首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular line emission is a useful tool for probing the highly obscured inner kpc of starburst galaxies and buried AGNs. Molecular line ratios serve as diagnostic tools of the physical conditions of the gas—but also of its chemical properties. Both provide important clues to the type and evolutionary stage of the nuclear activity. While CO emission remains the main tracer for molecular distribution and dynamics, molecules such as HCN, HNC, HCO+, CN and HC3N are useful for probing the properties of the denser (n≳104 cm−3), star-forming gas. Here I discuss current views on how line emission from these species can be interpreted in luminous galaxies. HNC, HCO+ and CN are all species that can be associated both with photon dominated regions (PDRs) in starbursts—as well as X-ray dominated regions (XDRs) associated with AGN activity. HC3N line emission may identify galaxies where the starburst is in the early stage of its evolution.  相似文献   

2.
ALMA will be able to detect a broad spectrum of molecular lines in galaxies. Current observations indicate that the molecular line emission from galaxies is remarkably variable, even on kpc scales. Imaging spectroscopy at resolutions of an arcsecond or better will reduce the chemical complexity by allowing regions of physical conditions to be defined and classified.  相似文献   

3.
We present results from a Keck optical and near IR spectroscopic study of the giant emission line halos of the z>3 High Redshift Radio Galaxies (HiZRGs) 4C 41.17, 4C 60.07 and B2 0902+34. The outer regions of these halos show quiet kinematics with typical velocity dispersions of a few hundred km s−1 and velocity shears consistent with rotation. The inner regions contain shocked, clumpy cocoons of gas closely associated with the radio lobes with disturbed kinematics and expansion velocities and/or velocity dispersions >1000 km s−1. We also find evidence for the ejection of chemically enriched material in 4C 41.17 up to a distance of ∼60 kpc along the radio-axis. We infer that these HiZRGs are undergoing a final jet-induced phase of star formation with the ejection of most of their interstellar medium before evolving to become “red and dead” Elliptical galaxies.  相似文献   

4.
Using HST and ground-based optical and NIR imaging data, we investigate whether the blue compact dwarf (BCD) galaxy I Zw 18 possesses an extended low-surface brightness (LSB) old stellar population underlying its star-forming (SF) regions. We show that the exponential intensity decrease observed in the filamentary LSB envelope of the BCD out to 18″ (1.3 kpc at the adopted distance of 15 Mpc) is not due to an evolved stellar disc, but rather due to extended ionized gas emission. Broad-band images reveal, after subtraction of nebular line emission, a compact stellar LSB component extending slightly beyond the SF regions. This stellar host, being blue over a radius range of 5 exponential scale lengths and showing little colour contrast to the SF component, differs strikingly from the red LSB host of standard BCDs. This fact, in connection with the blue colours of component I Zw 18 C (see discussion in Papaderos et al. 2002), suggests that most of the stellar mass in I Zw 18 has formed within the last 0.5 Gyr. Furthermore, we show that the exponential intensity fall-off in the filamentary ionized envelope of I Zw 18 is not particular to this system but a common property of the ionized halo of many SF dwarf galaxies on galactocentric distances of several kpc. In the absence of an appreciable underlying stellar background, extended ionized gas emission dominates in the periphery of I Zw 18, superficially resembling an exponential stellar disc on optical surface brightness profiles. The case of I Zw 18 suggests caution in the search of more distant young galaxy candidates. Intense SF activity in the early phase of dwarf galaxy formation may result in an extended ionized gas halo which can be mistaken for an evolved stellar disc by studying only its exponential surface brightness profile. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
We have made VLA radio total intensity and polarisation observations in the A, B and C configurations at 1665, 1435, 1365 and 1295 MHz and in the B, C and D configurations at 8465 and 8415 MHz to study the environment of the powerful radio galaxy Hercules A. We have also made ROSAT PSPC and HRI X-ray observations to study the intracluster gas in the Hercules A cluster. We have mapped the Faraday rotation field with high resolution (1.′′42.5 h−1100 kpc for q0=0), and combined this with the X-ray data on the gas distribution in order to map the magnetic field of the cluster. We have found that Hercules A exhibits a strong Laing-Garrington effect: the western side of the radio emission is more depolarised than the eastern side. The X-ray observations have revealed an extended X-ray emission elongated along the radio galaxy axis and a weak nuclear component. The Hercules A cluster is a cooling flow cluster, which appears isothermal at large radii. Comparing the Faraday dispersion profile with the X-ray estimated density profile, we found that the magnetic field is decreasing with radius and we have estimated a central value of 3B0 (μG) 9. The estimated core electron density of n06.6×103 m−3 reveals a dense environment in which Hercules A is situated.  相似文献   

6.
X-ray spectroscopy offers an opportunity to study the complex mixture of emitting and absorbing components in the circumnuclear regions of active galactic nuclei (AGN), and to learn about the accretion process that fuels AGN and the feedback of material to their host galaxies. We describe the spectral signatures that may be studied and review the X-ray spectra and spectral variability of active galaxies, concentrating on progress from recent Chandra, XMM-Newton and Suzaku data for local type 1 AGN. We describe the evidence for absorption covering a wide range of column densities, ionization and dynamics, and discuss the growing evidence for partial-covering absorption from data at energies ≳ 10 keV. Such absorption can also explain the observed X-ray spectral curvature and variability in AGN at lower energies and is likely an important factor in shaping the observed properties of this class of source. Consideration of self-consistent models for local AGN indicates that X-ray spectra likely comprise a combination of absorption and reflection effects from material originating within a few light days of the black hole as well as on larger scales. It is likely that AGN X-ray spectra may be strongly affected by the presence of disk-wind outflows that are expected in systems with high accretion rates, and we describe models that attempt to predict the effects of radiative transfer through such winds, and discuss the prospects for new data to test and address these ideas.  相似文献   

7.
Observations of the Virgo Cluster galaxy NGC 4569 in soft X-rays and in Hα reveal both an asymmetrically distributed hot gaseous halo and a giant filament of diffuse emission, respectively, extending from the same side of the disk, the latter one to at least 8.8 kpc. A deep longslit spectrum along the filament shows velocities systematically different from the systemic velocity of NGC 4569. With the inclination of the disk one can determine the Hα spur as a giant outflow in NGC 4569. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
We investigate the process of galaxy formation as can be observed in the only currently forming galaxies - the so-called Tidal Dwarf Galaxies, hereafter TDGs - through observations of the molecular gas detected via its CO (Carbon Monoxide) emission. These objects are formed of material torn off of the outer parts of a spiral disk due to tidal forces in a collision between two massive galaxies. Molecular gas is a key element in the galaxy formation process, providing the link between a cloud of gas and a bona fide galaxy. We have detected CO in 8 TDGs (Braine, Lisenfeld, Duc and Leon, 2000: Nature 403, 867; Braine, Duc, Lisenfeld, Charmandaris, Vallejo, Leon and Brinks: 2001, A&A 378, 51), with an overall detection rate of 80%, showing that molecular gas is abundant in TDGs, up to a few 108 M . The CO emission coincides both spatially and kinematically with the HI emission, indicating that the molecular gas forms from the atomic hydrogen where the HI column density is high. A possible trend of more evolved TDGs having greater molecular gas masses is observed, in accord with the transformation of HI into H2. Although TDGs share many of the properties of small irregulars, their CO luminosity is much greater (factor ∼ 100) than that of standard dwarf galaxies of comparable luminosity. This is most likely a consequence of the higher metallicity (≳sim 1/3 solar) of TDGs which makes CO a good tracer of molecular gas. This allows us to study star formation in environments ordinarily inaccessible due to the extreme difficulty of measuring the molecular gas mass. The star formation efficiency, measured by the CO luminosity per Hα flux, is the same in TDGs and full-sized spirals. CO is likely the best tracer of the dynamics of these objects because some fraction of the HI near the TDGs may be part of the tidal tail and not bound to the TDG. Although uncertainties are large for individual objects, as the geometry is unknown, our sample is now of eight detected objects and we find that the ‘dynamical’ masses of TDGs, estimated from the CO line widths, seem not to be greater than the ‘visible’ masses (HI + H2 + a stellar component). Although higher spatial resolution CO (and HI) observations would help reduce the uncertainties, we find that TDGs require no dark matter, which would make them the only galaxy-sized systems where this is the case. Dark matter in spirals should then be in a halo and not a rotating disk. Most dwarf galaxies are dark matter-rich, implying that they are not of tidal origin. We provide strong evidence that TDGs are self-gravitating entities, implying that we are witnessing the ensemble of processes in galaxy formation: concentration of large amounts of gas in a bound object, condensation of the gas, which is atomic at this point, to form molecular gas and the subsequent star formation from the dense molecular component. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

9.
We use high-spatial resolution (100 pc) rotation curves of 83 spiral galaxies to investigate the mass distribution of their innermost kpc. We show that, in this region, the luminous matter completely accounts for the gravitational potential and no dark component is required. The derived I-band disk mass-to-light ratios agree well with those obtained from population synthesis models and correlate with color in a similar way. We find strict upper limits of 107 M for the masses of compact bodies at the center of spirals, ruling out that these systems host the remnants of the quasar activity.  相似文献   

10.
We have produced 22 VLBI images of the TeV blazar Markarian 421 at 11 epochs, including a Space VLBI observation with the HALCA satellite. We measure the speeds of the three innermost jet components to be 0.64±0.33, 0.48±0.09, and 0.06±0.09c (H0=65 km s−1 Mpc−1). Interpretation of these subluminal speeds in terms of the high Doppler factor demanded by the TeV observations is discussed.  相似文献   

11.
We report on observations, with sub-parsec resolution, of neutral hydrogen seen in absorption in the λ=21 cm line against the nucleus of the active spiral galaxy NGC 5793. The absorption line consists of three components separated in both location as well as velocity. We derive HI column densities of 2×1022 cm−2 assuming a gas spin temperature of 100 K. For the first time we are able to reliably estimate the HI cloud sizes (≈15 pc) and atomic gas densities (≈200 cm−3). Our results suggest that the HI gas is not associated with the <10 pc region which presumably contains the H2O masers, but it is more distant from the nucleus, and is probably associated with the r1 kpc gas seen in CO.  相似文献   

12.
The combination of dispersion measures of pulsars, distances from the model of Cordes & Lazio (2002) and emission measures from the WHAM survey enabled a statistical study of electron densities and filling factors of the diffuse ionized gas (DIG) in the Milky Way. The emission measures were corrected for absorption and contributions from beyond the pulsar distance. For a sample of 157 pulsars at |b | > 5. and 60° < ℓ < 360°, located in mainly interarm regions within about 3 kpc from the Sun, we find that: (1) The average volume filling factor along the line of sight and the mean density in ionized clouds are inversely correlated: ( ) = (0.0184 ± 0.0011) –1.07 ± 0.03 for the ranges 0.03 < < 2 cm–3 and 0.8 > > 0.01. This relationship is very tight. The inverse correlation of and causes the well‐known constancy of the average electron density along the line of sight. As (z ) increases with distance from the Galactic plane |z |, the average size of the ionized clouds increases with |z |. (2) For |z| < 0.9 kpc the local density in clouds n c(z ) and local filling factor f (z ) are inversely correlated because the local electron density n e(z ) = f (z )n c(z ) is constant. We suggest that f (z ) reaches a maximum value of >0.3 near |z | = 0.9 kpc, whereas n c(z ) continues to decrease to higher |z |, thus causing the observed flattening in the distribution of dispersion measures perpendicular to the Galactic plane above this height. (3) For |z | < 0.9 kpc the local distributions n c(z ), f (z ) and (z ) have the same scale height which is in the range 250 < h ≲ 500 pc. (4) The average degree of ionization of the warm atomic gas (z ) increases towards higher |z | similarly to (z ). Towards |z | = 1 kpc, (z ) = 0.24 ± 0.05 and (z ) = 0.24 ± 0.02. Near |z | = 1 kpc most of the warm, atomic hydrogen is ionized. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Compact relativistic jets in active galactic nuclei offer an effective tool for investigating the physics of nuclear regions in galaxies. The emission properties, dynamics, and evolution of jets in AGN are closely connected to the characteristics of the central supermassive black hole, accretion disk and broad-line region in active galaxies. Recent results from studies of the nuclear regions in several active galaxies with prominent outflows are reviewed in this contribution.  相似文献   

14.
The local correlation between far-infrared (FIR) emission and radio-continuum (RC) emission for the Small Magellanic Cloud (SMC) is investigated over scales from 3 kpc to 0.01 kpc. Here, we report good FIR/RC correlation down to ~15 pc. The reciprocal slope of the FIR/RC emission correlation (RC/FIR) in the SMC is shown to be greatest in the most active star forming regions with a power law slope of ~1.14 indicating that the RC emission increases faster than the FIR emission. The slope of the other regions and the SMC are much flatter and in the range of 0.63–0.85. The slopes tend to follow the thermal fractions of the regions which range from 0.5 to 0.95. The thermal fraction of the RC emission alone can provide the expected FIR/RC correlation. The results are consistent with a common source for ultraviolet (UV) photons heating dust and Cosmic Ray electrons (CRe?s) diffusing away from the star forming regions. Since the CRe?s appear to escape the SMC so readily, the results here may not provide support for coupling between the local gas density and the magnetic field intensity.  相似文献   

15.
We present preliminary results from a set of near‐IR integral field spectroscopic observations of the central, star‐burst, regions of the barred spiral galaxy M83, obtained with CIRPASS on Gemini‐S. We present maps in the Paβ and [FeII] 1.257 μm emission lines which appear surprisingly different. We outline the procedure in which we will use Paβ emission line strengths and measures of CO absorption to determine the relative and absolute ages of individual star‐forming knots in the central kpc region of M83. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Summary. Hubble's (1936, p. 125) view that the Local Group (LG) is “a typical, small group of nebulae which is isolated in the general field” is confirmed by modern data. The total number of certain and probable Group members presently stands at 35. The half-mass radius of the Local Group is found to be kpc. The zero-velocity surface, which separates the Local Group from the field that is expanding with the Hubble flow, has a radius Mpc. The total mass of the LG is . Most of this mass appears to be concentrated in the Andromeda and Milky Way subgroups of the LG. The total luminosity of the Local Group is found to be :. This yields a mass-to-light ratio (in solar units) of . The solar motion with respect to the LG is \,km s, directed towards an apex at , and . The velocity dispersion within the LG is km s. The galaxies NGC 3109, Antlia, Sextans A and Sextans B appear to form a distinct grouping with kpc relative to the LG, that is located beyond the LG zero-velocity surface at a distance of 1.7 Mpc from the Local Group centroid. The luminosity distribution of the LG has a slope . This value is significantly less negative than that which is found in rich clusters of galaxies. The luminosity distribution of the dwarf spheroidal galaxies is steeper than that for dwarf irregulars. Furthermore the dSph galaxies are strongly concentrated within the Andromeda and Milky Way subclusters of the Local Group, whereas the majority of dIr galaxies appear to be free-floating members of the LG as a whole. With the possible exception of Leo I and Leo A, most LG members appear to have started forming stars simultaneously Gyr ago. Many of the galaxies, for which evolutionary data are available, appear to have shrunk with time. This result is unexpected because Hubble Space Telescope observations appear to show galaxies at to be smaller than they are at . In the Large Magellanic Cloud the rate of cluster formation was low for a period that extended from Gyr to Gyr ago. The rate of cluster formation may have increased more rapidly 3–5 Gyr ago, than did the rate of star formation. The reason for the sudden burst of cluster formation in the LMC Gyr ago remains obscure. None of the dwarf galaxies in the LG appears to have experienced a starburst strong enough to have produced a “boojum”. Received 14 April 1999  相似文献   

17.
Detecting and studying objects at the highest redshifts, out to the end of Cosmic Reionization at z>7, is clearly a key science goal of ALMA. ALMA will in principle be able to detect objects in this redshift range both from high-J (J>7) CO transitions and emission from ionized carbon, [CII], which is one of the main cooling lines of the ISM. ALMA will even be able to resolve this emission for individual targets, which will be one of the few ways to determine dynamical masses for systems in the Epoch of Reionization. We discuss some of the current problems regarding the detection and characterization of objects at high redshifts and how ALMA will eliminate most (but not all) of them.  相似文献   

18.
We present radio images of NRAO 530 on scales ranging from pc to kpc. The observations include the EVN at 5 GHz, the VLBA at 1.6, 8.6 and 15 GHz, the MERLIN at 1.6 and 5 GHz, and the VLA at 5, 8.4, 15, 22, and 43 GHz. The VLBI images show a core-jet structure with an oscillating trajectory on a scale of about 30 mas north of the strongest compact component (core). Superluminal motions are detected in five of the jet compo-nents with apparent velocities in the range of 13.6 to 25.2c. A new component is detected at 15 GHz with the VLBA observations, which appears to be associated with the outburst in 2002. Significant polarized emission is detected around the core with the VLBA observationsat 15 GHz. Rapid variations of the polarization intensity and angle are found between the epochs in 2002 and 2004. On the kpc-scale, a distant component (labelled as WL) located 11 arcsec west (PA=-86°) of the core is detected beyond the core-jet structure which ex-tended to several hundreds of mas in the north-west direction (-50°). A significant emission between the core-jet structure and the WL is revealed. A clump of diffuse emission (labelled EL, 12 arcsec long) at PA 70° to the core, is also detected in the VLA observations, suggest-ing the presence of double lobes in the source. The core component shows a flat spectrum,while the distant components WL and EL have steep spectra. The steep spectra of the distantcomponents and the detection of the arched emission suggest that the distant components are lobes or hot-spots powered by the core of NRAO 530. The morphologies from pc-to kpc- scales and the bending of jets are investigated. The observed radio morphology from pc to kcp appears to favor the model in which precession or wobbling of the nuclear disk drives the helical motion of the radio plasma and produces the S-shaped structure on kpc scale.  相似文献   

19.
Research on two-dimensional (2-D) properties of galaxies is a significant component of the study of galaxy formation and evolution. Through the spatial distribution of physical properties (derived from integrated luminosity and spectroscopy) of galaxies, we are allowed to realize the inner environment and evolution history of each individual galaxy and finally answer how galaxies were assembled. In this paper, with reviewing previous work, we present a proposal for study on 2-D properties of nearby galaxies. In our prospective work, we will make use of multi-wavelength data covering a range from ultraviolet to far-infrared to determine the distributions of properties such as age, metallicity and dust-reddening in nearby galaxies, and try to remove the degeneracy among them. Combining with surface photometry and spectroscopy, we will also analyze the distribution of HII regions and star formation properties in galaxies. In our future plan, the World Space Observatory for Ultraviolet (WSO/UV) will be applied to our research and allow detail diagnosis of nearby galaxies at ultraviolet band.  相似文献   

20.
We present a comparative analysis of 5 GHz VLA and 200 ks Chandra ACIS-I image. In the 5 GHz image the familiar jet and much weaker counterjet are seen, which bend as the jet propagates towards the hotspots. Furthermore, where the lobe detected in 5 GHz emission starts to interact with the jet, we see that the jet “threads”. In the 0.2–10 keV X-ray image we do not detect the jet, but do detect a relic of the counterjet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号