首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
吴俊梅  林炳章  邵月红 《水文》2015,35(5):15-22
介绍了基于水文气象途径的地区线性矩法的概念,通过基于次序统计量的线性矩进行参数估计与基于水文气象一致区的地区分析法相结合,以太湖流域1d时段的年极值降雨资料为例,进行暴雨频率分析。应用水文气象一致区的判别准则,将太湖流域划分为8个水文气象一致区;综合考虑三种拟合优度检测方法,选择1~8区的最优分布线型分别为:GEV、GLO、GEV、GEV、GNO、GNO、GEV、GNO;根据地区分析法原理,估算各雨量站的暴雨频率设计值。分析表明:太湖流域各重现期下的年极值降雨空间分布形态基本一致,西南山区是太湖流域的暴雨高风险区,应该在地区防洪规划中引起重视。结果表明:地区线性矩法具有很高的学术和实用价值,建议在全国范围内推广,作为防洪规划的顶层设计和基础工作,以满足工程防洪设计、地区防洪规划、山洪预警和城市防涝防洪规划等方面的需求。  相似文献   

3.
非平稳条件下北京市最大月降水量频率特征分析   总被引:1,自引:1,他引:0  
韩丽  黄俊雄  周娜  李超 《水文》2021,41(2):32-37,108
为探究气候变化下极端降水的频率变化特征,基于北京市22个雨量站实测月降水量数据,以时间为协变量构建平稳和非平稳GEV模型,对北京市最大月降水量序列(极值降水序列)进行模拟和频率分析,并采用Bootstrap方法对频率分析结果的不确定性进行评价.结果表明:所有极值降水序列的最优概率分布模型均为非平稳GEV模型,该模型能够...  相似文献   

4.
Hydrological models play vital roles in understanding and management of surface water resources. The physically based distributed model Soil and Water Assessment Tool (SWAT) was applied to a small catchment in south eastern Australia to determine its ability to mimic low and high streamflows. The model was successfully calibrated using 1993–2002 streamflow data and validated using 2003–2011 data with a combination of manual and auto-calibration techniques for both monthly and daily time steps. Sensitivity analysis indicated that curve number for moisture condition II (CN2) is the most sensitive parameter for both time steps. In general, the model performance statistics indicated “very good” agreement between measured and simulated discharges for both calibration and validation periods. The model was able to satisfactorily simulate both low and high flows of the Yass River. Analysis of water balance components indicated that more than 90 % of the rainfall is lost as evapotranspiration and about 45 % of the streamflow is base flow. The calibrated and validated SWAT model can be used to analyze the effect of climate and land use changes on catchment wide hydrologic process.  相似文献   

5.
针对长江中游洞庭湖防洪系统规模庞大、水流复杂、资料短缺和预报时限紧迫的实际条件,提出了具有层次和模块结构特点、一维与二维水流模拟、水力学与水文学方法、理论模型与补充信息相结合的建模途径.所建模型的湖泊部分采用无结构网格二维非恒定流高性能有限体积格式,以适应湖区复杂的边界形状和保持水量平衡;河网部分采用一维非恒定流守恒型显格式,避免隐格式矩阵算法的复杂性,同时有利于与二维模型的耦合及与各种复杂连通关系的显式连接.这种一、二维混合非恒定流模型可用于长江干流、洞庭湖河网及湖泊、堤垸区的洪水演进和防洪调度的水流仿真.  相似文献   

6.
This paper describes the role of groundwater contribution to surface flow at the Causse d’Aumelas, a karst system near Montpellier (France), which is traversed by an intermittent river, the Coulazou. A first hydrologic model integrating a digital terrain model shows the inability of a standard rainfall-runoff model to replicate recorded flood hydrographs. While the flood peaks are routed through the karstic system along the Coulazou without a phase lag, the peak magnitude is somewhat modified. These results indicate an initial karst system recharge followed by a significant contribution to surface flow. A hydrodynamic analysis of ground-water flow confirms these results: the karst system first absorbs part of the rainfall, which induces a general water table rise within the aquifer, and then contributes to surface flow in the Coulazou.  相似文献   

7.
Flash floods are one of the most significant natural hazards of today. Due to the complexity of flash flood triggering factors, to prevent or mitigate flood triggered losses, numeric model based flood forecasting models are capable tools to predict stream water levels. The main goal of the current research was to reproduce two flow peaks with the HEC-HMS rainfall-runoff model and test the model sensitivity for various input parameters. To obtain sufficient input data, we monitored soil depth, maximum infiltration rate, soil moisture content, rainfall, time of concentration and flow. To obtain input data, parameters were calculated, measured in the Sás Valley experimental watershed (SW Hungary) or optimized with the built in function of the HEC-HMS. Soil moisture was monitored in the 1.7 km2 pilot catchment over the period between September 2008 and September 2009. HEC-HMS had a good performance reproducing the two events, however simulated flow time series are highly influenced by the antecedent soil moisture, infiltration rate and canopy storage. Outflow modeled data were verified for two flood events (June 4, 2008 and July 9, 2009). The HEC-HMS was over-sensitive for input soil moisture and with increasing input rainfall and increasing outflow, larger simulation errors were observed.  相似文献   

8.
Semi-arid environments are generally more sensitive to urbanization than humid regions in terms of both hydrologic modifications and water resources sustainability. The current study integrates hydrologic modeling and land use projections to predict long-term impacts of urbanization on hydrologic behavior and water supply in semi-arid regions. The study focuses on the Upper Santa Clara River basin in northern Los Angeles County, CA, USA, which is undergoing rapid and extensive development. The semi-distributed Hydrologic Simulation Program Fortran (HSPF) model is parameterized with land use, soil, and channel characteristics of the study watershed. Model parameters related to hydrologic processes are calibrated at the daily time step using various spatial configurations of precipitation and parameters. Potential urbanization scenarios are generated on the basis of a regional development plan. The calibrated (and validated) model is run under the proposed development scenarios for a 10 year period. Results reveal that increasing development increases total annual runoff and wet season flows, while decreases are observed in existing baseflow and groundwater recharge during both dry and wet seasons. As development increases, medium-sized storms increase in both peak flow and overall volume, while low and high flow events (extremes) appear less affected. Urbanization is also shown to decrease natural recharge and, when considered at the regional scale, may result in a loss of critical water supply to Southern California. The current study provides a coupled framework for a decision support tool that can guide efforts involved in regional urban development planning and water supply management.  相似文献   

9.
Flood hazard increasingly threatens human communities that occupy floodplains. Economic planning of control measures relies on identification and prioritization of the flood source areas in the watershed draining to the threatened reach. Distribution of flood control activities in proportion to the priority of flood source areas can reduce excessive costs and increase flood control efficiency. In this research, a distributed Clark-based rainfall-runoff model in conjunction with a hydrologic routing model was calibrated and validated in the watershed of interest. Then, a 2 * 2 km2 discretization scheme was implemented to represent some 200 pixels for flood source identification. The unit flood response (UFR) approach was then carried out at pixel scale. This step resulted in, for the first time, a distributed flood index map, which identifies and ranks pixels with high impact on the flood regime of the flood-threatened reach. The iso-flood severity map can be also extracted in a contour format.  相似文献   

10.
三峡为中心的长江防洪系统实时优化调度模型研究   总被引:1,自引:0,他引:1       下载免费PDF全文
谭培伦 《水科学进展》1996,7(4):331-335
主要介绍以三峡为中心的长江防洪系统联合调度运行的数学模型--洪水模拟模型和水库优化调度模型.前者包括水文学洪水演进模型,一维非恒定流模型,一维和二维组合洪水模拟模型,荆江分洪区与洪湖分洪区联合运用模型,用于反映洪水在河湖中的运动及防洪措施蓄泄效果;后者由总体控制模型与模糊决策,大系统解耦以及网络分析等模型组成,用于确定使库群起到最佳防洪效果的优化调度策略.  相似文献   

11.
SWAT模型中天气发生器与数据库构建及其验证   总被引:2,自引:0,他引:2  
庞靖鹏  徐宗学  刘昌明 《水文》2007,27(5):25-30
提出了通过日照时数和太阳辐射量的相关关系来估算逐日辐射量的方法。采用日平均温度和日平均湿度来计算日露点温度,以建立SWAT模型天气发生器。采用插值方法对土壤粒径进行转换,并利用SPAW程序估算土壤水特性参数,建立了SWAT模型土壤属性库。将构建的SWAT模型应用于潮河上游下会水文站以上流域的水文过程模拟,月效率系数≥0.91,确定性系数≥0.93,取得了非常好的模拟效果。结果表明在缺乏详细的气象和土壤数据情况下,可以构建SWAT模型进行水文模拟研究。  相似文献   

12.
人类活动和气候变化显著地改变了河川径流及洪水的时空分配过程,直接影响下游断面的设计洪水。本文综述水库对下游水文情势的影响,提出梯级水库运行期设计洪水理论方法和研究内容;重点探讨非一致性洪水频率分析和基于Copula函数的最可能地区洪水组成法,比较各种方法的实用性;推荐采用运行期设计洪水及汛控水位指导水库调度运行,建议进一步加强水库运行期设计洪水计算理论和方法研究。  相似文献   

13.
人类活动和气候变化显著地改变了河川径流及洪水的时空分配过程,直接影响下游断面的设计洪水。本文综述水库对下游水文情势的影响,提出梯级水库运行期设计洪水理论方法和研究内容;重点探讨非一致性洪水频率分析和基于Copula函数的最可能地区洪水组成法,比较各种方法的实用性;推荐采用运行期设计洪水及汛控水位指导水库调度运行,建议进一步加强水库运行期设计洪水计算理论和方法研究。  相似文献   

14.
The main goal of this study is to investigate the effect of the size of the subbasins of a watershed on the hydrologic parameters and their spatial variability in an estimation of the hydrologic parameters and hydrograph of a neighbouring ungauged basin. In this paper, Hydrologic Engineering Center-Hydrologic Modelling System (HEC-HMS), a semi-distributed hydrologic model, is used to calibrate and cross-validate two flood events occurred in 1998 and then validate four other flood events occurred in 1991, 1994, 2002, and 2009 in Gokirmak Basin in Western Black Sea Region, Turkey. The basin is divided into seven different subbasins to investigate the effect of watershed partitioning on calibrated hydrologic parameters of each subbasin using the peak-weighted root mean square error method as an objective function and the hydrograph at the outlet of the whole basin. It is found out that as the geometric magnitudes of the subbasins changed, the calibrated values of the hydrologic parameters of those subbasins changed as well. Then, a neighbouring basin, Kocanaz, is considered as an assumed neighbouring ungauged basin to investigate the effect of watershed partitioning of a gauged basin on the estimation of hydrograph of a neighbouring ungauged basin. Hydrologic parameters and direct runoff hydrograph of assumed ungauged neighbouring basin are estimated from the hydrologic parameters of the HEC-HMS calibration results of Gokirmak. Statistical indicators of the simulation results for each basin partitioning were graded with respect to the boundary values of the simulation outputs to find the best alternative. The grading results show that the simulation results with a single basin gave better representation among all other partitioning except two flood events.  相似文献   

15.
以江西省和福建省的86个水文站的年最大洪水资料为样本,在成因水文分区———模糊聚类法的基础上,采用线性矩区域综合方法进行区域洪水频率分析,并选用两种区域洪水分布线型:通用极值分布(GEV)、P-III型分布来检验这两省的洪水特性。结果表明,P-III型分布优于GEV分布。  相似文献   

16.
Midstream of the Keelung River Basin in Northern Taiwan has become highly urbanized and densely populated area. Flood inundation along riversides frequently occurred during typhoons or rainstorms. Three protection measures, including constructions of high-level protection levees, a diversion channel, and a detention reservoir, were proposed for flood mitigation. The main purpose of this study is to evaluate the flood mitigation performance of the three proposed structural measures by using combined hydrologic analyses and hydraulic routings. A semi-distributed parallel-type linear reservoirs rainfall-runoff model was used for estimating the surface runoff. Furthermore, a 1-D dynamic channel routing model was coupled with a two-dimensional inundation model to simulate the hydraulic characteristics of river flooding and overland flow. Simulation results of flood stages, runoff peak discharges, and inundation extent under design rainfall scenarios were chosen as the criteria for evaluation. The results showed a diversion channel is superior to the other two measures for flood mitigation of the study area. After the process of environmental impact assessment, a revised diversion channel approach has been approved for construction as the major structural measure.  相似文献   

17.
In Pakistan, floods are among the most devastating and recurring natural hazards. Flood hazard assessment requires flood event magnitude and probability of occurrence. Flood frequency analysis is the most common technique used for the at-site estimation of flood recurrence magnitude. This paper evaluates four most commonly used distribution methods, i.e., Generalized Extreme Value (GEV), Log Pearson 3 (LP3), Gumbel Max, and Normal for the flood frequency and estimation of flood recurrence. Different hydrological stations data namely Khwazakhela, Chakdarra, Panjkora, and Munda Headwork located at Swat river was taken from Provincial Irrigation Department, Khyber Pakhtunkhwa. The analysis is done for 5-, 10-, 25-, 50-, and 100-year return periods by using annual maximum discharge data from 1980 to 2016 (37 yr). Three goodness-of-fit tests were applied to the fitted distributions, i.e., Kolmogorov–Smirnov, Anderson–Darling, and Chi-squared at 5% significance level. Results indicate that LP3 and GEV were ranked top two distributions at all locations while Gumbel Max and Normal were the least fitted having rank 3 and 4, respectively. Based on the goodness-of-fit ranking, LP3 was selected for the estimation of flood magnitude and return periods at Khwazakhela. Designed hydrographs based on probabilistic approach and flood 2010 hydrograph are presented for flood simulation.  相似文献   

18.
The application of Geographical Information system (GIS) in modeling flood and its prediction in catchments offers considerable potential. Several examples illustrate simple GIS techniques to produce flood hazard indices or its zonation using hydrologic-type models. Existing flood models can also be loosely coupled to a GIS, such as the HMS (Hydrological Modeling System) model. Forethermore, models can be fully integrated into a GIS by embedded coupling, such as the SCS (Soil Conservation Service) model. Installation of flood forecasting systems in watersheds with incomplete hydrometric data may reduce the flood-induced damages. In this study Geographical Information system used to up to date the watershed data and estimation of SCS model parameters which is sensible to considered the real time flood forecasting in Kasilian catchment of Mazandaran province. The main aim of this paper is to investigate the possibility of the linkage between GIS with a comprehensive hydrologic model, especially HMS. The use of GIS could produce a suitable agreement between observed results (extracted rainfall and runoff data of 1992, 1995 and 1996 from the related stations) with the calculated results of the hydrological model. The obtained results from rainfall-runoff process simulations of the model in this research showed that submergibility of the main watershed, Kasillian, does not depend on the outlet discharge rate of each one of its watershed independently. But it is related to how those two outlet hydrographs from main river watershed are combined. The model is capable of showing the flood characteristics temporally and spatially in each cross section of the channel network.  相似文献   

19.
Jaiswal  R. K.  Nayak  T. R.  Lohani  A. K.  Galkate  R. V. 《Natural Hazards》2022,111(2):1845-1861

The computation of flood magnitude and its likely occurrence to design different hydraulic structures are major challenges to the research community. The present study has been carried out to identify the homogeneous regions in the Mahanadi basin in Chhattisgarh part (data from 26 gauge/discharge sites) of India using conventional and clustering-based homogeneity tests and then computation and identification of probability-weighted moment and L-moment-based best regional distributions for different regions. Different simple to complex distributions like Extreme Value-I, Generalized Extreme Value, Logistic, Generalized Logistic, Generalized Pareto, Normal and Log-normal, Wakeby-4, and Wakeby-5 was used in the analysis through standardizing procedure to compute regional distributions. The best-fit distribution selected by simulating several series and compute L-kurtosis along with the L-moment ratio diagram. The homogeneity analysis confirmed that this basin can broadly be divided into two different homogeneous regions with 15 and 11 stations in the first (Region-1) and second (Region-2) regions, respectively. The GEV distribution was found best suited for Region-1 while the Generalized Pareto worked well for Region-2. To make results more convenient for field application, catchment area-based equations were converted in the form of Dicken’s or Ryve’s formulae for these regions to estimate flood quantiles of any return period.

  相似文献   

20.
Being a laborious approach, manual calibration of hydrologic model in a semi-arid context requires in-depth knowledge of the watershed and as much as possible field input data to obtain reliable simulations. In this study, manual calibration and relative sensitivity analysis approaches of the SWAT model (Soil and Water Assessment Tool) were applied for water balance in a 1993 km2 watershed (on the R’dom river) located in North-western Morocco. The watershed is located in a semi-arid area dominated by agro-forestry activities. The objectives of this study were (i) to perform a local sensitivity analysis of the SWAT model taking into consideration the watershed characteristics and (ii) to implement a detailed methodology of manual calibration and validation of the model in a semi-arid context. Sensitivity analysis has been carried out on 12 different SWAT input parameters, and has revealed that 4 input parameters only were the most influential ones on flow components of the R’dom watershed. Model manual calibration was conducted along 2006 and 2007 by comparing measured and predicted monthly and daily discharges and taking Nash-Sutcliffe coefficient (NSE), determination coefficient (R 2), and percent bias (PBIAS) as goodness-of-fit indicators. Validation has been performed by the same approach through 2008 and 2009 period. All final NSE values were above 0.5, R 2 values exceeded 0.7, and PBIAS lower than 25% demonstrating satisfactory model performances over the study watershed conditions. The SWAT model set-up with measured input data, manually calibrated and validated, reflects well the real hydrologic processes occurring in the R’dom watershed and can be used to assess current and future conditions and to evaluate alternative management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号