首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The climate, as represented by the mean Northern Hemisphere temperature, has shown substantial changes within the past century. The temperature record is utilized as a means of elucidating the relative importance of anthropogenic CO2 increase, volcanic aerosols, and possible solar insolation variations in externally forcing climate changes. Solar luminosity variations, suggested by observed solar radius variations on an ≈ 80 yr time scale, allow a self-consistent explanation of the hemispheric temperature trends. Evidence for solar influences on the climate is also found on the shorter 11 and 22 yr time scales present in solar activity cycles. The author is a staff scientist at the High Altitude Observatory, P.O. Box 3000, Boulder, CO 80307, of the National Center for Atmospheric Research. This work was completed while the author was a postdoctoral fellow in the Advanced Study Program of NCAR. Any opinions, findings and conclusions or recommendations expressed in this paper are those of the author and do not necessarily reflect the views of the National Science Foundation. The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

2.
The usefulness of adaptation strategies to changing climate depends on the characteristics of the system that must adapt. Divergent views on whether climate change will seriously affect society and what society can do about it can be traced, in part, to divergent views on these characteristics of systems. Issues of scale and how impacts are measured are also important. We identify a set of fundamental characteristics of natural systems and social systems that help to make underlying assumptions in climate change adaptation studies explicit. These are: Short-run autonomous flexibility; short-run non-autonomous flexibility; knowledge and capacity to undertake short-run actions; long-run autonomous flexibility; long-run non-autonomous flexibility; and knowledge and capacity to plan for and undertake adaptations that require changes in long-lived assets. Applications to crop agriculture and ecosystems illustrate how these portraits can be used. We find that if empirical research is to resolve questions of adaptability, more careful specification of the exact measure of impact and far richer models of the process of adaptation, able to test implicit assumptions in much of the existing empirical research, are needed.  相似文献   

3.
为了解闪电对对流层上部微量气体的贡献,利用全球水资源和气候中心(GHRC)提供的1995年4月—2006年6月的闪电卫星格点资料,以及高层大气研究卫星(UARS)上的卤素掩星试验(HALOE)1991年10月—2005年11月的观测资料,分析了全球闪电与对流层上部NO和O3体积分数的时空分布特征及其相关性。结果表明:全球闪电12、1、2月集中在南半球,6—8月集中在北半球,全球闪电的季节分布与NO、O3类似;NO体积分数在350 h Pa附近达到最大,该高度的南半球NO体积分数变化范围为7×10-12~11×10-12、北半球为3×10-12~17×10-12;450~300 h Pa,北半球夏季O3体积分数呈明显增加趋势,且同一高度上夏季的值比年平均值大25%左右,南半球夏季O3体积分数高于冬季,但差异并不大。结论进一步证明了闪电与对流层上部NO及O3的密切关系,也为研究全球气候变化提供有力证据。  相似文献   

4.
Research flights with the National Center for Atmospheric Research (NCAR) C-130 airborne laboratory were conducted over the equatorial ocean during the Pacific Atmospheric Sulfur Experiment (PASE). The focused, repetitive flight plans provided a unique opportunity to explore the principal pathways of sulfur processing in remote marine environments in close detail. Fast airborne measurements of SO2 using the Drexel University APIMS (Atmospheric Pressure Ionization Mass Spectrometer) instrument further provided unprecedented insight into the complete budget of this important sulfur gas. In general, turbulent mixing in the marine boundary layer (MBL) continuously depletes SO2 due to the shallow convection of the tropical trade wind regime by venting the gas into the buffer layer (BuL) above. However, on nearly one-third of the flights a net import of SO2 into the MBL from the BuL was observed. Concurrent measurements of the DMS budget allowed for a heterogeneous S(IV) oxidation rate to be inferred from the SO2 budget residual. The average heterogeneous loss rate was found to be 0.05 h−1, which taken in conjunction with the observed aerosol surface area distributions and O3 levels indicates that the supermicron aerosols maintain a near neutral pH. The average dry deposition velocity of SO2 was found to be 0.4 cm s−1, about 30% lower than predicted by standard parameterizations. The yield of SO2 from DMS oxidation was found to be near unity. The mission averages indicate that approximately 57% of the SO2 in the MBL is lost to aerosols, 27% is subject to dry deposition, 7% is mixed into the BuL, and 10% is oxidized by OH.  相似文献   

5.
A number of authors have reported the problem of unrealistic velocities (“rogue trajectories”) when computing the paths of particles in a turbulent flow using modern Lagrangian stochastic (LS) models, and have resorted to ad hoc interventions. We suggest that this problem stems from two causes: (1) unstable modes that are intrinsic to the dynamical system constituted by the generalized Langevin equations, and whose actual triggering (expression) is conditional on the fields of the mean velocity and Reynolds stress tensor and is liable to occur in complex, disturbed flows (which, if computational, will also be imperfect and discontinuous); and, (2) the “stiffness” of the generalized Langevin equations, which implies that the simple stochastic generalization of the Euler scheme usually used to integrate these equations is not sufficient to keep round-off errors under control. These two causes are connected, with the first cause (dynamical instability) exacerbating the second (numerical instability); removing the first cause does not necessarily correct the second, and vice versa. To overcome this problem, we introduce a fractional-step integration scheme that splits the velocity increment into contributions that are linear (U i ) and nonlinear (U i U j ) in the Lagrangian velocity fluctuation vector U, the nonlinear contribution being further split into its diagonal and off-diagonal parts. The linear contribution and the diagonal part of the nonlinear contribution to the solution are computed exactly (analytically) over a finite timestep Δt, allowing any dynamical instabilities in the system to be diagnosed and removed, and circumventing the numerical instability that can potentially result in integrating stiff equations using the commonly applied explicit Euler scheme. We contrast results using this and the primitive Euler integration scheme for computed trajectories in a drastically inhomogeneous urban canopy flow.  相似文献   

6.
Summary This study investigated the impact of atmospheric aerosols on surface ultraviolet (UV) irradiance at Gwangju, Korea (35°13′N, 126°50′E). Data analyzed included surface UV irradiance measured by UV radiometers from June 1998 to April 2001 and the aerosol optical depth (AOD) in the visible range determined from a rotating shadow-band radiometer (RSR). The radiation amplification factor (RAF) of ozone for UV-B (280–315 nm) at Gwangju was 1.32–1.62. Values of the RAF of aerosols (RAFAOD) for UV-A and UV-B were 0.18–0.20 and 0.22–0.26, respectively. Authors’ addresses: Jeong Eun Kim, Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST) and Korea Meteorological Administration (KMA); Seong Yoon Ryu, Advanced Environmental Monitoring Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST) and Division of Metrology, Korea Research Institute of Standards and Science (KRISS); Young Joon Kim, Advanced Environmental Monitoring Research Center (ADEMRC) Gwangju Institute of Science and Technology (GIST), 1 Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea.  相似文献   

7.
By using IAP 9L AGCM, two sets of long-term climatological integration have been per-formed with the two different interpolation procedures for generating the daily surface boundary conditions. One interpolation procedure is the so-called “traditional” scheme, for which the daily surface boundary conditions are obtained by linearly interpolating between the observed monthly mean values, however the observed monthly means cannot be preserved after interpolation. The other one is the “new” scheme, for which the daily surface boundary conditions are obtained by linearly interpolating between the "artificial" monthly mean values which are based on, but are dif-ferent from the observed ones, after interpolating with this new scheme, not only the observed monthly mean values are preserved, the time series of the new generated daily values is also more consistent with the observation. Comparison of the model results shows that the differences of the globally or zonally averaged fields between these two integrations are quite small, and this is due to the compensating effect between the different regions. However, the differences of the two patterns (the global or regional geographical distributions), are quite significant, for example, the magni-tude of the difference in the JJA mean rainfall between these two integrations can exceed 2 mm/day over Asian monsoon regions, and the difference in DJF mean surface air temperature can also exceed 2oC over this region. The fact that the model climatology depends quite strongly on the method of prescribing the daily surface boundary conditions suggests that in order to validate the climate model or to predict the short-term climate anomalies, either the " new* interpolation scheme or the high frequency surface boundary conditions (e.g., daily or weekly data instead of the monthly data) should be introduced. Meanwhile, as for the coupled model, the daily coupling scheme between the different component cli?mate models (e.g., atmospheric and oceanic general circulation models) is preferred in order to partly eliminate the “climate drift” problem which may appear during the course of direct coupling.  相似文献   

8.
Summary  Measurements of landscape-scale methane emission were made over an aapa mire near Kaamanen in Finnish Lapland (69° 8′ N, 27° 16′ E, 155 m ASL). Emissions were measured during the spring thaw, in summer and in autumn. No effect of water table position on CH4 emission was found as the water table remained at or above the surface of the peat. Methane emission fluxes increased with surface temperature from which an activation energy of −99 kJ mol−1 was obtained. Annual emission from the site, modelled from temperature regression and short-term flux measurements made in three separate years, was calculated to be 5.5 ± 0.4 g CH4 m−2 y−1 of which 0.6 ± 0.1 g CH4 m−2 y−1 (11%) was released during the spring thaw which lasted 20 to 30 days. The effect of global warming on the CH4 budget of the site was estimated using the central scenario of the SILMU (Finnish Research Programme on Climate Change) model which predicts annual mean temperature increases of 1.2, 2.4 and 4.4 °C in 2020, 2050 and 2100, respectively. Maximum enhancements in CH4 emission due to warming were calculated to be 18, 40 and 84% for 2020, 2050 and 2100, respectively. Actual increases may be smaller because prediction of changes in water table are highly uncertain. Received September 17, 1999 Revised October 16, 2000  相似文献   

9.
Alan D. Hecht Director of the National Climate Program Office, an Office created by Congress in 1978 to coordinate a U.S. program of climate research and services. The office is located in the National Oceanic and Atmospheric Administration within the Department of Commerce; Bo R. Döös Member of the Swedish Academy of Sciences, is a visiting UCAR scientist (University Corporation for Atmospheric Research) in the NCPO. Views expressed in this editorial are of the authors and do not reflect any official views of UCAR or NOAA, DOC, or other federal agencies within the NCP.  相似文献   

10.
It is frequently observed in field experiments that the eddy covariance heat fluxes are systematically underestimated as compared to the available energy. The flux imbalance problem is investigated using the NCAR’s large-eddy simulation (LES) model imbedded with an online scheme to calculate Reynolds-averaged fluxes. A top–down and a bottom–up tracer are implemented into the LES model to quantify the influence of entrainment and bottom–up diffusion processes on flux imbalance. The results show that the flux imbalance follows a set of universal functions that capture the exponential decreasing dependence on u */w *, where u * and w * are friction velocity and the convective velocity scale, respectively, and an elliptic relationship to z/z i , where z i is the mixing-layer height. The source location in the boundary layer is an important factor controlling the imbalance magnitude and its horizontal and vertical distributions. The flux imbalance of heat and the bottom–up tracer is tightly related to turbulent coherent structures, whereas for the top–down diffusion, such relations are weak to nonexistent. Our results are broadly consistent with previous studies on the flux imbalance problem, suggesting that the published results are robust and are not artefacts of numerical schemes.  相似文献   

11.
The research activity described in this report is a comprehensive regional assessment of the impacts of climate change on water resources and options for adaptation in the Okanagan Basin. The ultimate goal of the project is to develop integrated climate change and water resource scenarios to stimulate a multistakeholder discussion on the implications of climate change for water management in the region. The paper describes two main objectives: (a) providing a set of research products that will be of relevance to regional interests in the Okanagan, and (b) establishing a methodology for participatory integrated assessment of regional climate change impacts and adaptation that could be applied to climate-related concerns in Canada and other countries. This collaborative study has relied on field research, computer-based models, and dialogue exercises to generate an assessment of future implications, and to learn about regional views on the prospects for adaptation. Along the way, it has benefited from strong partnerships with governments, researchers, local water practitioners, and user groups. Building on the scenario-based study components, and a series of interviews and surveys undertaken for the water management and adaptation case study components, a set of stakeholder dialogue sessions were organized which focused on identifying preferred adaptation options and processes for their implementation. Rather than seeking consensus on the “best” option or process, regional interests were asked to consider a range of available options as part of an adaptation portfolio that could address both supply side and demand side aspects of water resources management in the Okanagan. The Canadian Crown reserves the right to retain a non-exclusive, royalty free licence in and to any copyright.  相似文献   

12.
Economics of climate policy and collective decision making   总被引:1,自引:0,他引:1  
This paper explores the reasons why economic instruments of climate change are reluctantly applied and stresses the need for interdisciplinary research linking economic theory and empirical testing to deliberative political procedures. It is divided in three parts. The first one recalls the main issues in implementing Cost-Benefit Analysis such as information problems, uncertainties, discounting the future and irreversibilities. The second part shows how these issues can be treated in integrated assessment and techno-economic models and presents a case study, which shows that
  • The chosen scenario tends to stabilize atmospheric CO2 concentration at around 550 ppm in the long run.
  • Exclusion of possibility to trade CO2 emission permits under a cap regime would increase the cost of emission abatement for OECD countries.
  • Combining different flexibility instruments might lead to significant gains in the overall cost of climate policy.
The third part presents results of a survey conducted among the main economic and environmental associations in Switzerland. The survey reveals conflicting views on economic instruments. It shows how the social acceptability of these instruments can be improved in taking explicitly into account these opposing views of special interest groups. Therefore, policy scenarios should be selected in combining techno-economic models with empirical studies about their political and normative context.  相似文献   

13.
In recent years considerable effort has been focused on combining micrometeorological and stable isotope techniques to partition net fluxes and to study biosphere–atmosphere exchange processes. While much progress has been achieved over the last decade, some new issues are beginning to emerge as technological advances, such as laser spectroscopy, permit isotopic fluxes to be measured more easily and continuously in the field. Traditional investigations have quantified the isotopic composition of biosphere-atmosphere exchange by using the Keeling two-member mixing model (the classic Keeling plot). An alternative method, based on a new capacity to measure isotopic mixing ratios, is to determine the isotope composition of biosphere–atmosphere exchange from the ratio of flux measurements. The objective of this study was to critically evaluate these methods for quantifying the isotopic composition of ecosystem respiration (δR) over a period of three growing seasons (2003–2005) within a heterogeneous landscape consisting of C3 and C4 species. For C4 canopies, the mixing model approach produced δR values that were 4–6‰ lower (isotopically lighter) than the flux-gradient method. The analyses presented here strongly suggest that differences between flux and concentration footprint functions are the main factor influencing the inequality between the mixing model and flux-gradient approaches. A mixing model approach, which is based on the concentration footprint, can have a source area influence more than 20-fold greater than the flux footprint. These results highlight the fact that isotopic flux partitioning is susceptible to problems arising from combining signals (concentration and fluxes) that represent very different spatial scales (footprint). This problem is likely to be most pronounced within heterogeneous terrain. However, even under ideal conditions, the mismatch between concentration and flux footprints could have a detrimental impact on isotopic flux partitioning where very small differences in isotopic signals must be resolved.  相似文献   

14.
Introduction to the TAC special issue: The RegCNET network   总被引:2,自引:0,他引:2  
Summary Fostering climate research in economically developing nations (EDNs) is especially important because the welfare and economies of these nations are particularly dependent on climate and its variability. A critical factor that undermines the advancement of research in EDNs is that many EDN scientists are confronted with scientific isolation and lack of exposure to state-of-the-art research methodologies. One of the means to ameliorate this problem is to build “south–south” (i.e. EDN–EDN) and “north–south” (i.e. EDN–EAN, or economically advanced nations) research partnerships, which become more effective when they are based on collaborative projects where the participants share their respective expertise. This is the central paradigm underlying the formation of the REGional Climate research NETwork, or RegCNET.  相似文献   

15.
A large-eddy simulation model developed at the National Center for Atmospheric Research (NCAR) is extended to simulate the transport and diffusion of C18OO, H218O and 13CO2 in the atmospheric boundary layer (ABL). The simulation results show that the 18O compositions of leaf water and the ABL CO2 are moderately sensitive to wind speed. The variations in the 18O composition of water vapour are an order of magnitude greater than those in the 13C and 18O compositions of CO2 both at turbulent eddy scales and across the capping inversion. In a fully-developed convective ABL, these isotopic compositions are well mixed as with other conserved atmospheric quantities. The Keeling intercepts determined with the simulated high-frequency turbulence time series do not give a reliable estimate of the 18O composition of the surface water vapour flux and may be a reasonable approximation to the 13C and 18O compositions of the surface CO2 flux in the late afternoon only after a deep convective ABL has developed. We suggest that our isotopic large-eddy simulation (ISOLES) model should be a useful tool for testing and formulating research hypotheses on land–air isotopic exchanges.  相似文献   

16.
The capture and storage of CO2 from combustion of fossil fuels is gaining attraction as a means to deal with climate change. CO2 emissions from biomass conversion processes can also be captured. If that is done, biomass energy with CO2 capture and storage (BECS) would become a technology that removes CO2 from the atmosphere and at the same time deliver CO2-neutral energy carriers (heat, electricity or hydrogen) to society. Here we present estimates of the costs and conversion efficiency of electricity, hydrogen and heat generation from fossil fuels and biomass with CO2 capture and storage. We then insert these technology characteristics into a global energy and transportation model (GET 5.0), and calculate costs of stabilizing atmospheric CO2 concentration at 350 and 450 ppm. We find that carbon capture and storage technologies applied to fossil fuels have the potential to reduce the cost of meeting the 350 ppm stabilisation targets by 50% compared to a case where these technologies are not available and by 80% when BECS is allowed. For the 450 ppm scenario, the reduction in costs is 40 and 42%, respectively. Thus, the difference in costs between cases where BECS technologies are allowed and where they are not is marginal for the 450 ppm stabilization target. It is for very low stabilization targets that negative emissions become warranted, and this makes BECS more valuable than in cases with higher stabilization targets. Systematic and stochastic sensitivity analysis is performed. Finally, BECS opens up the possibility to remove CO2 from the atmosphere. But this option should not be seen as an argument in favour of doing nothing about the climate problem now and then switching on this technology if climate change turns out to be a significant problem. It is not likely that BECS can be initiated sufficiently rapidly at a sufficient scale to follow this path to avoiding abrupt and serious climate changes if that would happen.  相似文献   

17.
18.
    
A new Lagrangian—Eulerian coupling model system is developed to study regional air quality. The system consists of mesoscale dynamical meteorological model (MM), Monte—Carlo model (MCM), parameterized model on planetary boundary layer (PBL) turbulent statistics, dry and wet removal model, and Eulerian nonlinear chemical model (ENCM). The physical, chemical and biological processes on air pollutants are considered comprehensively. 3—D distribution laws tor acidic gaseous pollutants (SO2 and NOx) emitted by Thai Mae Moh Power Plant and the secondary pollutants are studied in detail. The results simulated by the coupling model system are in good agreement with observational concentration data. The authors wish to express their thanks to Prof. Zeng Q. C. for his support to this research and to Dr. Han Z. W. and Zhang M. G. for their help in programming and numerical calculation of IAP, Chinese Academy of Sciences. Thanks are also due to NSTD and EGAT in Thailand for supporting this research.  相似文献   

19.
This article is one of several in this special double-issue that reports the views of “users” of IPCC reports. I am a user in the sense that I advise the policy-making community and rely on the IPCC reports to provide me with authoritative views on the state of the science. My principal recommendation for making the IPCC more helpful to the policy-making community is to strive in the Fifth Assessment Report (AR5) to communicate fully what the climate science community understands and does not understand about high-consequence outcomes. This will require the AR5 authors to provide vivid information about future worlds where high-consequence outcomes have emerged. It will also require the AR5 authors to reveal any disagreements persisting among them after the give-and-take of the writing process has run its course. In the Fourth Assessment Report (AR4) the presentation of high-consequence outcomes had shortcomings that can be rectified in AR5.  相似文献   

20.
Satellite measurements of tropospheric column O3 and NO2 in eastern and southeastern Asia are analyzed to study the spatial and seasonal characteristics of pollution in these regions. Tropospheric column O3 is derived from differential measurements of total column ozone from Total Ozone Mapping Spectrometer (TOMS), and stratospheric column ozone from the Microwave Limb Sounder (MLS) instrument on the Upper Atmosphere Research Satellite (UARS). The tropospheric column NO2 is measured by Global Ozone Monitoring Experiment (GOME). A global chemical and transport model (Model of Ozone and Related Chemical Tracers, version 2; MOZART-2) is applied to analyze and interpret the satellite measurements. The study, which is based on spring, summer, and fall months of 1997 shows generally good agreement between the model and satellite data with respect to seasonal and spatial characteristics of O3 and NO2 fields. The analysis of the model results show that the industrial emission of NOx (NO + NO2) contributes about 50%–80% to tropospheric column NO2 in eastern Asia and about 20%–50% in southeastern Asia. The contribution of industrial emission of NOx to tropospheric column O3 ranges from 10% to 30% in eastern Asia. Biomass burning and lightning NOx emissions have a small effect on tropospheric O3 in central and eastern Asia, but they have a significant impact in southeastern Asia. The varying effects of NOx on tropospheric column ozone are attributed to differences in relative abundance of volatile organic compounds (VOCs) with respect to total nitrogen in the two regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号