首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Heavy mineral separates of peat from a mineralotrophic bog contain sulphide minerals with distinctive textures. Pyrite framboids, consisting of spherical aggregates of subhedral pyrite crystals, are surrounded by a thin rim of chalcopyrite or a layer of massive marcasite. Clusters of framboids are cemented by covellite which also occurs as small idiomorphic grains, with rectangular or hexagonal outlines, surrounded by chalcopyrite. The sulphides appear to have resulted from discharge of groundwaters, enriched in copper from weathering of primary sulphides in bedrock and in iron by reduction of the till underlying the peat, into the hydrogen sulphide charged bog.  相似文献   

2.
It is of great importance to understand the origin of UG2 chromitite reefs and reasons why some chromitite reefs contain relatively high contents of platinum group elements(PGEs: Os, Ir, Ru, Rh,Pt, Pd) or highly siderophile elements(HSEs: Au, Re, PGE). This paper documents sulphide-silicate assemblages enclosed in chromite grains from the UG2 chromitite. These are formed as a result of crystallisation of sulphide and silicate melts that are trapped during chromite crystallisation. The inclusions display negative crystal shapes ranging from several micrometres to 100 μm in size.Interstitial sulphide assemblages lack pyrrhotite and consist of chalcopyrite, pentlandite and some pyrite. The electron microprobe data of these sulphides show that the pentlandite grains present in some of the sulphide inclusions have a significantly higher iron(Fe) and lower nickel(Ni) content than the pentlandite in the rock matrix. Pyrite and chalcopyrite show no difference. The contrast in composition between inter-cumulus plagioclase(An_(68)) and plagioclase enclosed in chromite(An_(13)), as well as the presence of quartz, is consistent with the existence of a felsic melt at the time of chromite saturation.Detailed studies of HSE distribution in the sulphides and chromite were conducted by LA-ICP-MS(laser ablation-inductively coupled plasma-mass spectrometry), which showed the following.(Ⅰ) Chromite contained no detectable HSE in solid solution.(Ⅱ) HSE distribution in sulphide assemblages interstitial to chromite was variable. In general, Pd, Rh, Ru and Ir occurred dominantly in pentlandite, whereas Os,Pt and Au were detected only in matrix sulphide grains and were clearly associated with Bi and Te.(Ⅲ)In the sulphide inclusions,(a) pyrrhotite did not contain any significant amount of HSE,(b) chalcopyrite contained only some Rh compared to the other sulphides,(c) pentlandite was the main host for Pd,(d)pyrite contained most of the Ru, Os, Ir and Re,(e) Pt and Rh were closely associated with Bi forming a continuous rim between pyrite and pentlandite and(f) no Au was detected. These results show that the use of ArF excimer laser to produce high-resolution trace element maps provides information that cannot be obtained by conventional(spot) LA-ICP-MS analysis or trace element maps that use relatively large beam diameters.  相似文献   

3.
34S/32S ratios have been measured in a suite of samples from the stratabound, volcanogenic massive sulphide deposit at Woodlawn, N.S.W. 34S values for the sulphides vary as follows: in the ore horizon, pyrite +6.7 to +9.2%. (mean +8.1‰), sphalerite +5.2 to +8.6‰. (mean +6.9‰), chalcopyrite +6.4 to +7.0‰ (mean +6.7‰) and galena +2.8 to +5.5‰ (mean +4.4‰); in the vein mineralization, the host volcanics—pyrite +8.7 to +11.4%. (mean +9.8‰), sphalerite +7.8 to + 10.3‰ (mean +9.2‰), chalcopyrite; +8.8 to +10.1‰ (mean +9.2‰) and galena +6.9 to +7.2‰ (mean +7.1‰). Barite from the upper ore horizon levels has an isotopic composition of +30.0‰, consistent with its having originated from Silurian ocean sulphate. The general order of 34S enrichment in the sulphides is pyrite > chalcopyrite sphalerite > galena. Isotopic fractionations in the systems galena/sphalerite/pyrite and chalcopyrite/pyrite indicate an equilibration temperature of 275–300°C. This temperature is considered to represent that of sulphide deposition.  相似文献   

4.
The Rio Tinto in SW Spain drains Cu and pyrite mines which have been in operation since at least the Bronze Age. Extensive metal mining, especially from 1873 to 1954, has resulted in contamination of the Rio Tinto alluvium with As, Cu, Pb, Ag and Zn. X-ray diffraction (XRD), wavelength-dispersive X-ray mapping, scanning electron microscope petrography and X-ray energy-dispersive (EDX) analysis has revealed that 4 major groups of contaminant metal and As-bearing minerals, including sulphides, Fe-As oxides, Fe oxides/hydroxides/oxyhydroxides, and Fe oxyhydroxysulphates, occur in the alluvium. Sulphide minerals, including pyrite, chalcopyrite, arsenopyrite and sphalerite, occur in alluvium near the mining areas. Iron hydroxides and oxyhydroxides such as goethite and possibly ferrihydrite occur in cements in both the mining areas and alluvium downstream, and carry minor amounts of As, Cu and Zn. Iron oxyhydroxysulphates, including jarosite, plumbojarosite and possibly schwertmannite, are the most common minerals in alluvium downstream of the mining areas, and are major hosts of Cu, Pb, Zn and of As, next to the Fe-As minerals. This work, and other field observations, suggest that (1) the extreme acidity and elevated metal concentrations of the river water will probably be maintained for some time due to oxidation of pyrite and other sulphides in the alluvium and mine-waste tips, and from formation of secondary oxide and oxyhydroxysulphates; (2) soluble Fe oxyhydroxysulphates such as copiapite, which form on the alluvium, are a temporary store of contaminant metals, but are dissolved during periods of high rainfall or flooding, releasing contaminants to the aqueous system; (3) relatively insoluble Fe oxyhydroxysulphates and hydroxides such as jarosite and goethite may be the major long-term store of alluvial contaminant metals; and (4) raising river pH will probably cause precipitation of Fe oxyhydroxides and oxides/hydroxides/oxyhydroxides and thus have a positive effect on water quality, but this action may destabilise some of these contaminant metal-bearing minerals, releasing metals back to the aqueous system.  相似文献   

5.
微观孔隙结构是页岩储层研究的重点,而扫描电镜方法无法识别机械抛光中由于页岩硬度差异所造成的不规则形貌。本文利用氩离子抛光-扫描电镜方法对四川威远区块九老洞组页岩进行研究,发现了三种孔隙类型:1无机孔以粒间孔和黏土矿物层间孔为主,同时发育晶间孔和生物孔,孔径主体100~500 nm;2有机孔受控于热成熟度或有机黏土复合体,孔径范围数十纳米至数微米;3微裂缝包括成岩收缩裂缝、高压碎裂缝、构造裂缝和人为裂缝,缝宽数微米,缝长数微米至数十微米。研究表明无机孔和微裂缝是九老洞组页岩气的主要储集空间。  相似文献   

6.
This paper reports the occurrence of Tsumoite (a bismuth telluride) in the Heti Cu-Ni-PGM prospect, Gondpipri mafic-ultramafic complex, Central India. The Gondpipri complex consists of several tectonically dismembered gabbronorite-gabbro-anorthositic gabbro — olivine gabbro -websterite disposed in ~10 km long tonalite-trondhjemitegranodiorite (TTG) and charnockite-enderbite suite of rocks. The mineralization occurs in the sulphide zone hosted by gabbro variants. The host rocks have been deformed and metamorphosed to granulite grade and subjected to various degrees of hydrothermal alteration. The mineralization comprises chalcopyrite, pentlandite, pyrrhotite, cubanite, millerite, and pyrite. In addition to these, occur (1) tsumoite (2) PGM in the form of moncheite, merenskyite, Pd-mellonite, and Pt-Pd-Te-Bi-Fe-S alloy. The present study indicates that the mineralization occurs in two stages related to: (i) magmatic and (ii) hydrothermal remobilization and transport of Cu-rich sulphides, tsumoite and PGM, and their re-deposition in hydrosilicate alteration zones. It is possible that the mineralization at Heti formed at different stages of bismuth activity under variable fS2, T, and fTe2 conditions due to change in total concentration of Te and S and /or cooling. Since the role of S is limited, Te and cooling are important factor influencing mineralogy and composition of tsumoite and associated mineralization. Mineralization occurs in two different modes of occurrences. The early mineralisation occur as blebs, specks and dissemination of sulphides, viz. pyrrhotite, chalcopyrite, pentlandite and minor pyrite ± PGM, whereas later mineralisation occur as stringers, minor veins of sulphides viz. pyrite, millerite, cubanite, sijenite, tsumoite and ± PGM. Mineral assemblages and textural relationships at Heti has indicated precipitation of tsumoite and associated PGM along fractures and secondary silicates, which confirms their hydrothermal origin.  相似文献   

7.
Gold mineralisation at Zarshuran, northwestern Iran, is hosted by Precambrian carbonate and black shale formations which have been intruded by a weakly mineralised granitoid. Granitoid intrusion fractured the sedimentary rocks, thereby improving conditions for hydrothermal alteration and mineralisation. Silicification is the principal hydrothermal alteration along with decalcification and argillisation. Three hydrothermal sulphide mineral assemblages have been identified: an early assemblage of pyrrhotite, pyrite and chalcopyrite; then widespread base metal sulphides, lead-sulphosalts and zoned euhedral arsenical pyrite; and finally late network arsenical pyrite, massive and colloform arsenical pyrite, colloform sphalerite, coloradoite, and arsenic–antimony–mercury–thallium-bearing sulphides including orpiment, realgar, stibnite, getchellite, cinnabar, lorandite and a Tl-mineral, probably christite. Most of the gold at Zarshuran is detectable only by quantitative electron microprobe and bulk chemical analyses. Gold occurs mainly in arsenical pyrite and colloform sphalerite as solid solution or as nanometre-sized native gold. Metallic gold is found rarely in hydrothermal quartz and orpiment. Pure microcrystalline orpiment, carbon-rich shale, silicified shale with visible pyrite grains and arsenic minerals contain the highest concentrations of gold. In many ways Zarshuran appears to be similar to the classic Carlin-type sediment-hosted disseminated gold deposits. However, relatively high concentrations of tellurium at Zarshuran, evidenced by the occurrence of coloradoite (HgTe), imply a greater magmatic contribution in the mineralising hydrothermal solutions than is typical of Carlin-type gold deposits. Received: 13 May 1999 / Accepted: 2 February 2000  相似文献   

8.
硫循环及硫同位素(δ34S)分馏研究对地表圈层的成岩作用具有重要意义,其中多种金属硫化物中硫同位素的分馏程度可以约束成矿热流体温度,进而作为地温计证据约束热液活动。四川盆地龙王庙组储集层内的热液改造影响着该储集层的非均质性,本研究着重讨论目的层中与热液成因白云石所伴生的黄铁矿(FeS2)-黄铜矿(CuFeS2)成矿现象:基于详尽的岩石学证据,应用纳米二次离子探针(NanoSIMS)对金属硫化物内部硫同位素分布进行测定,并基于热力学驱动下的硫化物间平衡分馏程度计算其成矿温度,进而约束层段内热液活动过程。研究发现:(1)微区硫同位素分布显示黄铁矿(FeS2)与黄铜矿(CuFeS2)沉淀过程中不仅存在热力学分馏,还存在动力学分馏现象,其中动力学分馏程度可以达到40.1‰,应用NanoSIMS微区测定手段可以有效剔除动力学分馏数据影响,获取热力学平衡分馏数据;(2)黄铁矿(FeS2)与黄铜矿(CuFeS2)成矿过程或利用不同的硫源,其中黄铁矿...  相似文献   

9.
To characterize the hydrothermal processes of East Pacific rise at 9o-10oN, sulfide mineral compositions, textural, and geochemical features of chimney ores were studied using ore microscope, scanning electron microscope, X-ray diffraction analysis, and electron microprobe techniques. Results show that there are three mineral assemblages for the hydrothermal chimney ores, namely: (i) anhydrite marcasite pyrite, (ii) pyrite sphalerite chalcopyrite, and (iii) chalcopyrite bornite digenite covellite. Mineral assemblages, zonational features, and geochemical characteristics of the ore minerals indicate that ore fluid temperature changed from low to high then to low with a maximum temperature up to 400 ℃. The chimney is a typical black smoker. The initial structure of the chimney was formed by the precipitation of anhydrites, and later the sulfides began to precipitate in the inner wall.  相似文献   

10.
A distinct vertical zonation very similar to that described for the Kuroko deposits of Japan, is displayed by both mineralogy and textures of sulphides from the Lahanos and Kzlkaya massive sulphide deposits of northeastern Turkey. A deeper erosional level is exposed at the Kzlkaya deposit, so that only remnants of the massive sulphide ore zone are present. The zonation is from an upper zone of massive Cu and Zn sulphides (black and yellow ore) with fine-grained, colloform, banded, framboidal, and spherulitic textures, downwards through an intermediate zone of low Cu-Zn massive pyrite with transitional textures, to a lower zone of stockwork and impregnated pyrite displaying euhedral, zoned textures. The fine-grained and colloform pyrite of the upper zones is progressively overgrown by, and recrystallized to, the massive and euhedral pyrite of lower zones. The original textures of these deposits are best preserved by pyrite. The previous interpretation of these textures, of sulphide deposition from colloidal solutions ponded by an impermeable pyroclastic horizon, is reexamined in the light of present observations. Although ultra-fine-grained sulphides, framboids, and radially-cracked spherules could have formed by replacement of pre-existing minerals by a colloidal solution, the colloform and banded textures are indicative of growth in open spaces. It thus seems likely that the fine-grained colloform sulphides, including chalcopyrite, sphalerite, and tennantite as well as pyrite, were initially deposited on or near the surface of the sea-floor. Additional evidence for this interpretation is seen in the progressive recrystallization of the sulphide textures to massive, much coarser, pyrite in the lower zones. This recrystallization may in part be due to diagenetic and hydrothermal processes operating after formation of the original layered sulphides. These conclusions are in agreement with those reached for the similar, but larger Madenköy deposit 100 km to the east.  相似文献   

11.
Bergstöl  S.  Vokes  F. M. 《Mineralium Deposita》1974,9(4):325-337
The Cu-Ag-S minerals, stromeyerite and mckinstryite, have been found for the first time in a stratabound polymetallic pyritic deposit in the Caledonides of central Norway. The surface specimens examined contained approximately 0.5% Ag, 1.8% Cu, 15.0% Zn and over 10 g/t Au and showed the mineral association pyrite, sphalerite, chalcopyrite, galena, tennantite, bornite, Cu-Ag sulphides, covelline, native Au, a Cu-Sn sulphide, and a new mineral of composition Ag5CuTeS2. The Cu-Ag sulphides appear to be replacing preexisting sulphides, with the exception of pyrite and sphalerite. The nature of this replacement is discussed. Analyses, by microprobe, of the Cu-Ag-S phases are reported and compared with published data. The stromeyerite shows an average composition Cu1.01Ag S, the mckinstryite Cu0.77Ag1.19S. Values are reported of the reflectance at 542 nm for both minerals. The data indicate that stromeyerite is optically positive with Rg: 30.7%, Rm: 27.3%, Rp: 25.8% while mckinstryite is negative with Rg: 32.5%, Rm: 31.9%, Rp: 27.6%.  相似文献   

12.
通过野外及镜下研究,初步查明丁家林,太阳坪金矿区所含金矿物为自然,金金矿及含银自然金。丁家林金矿区包裹体金为主,太阳坪金矿区则以裂隙金为主。粒数及面积统计显示两矿区均以中、细粒金为主。载体矿物主要为黄铁矿,次为石英,偶见方铅矿,黄铜矿及闪锌矿。金的矿化与富集以富含黄铁矿,贫其他多金属硫化物为特征。矿石中常见明金为粗粒金,巨粒金及块状金。  相似文献   

13.
Stratabound mineralization in the Mammoth area of NW Queensland occurs in steeply dipping, faulted Proterozoic arenites and dolomitic rocks overlying basic volcanics. Both syngenetic/diagenetic and epigenetic sulphides are present, with the latter divided into Mammoth- and South Mammoth II-styles. Syngenetic/diagenetic pyrite is distinguished from epigenetic pyrite by higher Co and Ni, and lower As, Mo, Sb and Tl contents. Chalcopyrite is the major copper sulphide associated with syngenetic/diagenetic pyrite and is characterized by low Ag, Bi, Mo, Ni and Tl contents relative to epigenetic chalcopyrite. No substantial wall rock alteration is associated with such sulphides. Disseminated syngenetic/diagenetic sulphides in the mine sequence may have induced deposition of epigenetic Cu mineralization, but alone, even when remobilized, do not reach economic grades.The four epigenetic Mammoth orebodies are all richer in chalcocite and bornite than syngenetic/diagenetic mineralization and have wall rock alteration characterized by alkali depletion and Fe enrichment in the zone between the ore and the fault considered the conduit for the hydrothermal ore-forming fluids. Pyrite associated with Mammoth-style mineralization has high As, Mo, Sb and Tl contents and was formed subsequent to the copper sulphides.Thick, essentially barren, pyritic sequences occur at South Mammoth II where the moderate As, high Mo, Sb and Tl contents reflect their hydrothermal origin but distinguish them from Mammoth-style pyrite. Their low As/Sb ratio and lack of wall rock alteration imply a lower temperature of formation than the Mammoth-style pyrite and possibly such mineralization represents the pre-ore stage of the Mammoth mineralizing hydrothermal system.An essential feature of economic Cu mineralization in NW Queensland is the operation of a hydrothermal system. As all such systems may not necessarily give rise to extensive wall rock alteration, use of the high As, Mo, Sb and Tl contents of hydrothermal pyrite can aid evaluation of mineralization intersected during drilling.  相似文献   

14.
Carbonate ooids, notionally incompatible with an euxinic environment, and some curious reticulate tubular structures with fibrous carbonate walls are described from intraclasts occurring in Proterozoic black shales containing the pyrite deposit at Amjhor. While some of the tubes are visibly due to coalescence of ooids, others are interpreted as worm burrows on the basis of their strata-transgressive orientation, branching nature and larger diameter than those of the ooids.All stages of pyritization of ooids and tube-cores, displaying truncation of the growth-fabric of calcite grains by growing pyrite crystals, point to a late- or post-diagenetic age of pyritization. The clasts containing ooids and tubes are believed to have been transported from a shallow-bank and/or a nearshore environment into a lagoonal, euxinic basin. An environmental model, consistent with the observed data, is proposed to account for the ooid—black shale association.  相似文献   

15.
Wilga is one of several Au-bearing volcanogenic massive sulphide deposits localized within Silurian felsic volcanics of the Lachlan Fold Belt of NE Victoria. Exploration has delineated a resource of 3.7 Mt averaging 3.4% Cu, 5.5% Zn, 0.4% Pb, 31 g/t Ag and 0.5 g/t Au within a lensoid-shaped sulphide body which strikes NE, dips NW and occurs at a depth of 50–160 m below surface. This body has maximum dimensions of 470 m strike, 350 m down-dip and 37 m true width delineated by 59 surface diamond drill holes and an exploration adit with 40 underground diamond drill holes. There are two main types of mineralization: Stratiform massive sulphides , (mainly pyrite, low-Fe sphalerite, variable chalcopyrite and minor galena with very minor silica/dolomite gangue) and Stratiform chloritic sulphides (mainly chalcopyrite, with subordinate pyrite and sphalerite, in a gangue of chlorite and minor dolomite). The deposit is layered with at least 6 distinct stratigraphic horizons/cycles of mineralization each characterized by a Cu-rich base and Pb-(Zn)-Au-As-rich top. Facies variations are locally rapid. Economically the deposit consists of 3 sub-lenses of roughly equal tonnage: a Cu-rich central lens of Chloritic Sulphides (av. 5.9% Cu, 3.6% Zn, 0.3% Pb, 32 g/t Ag and 0.2 g/t Au) between upper and lower lenses of Zn-rich Massive Sulphides (av. 1.8% Cu, 6.7% Zn, 0.5% Pb, 31 g/t Ag and 0.7 g/t Au). Gold mineralization, locally up to 7 g/t over 6 m, shows a strong spatial association with Pb, (Zn) and As in pyritic massive sulphides.  相似文献   

16.
西藏冈底斯成矿带南木林县浦桑果铜多金属矿床是新发现的大型铜多金属矿床,该矿床以品位高,成矿元素复杂为其特征。本文应用野外地质编录、显微镜鉴定、电子探针等手段对浦桑果矿床矿石矿物特征以及Co、Ni元素赋存状态进行了研究。矿石矿物主要由黄铜矿、方铅矿、闪锌矿、铜蓝等组成。矿石中的有用元素除了铜、铅锌、银外,钴、镍元素是伴生有益组分,矿石中主要Co-Ni元素独立矿物为镍辉砷钴矿。通过电子探针分析,Co元素含量平均为17.87%,Ni元素含量平均12.66%,Co-Ni元素同时以类质同象置换铁的形式赋存于金属硫化物中,黄铜矿平均含Co0.04%、Ni0.08%,黄铁矿平均含Co0.40%、Ni0.20%,闪锌矿平均含Co0.14%、Ni0.06%,磁黄铁矿平均含Co0.79%、Ni0.18%等。Co-Ni元素作为重要的伴生矿产,对提高矿床综合利用价值,丰富青藏高原矿床类型,指导找矿工作部署具有重要的意义。  相似文献   

17.
The Mount Black lead‐zinc deposit at Cooleman Plains, southern New South Wales, occurs in the uppermost part of the moderately folded, weakly metamorphosed, Upper Silurian Cooleman Limestone. A joint‐controlled collapse‐breccia zone interpreted as a palaeokarst structure has been partly replaced by quartz, sphalerite, galena, and a little chalcopyrite, pyrite, marcasite, tetrahedrite, arseno‐pyrite, and mackinawite. These minerals show evidence of having encrusted and replaced limestone fragments in the breccia. Oxidic Zn, Pb, Cu, and Fe minerals have formed by the near‐surface oxidation of the sulphides.

Petrographic and field evidence indicates that the quartz and sulphides were deposited mainly by encrustation and precipitation from saline solutions (possibly diagenetically expelled connate brines) in cavities, probably at low temperature at shallow depth. The deposit has many similarities to Mississippi Valley‐type lead‐zinc deposits.  相似文献   

18.
Modelling of migration and accumulation of elements Au and Ag in rocks under temperatures of350-450℃ and a confining pressure of 300 MPa and axial pressure of 100-150 MPa is conducted. It is found thatthe contents of gold and silver get higher in metallic sulphides such as pyrite, chalcopyrite and sphalerite as well asin quartz and muscovite, and get lower in chlorite, biotite, sericite, albite and calcite, showing that tectono-dynamicsis one of the important factors for petrogenesis and metallogenesis.  相似文献   

19.
The Platreef, the putative local analogue of the Merensky Reef, forms the floor to the mafic succession in the northern limb of the Bushveld Complex. We define the Platreef as ‘the lithologically variable unit, dominated by pyroxenite, which is irregularly mineralised with PGE, Cu and Ni, between the Transvaal metasedimentary footwall or Archaean basement and the overlying Main Zone gabbronorite’. We define the mineralisation around calcsilicate xenoliths within the Main Zone in the far north of the limb as a ‘Platreef-style‘ mineralisation. The Platreef (ss) has a strike extent of ∼30 km, whereas Platreef-style mineralisation occurs over a strike length of 110 km. The Platreef varies from 400 m thick in the S to <50 m in the N. The overall strike is NW or N, with dips 40–45°W at surface, shallowing down dip, The overall geometry of the southern Platreef appears to have been controlled by irregular floor topography. The maximum thickness of the southern Platreef occurs in two sub-basins on the farms Macalacaskop and Turfspuit. Lithologically, the southern Platreef is heterogeneous and more variable than sectors further north and, although predominantly pyroxenitic, includes dunites, peridotites and norite cycles with anorthosite in the mid to upper portion. Zones of intense serpentinisation may occur throughout the package. Faults offset the strike of the Platreef: a N–S, steeply dipping set is predominant with secondary ENE and ESE sets dipping 50–70°S. The fault architecture was pre-Bushveld and also locally controlled thickening and thinning of the succession. Country rock xenoliths, <1500 m long, are common. On Macalacaskop, these are typically quartzites and hornfelsed banded ironstones, shales, mudstones and siltstones whereas on Turfspruit dolomitic or calcsilicate xenoliths also occur. Sulphides may reach >30 modal% in some intersections. These are dominated by pyrrhotite, with lesser pentlandite and chalcopyrite, minor pyrite and traces of a wide compositional range of sulphides. In the southern sector, mineralised zones have Cu grades of 0.1–0.25% and Ni 0.15–0.36%. Massive sulphides are localised, commonly, but not exclusively towards the contact with footwall metasedimentary rocks. Magmatic sulphides are disseminated or net-textured ranging from a few microns to 2 cm grains of pyrrhotite and pentlandite with chalcopyrite and minor pyrite. Much of the sulphide is associated with intergranular plagioclase, or quartz-feldspar symplectites, along the margins of rounded cumulus orthopyroxenes. The PGEs in the southern sector occur as tellurides, bismuthides, arsenides, antimonides, bismuthoantimonides and complex bismuthotellurides. PGM are rarely included in the sulphides but occur as micron-sized satellite grains around interstitial sulphides and within alteration assemblages in serpentinised zones. The Pt:Pd ratio ∼1 and PGE grade may be decoupled from S and base metal abundance.  相似文献   

20.
Sulphides, tellurides and sulpharsenides, with special reference to the platinum-group minerals (PGM), have been studied from a subeconomic Cu-Ni-PGE mineralization encountered within the Syöte section of the Lower Proterozoic (2.44 Ga) Koillismaa layered igneous complex (KLIC) in northern Finland using electron microprobe and ore-microscopical methods. The ore minerals occur partly as strata-bound patches and spots associated with spots of light-coloured secondary low-temperature silicates in the gabbronorite IV of the general igneous stratigraphic column of the complex and partly as a fine-grained impregnation in the penecontemporaneous basic sills and dykes. Among the PGM sperrylite, michenerite and a palladian bismuthian melonite have been encountered. The chemical composition is reported for these minerals as well as for the rest of the ore minerals (chalcopyrite, pentlandite, pyrrhotite, pyrite, sphalerite, cobaltite and hessite). It is concluded that volatile components played a significant role in the solution, transport and the final deposition of the sulphides and the PGM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号