spectrum is arguably best characterized by a two-temperature blackbody whose luminosities are decreasing exponentially with τ 1=870 d and τ 2=280 d, respectively. The temperatures of these components are currently cooling at a rate of 22% per year from a nearly constant value recorded at earlier epochs of kT 1=0.25 keV and kT 2=0.67 keV, respectively. The new data show that the temperature T 1 and luminosity of that component have nearly returned to their historic quiescent levels and that its pulsed fraction, which has steadily decreased with time, is now consistent with the previous lack of detected pulsations in quiescence. We also summarize the detections of radio emission from XTE J1810–197, the first confirmed for any AXP. We consider possible models for the emission geometry and mechanisms of XTE J1810–197. XMM-Newton is an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. This research is supported by XMM-Newton grant NNG05GJ61G and NASA ADP grant ADP04-0059-0024.  相似文献   

3.
We present spectra for 34 accretion-powers X-ray pulsars and one millisecond pulsar that were within the field of view of the INTEGRAL observatory over two years (December 2002–January 2005) of its in-orbit operation and that were detected by its instruments at a statistically significant level (> 8σ in the energy range 18–60 keV). There are seven recently discovered objects of this class among the pulsars studied: 2RXP J130159.6-635806, IGR/AX J16320-4751, IGR J16358-4726, AX J163904-4642, IGR J16465-4507, SAX/IGR J18027-2017, and AX J1841.0-0535. We have also obtained hard X-ray (>20 keV) spectra for the accretion-powered pulsars RX J0146.9+6121, AX J1820.5-1434, and AX J1841.0-0535 for the first time. We analyze the evolution of spectral parameters as a function of the intensity of the sources and compare these with the results of previous studies.  相似文献   

4.
We report XMM-Newton observations of the Galactic supernova remnant G296.8-0.3, together with complementary radio and infrared data. The spatial and spectral properties of the X-ray emission, detected towards G296.8-0.3, was investigated in order to explore the possible evolutionary scenarios and the physical connexion with its unusual morphology detected at radio frequencies. G296.8-0.3 displays diffuse X-ray emission correlated with the peculiar radio morphology detected in the interior of the remnant and with the shell-like radio structure observed to the northwest side of the object. The X-ray emission peaks in the soft/medium energy range (0.5–3.0 keV). The X-ray spectral analysis confirms that the column density is high (N H∼0.64×1022 cm−2) which supports a distant location (d>9 kpc) for the SNR. Its X-ray spectrum can be well represented by a thermal (PSHOCK) model, with kT∼0.86 keV, an ionization timescale of 6.1×1010 cm−3 s, and low abundance (∼0.12 Z ). The 24 μm observations show shell-like emission correlated with part of the northwest and southeast boundaries of the SNR. In addition a point-like X-ray source is also detected close to the geometrical center of the radio SNR. The object presents some characteristics of the so-called compact central objects (CCO). Its X-ray spectrum is consistent with those found at other CCOs and the value of N H is consistent with that of G296.8-0.3, which suggests a physical connexion with the SNR.  相似文献   

5.
We report XMM-Newton observations of the isolated neutron star RBS1774 and confirm its membership as an XDINS. The X-ray spectrum is best fit with an absorbed blackbody with temperature kT=101 eV and absorption edge at 0.7 keV. No power law component is required. An absorption feature in the RGS data at 0.4 keV is not evident in the EPIC data, but it is not possible to resolve this inconsistency. The star is not seen in the UV OM data to m AB ∼21. There is a sinusoidal variation in the X-ray flux at a period of 9.437 s with an amplitude of 4%. The age as determined from cooling and magnetic field decay arguments is 105–106 yr for a neutron star mass of 1.35–1.5 M.   相似文献   

6.
The new black hole candidate XTE J1817-330, discovered on 26 January 2006 with RXTE, was observed with XMM-Newton and INTEGRAL in February and March 2006, respectively. The X-ray spectrum is dominated by the thermal emission of the accretion disk in the soft band, with a low absorption column density (N H=1.77(±0.01)×1021 cm−2) and a maximum disk temperature kT max=0.68(±0.01) keV, plus a power law component, with the photon index decreasing from 2.66±0.02 to 1.98±0.07 between the two observations. Several interstellar absorption lines are detected in the X-ray spectrum, corresponding to O I, O II, O III, O VII and Fe XXIV. We constrain the distance to the system to be in the range 1–5 kpc.   相似文献   

7.
We report here results from detailed timing and spectral studies of the high mass X-ray binary pulsar 4U 1538-52 over several binary periods using observations made with the Rossi X-ray Timing Explorer (RXTE) and BeppoSAX satellites. Pulse timing analysis with the 2003 RXTE data over two binary orbits confirms an eccentric orbit of the system. Combining the orbitial parameters determined from this observation with the earlier measurements we did not find any evidence of orbital decay in this X-ray binary. We have carried out orbital phase resolved spectroscopy to measure changes in the spectral parameters with orbital phase, particularly the absorption column density and the iron line flux. The RXTE-PCA spectra in the 3–20 keV energy range were fitted ∼6.4 keV, whereas the BeppoSAX spectra needed only a power law and Gaussian emission line at ∼6.4 keV in the restricted energy range of 0.3–10.0 keV. An absorption along the line of sight was included for both the RXTE and BeppoSAX data. The variation of the free spectral parameters over the binary orbit was investigated and we found that the variation of the column density of absorbing material in the line of sight with orbital phase is in reasonable agreement with a simple model of a spherically symmetric stellar wind from the companion star.  相似文献   

8.
The anomalous X-ray pulsar 4U 0142+61 was recently detected in the mid infrared bands with the SPITZER Observatory (Wang, Chakrabarty and Kaplan: Nature 440, 772 (2006)). This observation is the first instance for a disk around an AXP. From a reanalysis of optical and infrared data, we show that the observations indicate that the disk is likely to be an active disk rather than a passive dust disk beyond the light cylinder, as proposed in the discovering paper. Furthermore, we show that the irradiated accretion disk model can also account for all the optical and infrared observations of the anomalous X-ray pulsars in the persistent state.  相似文献   

9.
We have investigated the Quasi Periodic Oscillation (QPO) properties of the transient accreting X-ray pulsar XTE J1858 + 034 during the second outburst of this source in April–May 2004. We have used observations made with the Proportional Counter Array (PCA) of the Rossi X-ray Timing Explorer (RXTE) during May 14–18, 2004, in the declining phase of the outburst. We detected the presence of low frequency QPOs in the frequency range of 140–185 mHz in all the RXTE-PCA observations. We report evolution of the QPO parameters with the time, X-ray flux, and X-ray photon energy. Though a correlation between the QPO centroid frequency and the instantaneous X-ray flux is not very clear from the data, we point out that the QPO frequency and the one day averaged X-ray flux decreased with time during these observations. We have obtained a clear energy dependence of the RMS variation in the QPOs, increasing from about 3% at 3 keV to 6% at 25 keV. The X-ray pulse profile is a single peaked sinusoidal, with pulse fraction increasing from 20% at 3 keV to 45% at 30keV. We found that, similar to the previous outburst, the energy spectrum is well fitted with a model consisting of a cut-off power law along with an iron emission line.  相似文献   

10.
We report the discovery of a decay in the superorbital period of the binary X-ray pulsar LMC X-4. Combining archival data and published long term X-ray light curves, we have found a decay in the third period in this system (P ∼ 30.3 day, P ∼ −2 × 10−5 s s−1). Along with this result, a comparison of the superorbital intensity variations in LMC X-4, Her X-1 and SMC X-1 is also presented.  相似文献   

11.
We investigate the nature of the pulsar of the Be/X-ray binary, AX J0051-733. Although the system has a very short orbital period, it meets the basic definition of Be/X-ray binaries. We argue that, in order to interpret such a short orbital period, the initial magnetic field strength of the pulsar must be between 4.2×1013–5×1015 G, if typical values of the parameters chosen. Thus, the pulsar was most likely born as a magnetar. We further suggest that magnetar descendants can also be found among the massive X-ray binaries with extremely short-orbit periods, in addition to among the X-ray binaries with very long pulse periods.  相似文献   

12.
LS 5039 is the only X-ray binary persistently detected at TeV energies by the Cherenkov HESS telescope. It is moreover a γ-ray emitter in the GeV and possibly MeV energy ranges. To understand important aspects of jet physics, like the magnetic field content or particle acceleration, and emission processes, such as synchrotron and inverse Compton (IC), a complete modeling of the multiwavelength data is necessary. LS 5039 has been detected along almost all the electromagnetic spectrum thanks to several radio, infrared, optical and soft X-ray detections. However, hard X-ray detections above 20 keV have been so far elusive and/or doubtful, partly due to source confusion for the poor spatial resolution of hard X-ray instruments. We report here on deep (∼300 ks) serendipitous INTEGRAL hard X-ray observations of LS 5039, coupled with simultaneous VLA radio observations. We obtain a 20–40 keV flux of 1.1±0.3 mCrab (5.9 (±1.6) ×10−12 erg cm−2 s−1), a 40–100 keV upper limit of 1.5 mCrab (9.5×10−12 erg cm−2 s−1), and typical radio flux densities of ∼25 mJy at 5 GHz. These hard X-ray fluxes are significantly lower than previous estimates obtained with BATSE in the same energy range but, in the lower interval, agree with extrapolation of previous RXTE measurements. The INTEGRAL observations also hint to a break in the spectral behavior at hard X-rays. A more sensitive characterization of the hard X-ray spectrum of LS 5039 from 20 to 100 keV could therefore constrain key aspects of the jet physics, like the relativistic particle spectrum and the magnetic field strength. Future multiwavelength observations would allow to establish whether such hard X-ray synchrotron emission is produced by the same population of relativistic electrons as those presumably producing TeV emission through IC.  相似文献   

13.
The spectral and temporal measurements in the hard X-ray region between 20-200 keV not only determines the extended behaviour of thermal X-ray spectrum below 10 keV but also provide a unique insight into the non-thermal processes in relativistic astrophysical plasma. From our present understanding of the X-ray sources, a significant fluxin the 20-200 keV band is expected from a variety of astrophysical phenomena, however, the available spectral data on the galactic and extragalactic X-ray source is very limited. This is mainly due to the fact that sensitivity of the detector systems used for earlier measurements was relatively poor. Since 1997, we have been carrying out a programme of hard X-ray observations galactic and extragalactic sources, in the 20-200 keV energy band using a highly sensitive balloon borne experiment. The X-ray telescope consists of three modules of large area scintillation counters specially configured in the back-to-back geometry and have a combined sensitivity of ∼ 10-6 ph cm-2 s-1 keV-1 for an on-source observations of 3 hrs. A total of 30 hours of ceiling data above an altitude of 3 mbar has been collected in 4 successful balloon flights from Hyderabad, India. Almost a dozen galactic and extragalactic X-ray sources were targeted and tracked during these observations. A positive detection was made in each case and in some cases the observed spectra extended right up to 150 keV. A brief account of the observed spectral and temporal features on some of the sources along with accurate measurement of diffuse background spectrum and a weak gamma ray burst will be presented in the paper. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
During the GRIF experiment onboard the Mir orbiting station, the sky was monitored with a PX-2 wide-field (~1 sr) scintillation X-ray spectrometer to detect bursts in the photon energy range 10–300 keV. Because of the comprehensive instrumentation, which, apart from the X-ray and gamma-ray instruments, also included charged-particle detectors, the imitations of astrophysical bursts by magnetospheric electron precipitations and strongly ionizing nuclei were effectively filtered out. It was also possible to separate solar and atmospheric events. Several tens of bursts interpreted as being astrophysical were detected in the experiment at sensitivity levels S~10?7 erg cm?2 (for bursts whose spectra were characterized by effective temperatures kT~100 keV) and S~3×10?8 erg cm?2 (for bursts with kT~25 keV). Some of the soft gamma-ray or hard X-ray bursts with kT~10–50 keV were identified with the bursting pulsar GRO J1744-28. Our estimate of the detection rate for cosmological soft gamma-ray or hard X-ray bursts from the entire sky suggests that the distributions of long-duration (>1 s) gamma-ray bursts (GRBs) in characteristic energy kT and duration are inconsistent with the steady-state cosmological model in which the evolution of burst sources is disregarded. Based on GRIF and BATSE/CGRO data, we conclude that most of the GRB sources originate at redshifts 1<z<5.  相似文献   

15.
We report on observations of the X-ray pulsar IGR J16320−4751 (also known as AX J1631.9−4752) performed simultaneously with International Gamma-Ray Astrophysics Laboratory ( INTEGRAL ) and XMM–Newton . We refine the source position and identify the most likely infrared counterpart. Our simultaneous coverage allows us to confirm the presence of X-ray pulsations at ∼1300 s, that we detect above 20 keV with INTEGRAL for the first time. The pulse fraction is consistent with being constant with energy, which is compatible with a model of polar accretion by a pulsar. We study the spectral properties of IGR J16320−4751 during two major periods occurring during the simultaneous coverage with both satellites, namely a flare and a non-flare period. We detect the presence of a narrow 6.4 keV iron line in both periods. The presence of such a feature is typical of supergiant wind accretors such as Vela X-1 or GX 301−2. We inspect the spectral variations with respect to the pulse phase during the non-flare period, and show that the pulse is solely due to variations of the X-ray flux emitted by the source and not due to variations of the spectral parameters. Our results are therefore compatible with the source being a pulsar in a High Mass X-ray Binary. We detect a soft excess appearing in the spectra as a blackbody with a temperature of ∼0.07 keV. We discuss the origin of the X-ray emission in IGR J16320−4751: while the hard X-rays are likely the result of Compton emission produced in the close vicinity of the pulsar, based on energy argument we suggest that the soft excess is likely the emission by a collisionally energized cloud in which the compact object is embedded.  相似文献   

16.
We examine the XMM X-ray spectrum of the low-ionisation nuclear emission-line region (LINER)-AGN NGC 7213, which is best fit with a power law, Kα emission lines from Fe i, Fe xxv and Fe xxvi and a soft X-ray collisionally ionised thermal plasma with kT = 0.18+0.03−0.01 keV. We find a luminosity of 7× 10−4 LEdd, and a lack of soft X-ray excess emission, suggesting a truncated accretion disc. NGC 7213 has intermediate X-ray spectral properties, between those of the weak AGN found in the LINER M 81 and higher luminosity Seyfert galaxies. This supports the notion of a continuous sequence of X-ray properties from the Galactic Centre through LINER galaxies to Seyferts, likely determined by the amount of material available for accretion in the central regions. This work is based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA).  相似文献   

17.
Pulsar braking indices offer insight into the physics that underlies pulsar spin-down. Only five braking indices have been measured via phase-coherent timing; all measured values are less than 3, the value expected from magnetic dipole radiation. Here we present new measurements for three of the five pulsar braking indices, obtained with phase-coherent timing for PSRs J1846-0258 (n=2.65±0.01), B1509-58 (n=2.839±0.001) and B0540-69 (n=2.140±0.009). We discuss the implications of these results and possible physical explanations for them.   相似文献   

18.
We examine the disc-jet connection in stellar mass and supermassive black holes by investigating the properties of their compact emission in the hard X-ray and radio bands. We compile a sample of ∼100 active galactic nuclei with measured mass, 5 GHz core emission, and 2–10 keV luminosity, together with eight galactic black holes with a total of ∼50 simultaneous observations in the radio and X-ray bands. Using this sample, we study the correlations between the radio (LR) and the X-ray (LX) luminosity and the black hole mass (M). We find that the radio luminosity is correlated with both M and LX, at a highly significant level. We show how this result can be used to extend the standard unification by orientation scheme to encompass unification by mass and accretion rate.  相似文献   

19.
The Reuven Ramaty High Energy Spectroscopic Imager (RHESSI) X-ray data base (February 2002 – May 2006) has been searched to find solar flares with weak thermal components and flat photon spectra. Using a regularized inversion technique, we determine the mean electron flux distribution from count spectra for a selection of events with flat photon spectra in the 15 – 20 keV energy range. Such spectral behavior is expected for photon spectra either affected by photospheric albedo or produced by electron spectra with an absence of electrons in a given energy range (e.g., a low-energy cutoff in the mean electron spectra of nonthemal particles). We have found 18 cases that exhibit a statistically significant local minimum (a dip) in the range of 13 – 19 keV. The positions and spectral indices of events with low-energy cutoff indicate that such features are likely to be the result of photospheric albedo. It is shown that if the isotropic albedo correction is applied, all low-energy cutoffs in the mean electron spectrum are removed, and hence the low-energy cutoffs in the mean electron spectrum of solar flares above ∼ 12 keV cannot be viewed as real features. If low-energy cutoffs exist in the mean electron spectra, their energies should be less than ∼ 12 keV.  相似文献   

20.
We report hard X-ray emission of the non-thermal supernova remnant G337.2+0.1. The source presents centrally filled and diffuse X-ray emission. A spectral study confirms that the column density of the central part of the object is about N H∼5.9(±1.5)×1022 cm−2 and its X-ray spectrum is well represented by a single power-law with a photon index Γ=0.96±0.56. Detailed spectral analysis indicates that the outer region is highly absorbed and quite softer than the inner region. Characteristics already observed in other well-known X-ray plerions. Based on the gathered information, we confirm the SNR nature of G337.2+0.1, and suggest that the central region of the source is a pulsar wind nebula (PWN), originated by an energetic though yet undetected pulsar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号