首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We present a linear analysis of the vertical structure and growth of the magnetorotational instability in stratified, weakly ionized accretion discs, such as protostellar and quiescent dwarf novae systems. The method includes the effects of the magnetic coupling, the conductivity regime of the fluid and the strength of the magnetic field, which is initially vertical. The conductivity is treated as a tensor and is assumed to be constant with height.
We obtained solutions for the structure and growth rate of global unstable modes for different conductivity regimes, strengths of the initial magnetic field and coupling between ionized and neutral components of the fluid. The envelopes of short-wavelength perturbations are determined by the action of competing local growth rates at different heights, driven by the vertical stratification of the disc. Ambipolar diffusion perturbations peak consistently higher above the midplane than modes including Hall conductivity. For weak coupling, perturbations including the Hall effect grow faster and act over a more extended cross-section of the disc than those obtained using the ambipolar diffusion approximation.
Finally, we derived an approximate criterion for when Hall diffusion determines the growth of the magnetorotational instability. This is satisfied over a wide range of radii in protostellar discs, reducing the extent of the magnetic 'dead zone'. Even if the magnetic coupling is weak, significant accretion may occur close to the midplane, rather than in the surface regions of weakly ionized discs.  相似文献   

2.
We present a perturbation theory for studying the instabilities of non-axisymmetric gaseous discs. We perturb the dynamical equations of self-gravitating fluids in the vicinity of a non-axisymmetric equilibrium, and expand the perturbed physical quantities in terms of a complete basis set and a small non-axisymmetry parameter ε. We then derive a linear eigenvalue problem in matrix form, and determine the pattern speed, growth rate and mode shapes of the first three unstable modes. In non-axisymmetric discs, the amplitude and the phase angle of travelling waves are functions of both the radius R and the azimuthal angle φ. This is due to the interaction of different wave components in the response spectrum. We demonstrate that wave interaction in unstable discs, with small initial asymmetries, can develop dense clumps during the phase of exponential growth. Local clumps, which occur on the major spiral arms, can constitute seeds of gas giant planets in accretion discs.  相似文献   

3.
The stability properties of magnetized discs rotating with angular velocity Ω = Ω( s ,  z ), dependent on both the radial and the vertical coordinates s and z , are considered. Such a rotation law is adequate for many astrophysical discs (e.g., galactic and protoplanetary discs, as well as accretion discs in binaries). In general, the angular velocity depends on height, even in thin accretion discs. A linear stability analysis is performed in the Boussinesq approximation, and the dispersion relation is obtained for short-wavelength perturbations. Any dependence of Ω on z can destabilize the flow. This concerns primarily small-scale perturbations for which the stabilizing effect of buoyancy is strongly suppressed due to the energy exchange with the surrounding plasma. For a weak magnetic field, instability of discs is mainly associated with vertical shear, whilst for an intermediate magnetic field the magnetic shear instability, first considered by Chandrasekhar and Velikhov, is more efficient. This instability is caused by the radial shear which is typically much stronger than the vertical shear. Therefore the growth time for the magnetic shear instability is much shorter than for the vertical shear instability. A relatively strong magnetic field can suppress both these instabilities. The vertical shear instability could be the source of turbulence in protoplanetary discs, where the conductivity is low.  相似文献   

4.
We investigate the growth or decay rate of the fundamental mode of even symmetry in a viscous accretion disc. This mode occurs in eccentric discs and is known to be potentially overstable. We determine the vertical structure of the disc and its modes, treating radiative energy transport in the diffusion approximation. In the limit of very long radial wavelength, an analytical criterion for viscous overstability is obtained, which involves the effective shear and bulk viscosity, the adiabatic exponent, and the opacity law of the disc. This differs from the prediction of a two-dimensional model. On shorter wavelengths (a few times the disc thickness), the criterion for overstability is more difficult to satisfy because of the different vertical structure of the mode. In a low-viscosity disc a third regime of intermediate wavelengths appears, in which the overstability is suppressed as the horizontal velocity perturbations develop significant vertical shear. We suggest that this effect determines the damping rate of eccentricity in protoplanetary discs, for which the long-wavelength analysis is inapplicable and overstability is unlikely to occur on any scale. In thinner accretion discs and in decretion discs around Be stars overstability may occur only on the longest wavelengths, leading to the preferential excitation of global eccentric modes.  相似文献   

5.
We study global non-axisymmetric oscillation modes trapped near the inner boundary of an accretion disc. Observations indicate that some of the quasi-periodic oscillations (QPOs) observed in the luminosities of accreting compact objects (neutron stars, black holes and white dwarfs) are produced in the innermost regions of accretion discs or boundary layers. Two simple models are considered in this paper. The magnetosphere–disc model consists of a thin Keplerian disc in contact with a uniformly rotating magnetosphere with and low plasma density, while the star–disc model involves a Keplerian disc terminated at the stellar atmosphere with high density and small density scaleheight. We find that the interface modes at the magnetosphere–disc boundary are generally unstable due to Rayleigh–Taylor and/or Kelvin–Helmholtz instabilities. However, differential rotation of the disc tends to suppress Rayleigh–Taylor instability, and a sufficiently high disc sound speed (or temperature) is needed to overcome this suppression and to attain net mode growth. On the other hand, Kelvin–Helmholtz instability may be active at low disc sound speeds. We also find that the interface modes trapped at the boundary between a thin disc and an unmagnetized star do not suffer Rayleigh–Taylor or Kelvin–Helmholtz instability, but can become unstable due to wave leakage to large disc radii and, for sufficiently steep disc density distributions, due to wave absorption at the corotation resonance in the disc. The non-axisymmetric interface modes studied in this paper may be relevant to the high-frequency QPOs observed in some X-ray binaries and in cataclysmic variables.  相似文献   

6.
Discoseismic c modes in accretion discs have been invoked to explain low-frequency variabilities observed in black hole X-ray binaries. These modes are trapped in the innermost region of the disc and have frequencies much lower than the rotation frequency at the disc inner radius. We show that because the trapped waves can tunnel through the evanescent barrier to the corotational wave zone, the c modes are damped due to wave absorption at the corotation resonance. We calculate the corotational damping rates of various c modes using the Wentzel-Kramers-Brillouin (WKB) approximation. The damping rate varies widely depending on the mode frequency, the black hole spin parameter and the disc sound speed, and is generally much less than 10 per cent of the mode frequency. A sufficiently strong excitation mechanism is needed to overcome this corotational damping and make the mode observable.  相似文献   

7.
We study the excitation of density and bending waves and the associated angular momentum transfer in gaseous discs with finite thickness by a rotating external potential. The disc is assumed to be isothermal in the vertical direction and has no self-gravity. The disc perturbations are decomposed into different modes, each characterized by the azimuthal index m and the vertical index n , which specifies the nodal number of the density perturbation along the disc normal direction. The   n = 0  modes correspond to the two-dimensional density waves previously studied by Goldreich & Tremaine and others. In a three-dimensional disc, waves can be excited at both Lindblad resonances (LRs; for modes with   n = 0, 1, 2, …  ) and vertical resonances (VRs; for the   n ≥ 1  modes only). The torque on the disc is positive for waves excited at outer Lindblad/vertical resonances and negative at inner Lindblad/vertical resonances. While the   n = 0  modes are evanescent around corotation, the   n ≥ 1  modes can propagate into the corotation region where they are damped and deposit their angular momenta. We have derived analytical expressions for the amplitudes of different wave modes excited at LRs and/or VRs and the resulting torques on the disc. It is found that for   n ≥ 1  , angular momentum transfer through VRs is much more efficient than LRs. This implies that in some situations (e.g. a circumstellar disc perturbed by a planet in an inclined orbit), VRs may be an important channel of angular momentum transfer between the disc and the external potential. We have also derived new formulae for the angular momentum deposition at corotation and studied wave excitations at disc boundaries.  相似文献   

8.
The radial–azimuthal instability of a hot two-temperature accretion disc with advection is examined in this paper. We find that the inclusion of very little advection has significant effects on two acoustic modes for a geometrically thin, cooling-dominated two-temperature disc, but has no effect on acoustic modes for a geometrically slim, cooling-dominated two-temperature disc. We also find that, when azimuthal perturbations are considered, the stability properties of the disc are different from those in the pure radial perturbation case. An increase of the azimuthal wavenumber will stabilize the acoustic modes but make the viscous and thermal modes more unstable for a geometrically thin, cooling-dominated two-temperature disc. It makes the thermal mode more unstable and the acoustic mode more stable, but only affects the instability of the viscous mode for short-wavelength perturbations for a geometrically slim, cooling-dominated two-temperature disc. For a geometrically slim, advection-dominated two-temperature disc, the increase of the azimuthal perturbation makes the I- and O-modes more stable and the thermal mode more unstable, but has no effect on the viscous mode.  相似文献   

9.
In differentially rotating discs with no self-gravity, density waves cannot propagate around the corotation, where the wave pattern rotation speed equals the fluid rotation rate. Waves incident upon the corotation barrier may be super-reflected (commonly referred to as corotation amplifier), but the reflection can be strongly affected by wave absorptions at the corotation resonance/singularity. The sign of the absorption is related to the Rossby wave zone very near the corotation radius. We derive the explicit expressions for the complex reflection and transmission coefficients, taking into account wave absorption at the corotation resonance. We show that for generic discs, this absorption plays a much more important role than wave transmission across the corotation barrier. Depending on the sign of the gradient of the vortensity of the disc,  ζ=κ2/(2ΩΣ)  (where Ω is the rotation rate, κ is the epicyclic frequency and Σ is the surface density), the corotation resonance can either enhance or diminish the super-reflectivity, and this can be understood in terms of the location of the Rossby wave zone relative to the corotation radius. Our results provide the explicit conditions (in terms of disc thickness, rotation profile and vortensity gradient) for which super-reflection can be achieved. Global overstable disc modes may be possible for discs with super-reflection at the corotation barrier.  相似文献   

10.
We analyse the non-linear propagation and dissipation of axisymmetric waves in accretion discs using the ZEUS-2D hydrodynamics code. The waves are numerically resolved in the vertical and radial directions. Both vertically isothermal and thermally stratified accretion discs are considered. The waves are generated by means of resonant forcing, and several forms of forcing are considered. Compressional motions are taken to be locally adiabatic  ( γ =5/3)  . Prior to non-linear dissipation, the numerical results are in excellent agreement with the linear theory of wave channelling in predicting the types of modes that are excited, the energy flux by carried by each mode, and the vertical wave energy distribution as a function of radius. In all cases, waves are excited that propagate on both sides of the resonance (inwards and outwards). For vertically isothermal discs, non-linear dissipation occurs primarily through shocks that result from the classical steepening of acoustic waves. For discs that are substantially thermally stratified, wave channelling is the primary mechanism for shock generation. Wave channelling boosts the Mach number of the wave by vertically confining the wave to a small cool region at the base of the disc atmosphere. In general, outwardly propagating waves with Mach numbers near resonance  ℳr≳0.01  undergo shocks within a distance of order the resonance radius.  相似文献   

11.
Local simulations of the magnetorotational instability (MRI) in accretion discs can exhibit recurrent coherent structures called channel flows. The formation and destruction of these structures may play a role in the development and saturation of MRI-induced turbulence, and consequently help us understand the time-dependent accretion behaviour of certain astrophysical objects. Previous investigations have revealed that channel solutions are attacked by various parasitic modes, foremost of which is an analogue of the Kelvin–Helmholtz instability. We revisit these instabilities and show how they relate to the classical instabilities of plasma physics, the kink and pinch modes. However, we argue that in most cases channels emerge from developed turbulence and are eventually destroyed by turbulent mixing, not by the parasites. The exceptions are clean isolated channels, which appear in systems near criticality or which emerge from low amplitude initial conditions. These structures can achieve large amplitudes and are only then destroyed, giving rise to eruptive behaviour.  相似文献   

12.
A rotating disc galaxy is modelled as a composite system consisting of thin stellar and gaseous discs, which are described by a two-fluid modal formalism. The composite disc system is assumed to retain axisymmetry in the background equilibrium. General density-wave perturbations in the two discs are coupled through the mutual gravitational interaction. We study the basic properties of open and tight spiral density-wave modes in such a composite disc system. Within the Lindblad resonances, perturbation enhancements of surface mass density in stellar and gaseous discs are in phase; this is also true during the initial growth phase of density-wave perturbations. Outside the Lindblad resonances, there exists a possible spiral density-wave branch for which perturbation enhancements of surface mass density in stellar and gaseous discs are out of phase. We discuss implications of these results on the critical parameters for global star formation in barred and normal spiral galaxies and on magnetohydrodynamic density waves within the Lindblad resonances.  相似文献   

13.
We use the grid of hydrodynamic accretion disc calculations of Stehle to construct orbital phase‐dependent emission‐line profiles of thin discs carrying spiral density waves. The observational signatures of spiral waves are explored to establish the feasibility of detecting spiral waves in cataclysmic variable discs using prominent emission lines in the visible range of the spectrum. For high Mach number accretion discs ( M v φ c s≃ 15 – 30), we find that the spiral shock arms are so tightly wound that they leave few obvious fingerprints in the emission lines. Only a minor variation of the double peak separation in the line profile at a level of ∼8 per cent is produced. For accretion discs in outburst ( M ≃ 5 – 20) however, the lines are dominated by the emission from an m =2 spiral pattern in the disc. We show that reliable Doppler tomograms of spiral shock patterns can be reconstructed provided that a signal‐to‐noise ratio of at least 15, a wavelength resolution of ∼80 km s−1 and a time resolution of ∼50 spectra per binary orbit are achieved. We confirm that the observed spiral pattern in the disc of IP Pegasi can be reproduced by tidal density waves in the accretion disc and demands the presence of a large, hot disc, at least in the early outburst stages.  相似文献   

14.
We study and elucidate the mechanism of spiral density wave excitation in a differentially rotating flow with turbulence which could result from the magneto-rotational instability. We formulate a set of wave equations with sources that are only non-zero in the presence of turbulent fluctuations. We solve these in a shearing box domain, subject to the boundary conditions of periodicity in shearing coordinates, using a WKBJ method. It is found that, for a particular azimuthal wavelength, the wave excitation occurs through a sequence of regularly spaced swings during which the wave changes from leading to trailing form. This is a generic process that is expected to occur in shearing discs with turbulence. Trailing waves of equal amplitude propagating in opposite directions are produced, both of which produce an outward angular momentum flux that we give expressions for as functions of the disc parameters and azimuthal wavelength.
By solving the wave amplitude equations numerically, we justify the WKBJ approach for a Keplerian rotation law for all parameter regimes of interest. In order to quantify the wave excitation completely, the important wave source terms need to be specified. Assuming conditions of weak non-linearity, these can be identified and are associated with a quantity related to the potential vorticity, being the only survivors in the linear regime. Under the additional assumption that the source has a flat power spectrum at long azimuthal wavelengths, the optimal azimuthal wavelength produced is found to be determined solely by the WKBJ response and is estimated to be  2π H   , with H being the nominal disc scaleheight. In a following paper by Heinemann & Papaloizou, we perform direct three-dimensional simulations and compare results manifesting the wave excitation process and its source with the assumptions made and the theory developed here in detail, finding excellent agreement.  相似文献   

15.
A detailed solution of an initial value problem of a vertically localized initial perturbation in rotating magnetized vertically stratified disc is presented. The appropriate linearized magnetohydrodynamics equations are solved by employing the Wentzel–Kramers–Brillouin (WKB) approximation and the results are verified numerically. The eigenfrequencies as well as eigenfunctions are explicitly obtained. It is demonstrated that the initial perturbation remains confined within the disc. It is further shown that thin enough discs are stable but as their thickness grows increasing number of unstable modes participate in the solution of the initial value problem. However, it is demonstrated that due to the localization of the initial perturbation, the growth time of the instability is significantly longer than the calculated inverse growth rate of the individual unstable eigenfunctions.  相似文献   

16.
The excitation of spiral waves by an external perturbation in a disc deposits angular momentum in the vicinity of the corotation resonance (the radius where the speed of a rotating pattern matches the local rotation rate). We use matched asymptotic expansions to derive a reduced model that captures non-linear dynamics of the resulting torque and fluid motions. The model is similar to that derived for forced Rossby wave critical layers in geophysical fluid dynamics. Using the model we explore the saturation of the corotation torque, which occurs when the background potential (specific) vorticity is redistributed by the disturbance. We also consider the effects of dissipation. If there is a radial transport of potential vorticity, the corotation torque does not saturate. The main application is to the creation, growth and migration of protoplanets within discs like the primordial solar nebula. The disturbance also nucleates vortices in the vicinity of corotation, which may spark further epochs of planet formation.  相似文献   

17.
The study of standing accretion shock instability (SASI) in core-collapse supernova cores has been done with three-dimensional (3D) computer simulations. Rotations with various perturbations were introduced from outer boundary of an initial steady accreting flow. We found that one or two armed spiral accreting flow onto the proto-neutron star (PNS) is formed inside the shock wave depending on perturbations. The linear growth of spiral modes are clearly diagnosed by the mode analysis of the shock surface, and the lower m modes grow quickly in the linear regime.  相似文献   

18.
According to one model, high-frequency quasi-periodic oscillations (QPOs) can be identified with inertial waves, trapped in the inner regions of accretion discs around black holes due to relativistic effects. In order to be detected, their amplitudes need to reach large enough values via some excitation mechanism. We work out in detail a non-linear coupling mechanism suggested by Kato, in which a global warping or eccentricity of the disc has a fundamental role. These large-scale deformations combine with trapped modes to generate 'intermediate' waves of negative energy that are damped as they approach either their corotation resonance or the inner edge of the disc, resulting in amplification of the trapped waves. We determine the growth rates of the inertial modes, as well as their dependence on the spin of the black hole and the properties of the disc. Our results indicate that this coupling mechanism can provide an efficient excitation of trapped inertial waves, provided the global deformations reach the inner part of the disc with non-negligible amplitude.  相似文献   

19.
Viscous Keplerian discs become sub-Keplerian close to a black hole since they pass through sonic points before entering into it. We study the time evolution of polytropic viscous accretion discs (both in one- and two-dimensional flows) using smoothed particle hydrodynamics. We discover that for a large region of the parameter space spanned by energy, angular momentum and polytropic index, when the flow viscosity parameter is less than a critical value, standing shock waves are formed. If the viscosity is very high then the shock wave disappears. In the intermediate viscosity, the disc oscillates very significantly in the viscous time-scale. Our simulations indicate that these centrifugally supported high density regions close to a black hole play an active role in the flow dynamics, and consequently, the radiation dynamics.  相似文献   

20.
We examine the spatial stability of spherical adiabatic Bondi accretion on to a point gravitating mass against external perturbations. Both transonic critical and subsonic subcritical accretion are shown to be stable against purely radial acoustic, vortex or entropy perturbations. In the case of non-radial perturbations the amplitude of the perturbations grows without limit with smaller radii. Instability manifests itself only if the size of the accreting body is much less than the Bondi radius so that the inflow is highly supersonic or highly subsonic at the surface of the accretor in the case of critical or subcritical accretion respectively. These asymptotics hold and consequently the instability may develop for adiabatic index of accreting gas γ < 5/3. We suggest that this instability may lead to an essential thermalization of accreting flow thus, particularly, solving the problem of otherwise inefficient energy release in spherical accretion on to a black hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号