首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Previous studies on lipid biomarkers preserved in Chinese stalagmites have indicated that ratios of low‐molecular‐weight (LMW) to high‐molecular‐weight (HMW) n‐alkanes, n‐alkan‐2‐ones, n‐alkanols and n‐alkanoic acids can be used as an index of vegetation versus microbial organic matter input to the system and, by extension, a marker of climatic changes, with increases in the proportion of LMW compounds coinciding with colder periods. Here we test whether this hypothesis is equally applicable to a different geographical region (north‐west Scotland), by examining a stalagmite record of the past 200 years, and a wider range of lipid markers. We also test the applicability of other lipid proxies in this context, including the use of n‐alkane ratios, to interpret vegetation changes, and unsaturated alkanoic acid ratios as climatic indicators. The results show that lipid proxies preserved in stalagmites, and especially those related to vegetation, are potentially extremely useful in palaeoenvironmental research. Of particular value is the use of C27/C31 n‐alkane ratios as a proxy for vegetation change, clearly indicating variations between herbaceous and arboreal cover. This proxy has now been successfully applied to samples from diverse environments, and can be considered sufficiently robust to be of use in analysing future stalagmite records. It will be of particular value in areas where reliable pollen records are not available, as is often the case with deeper cave deposits. However, the division between LMW and HMW aliphatic compounds is not a clear‐cut case of microbial versus plant activity, with the changes in LMW compounds relating more closely to those in their HMW analogues than in specific bacterial biomarkers. The use of unsaturated alkanoic acid ratios here gives conflicting results, with the observed variation through time depending on the isomer measured. The discrepancies between the findings of this study and previous work are likely to be due to the varying controls on the lipids (original organic matter input, and compound degradation), which in turn will be affected by whether the main climatic limiting factor on the soil is temperature or precipitation. This suggests that lipid proxies preserved in stalagmites must be interpreted with care, particularly in the case of bacterial compounds which may be derived from within the cave or from the soil. However, many of these issues can be resolved by the use of multi‐proxy studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
The distributions of lipids in surface and subsurface sediments from the northern South China Sea were determined. The n-alkanes were in bimodal distribution that is characterized by a centre at n-C16 –n-C20 with maximum at C18(or C19) and n-C27 –n-C31 as well as at C29(or C31). The short-chain alkanes suffered from significant losses due to their slow deposition in the water column, and their presence with a slight even carbon predominance in shallow seafloor sediments was ascribed mainly to the direct input from the benthos. The long-chain alkanes with odd predominance indicate transportion of terrigenous organic matter. Immature hopanoid biomarkers reflect the intense microbial activity for bacteria–derived organic matter and the gradual increase of maturity with burial depth. Abundant n-fatty acid methyl esters(n-FAMEs) that are in distributions coincident with fatty acids were detected in all samples. We proposed that the observed FAMEs originated from the methyl esterification of fatty acids; methanol production by methanotrophs and methanogenic archaea related to the anaerobic oxidation of methane, and sulfate reduction provided an O–methyl donor for methylation of fatty acids. The CH4 released from hydrate dissociation at oxygen isotope stage II of Cores ZD3 and ZS5, which had been confirmed by the occurrence of negative δ13C excursion and spherical pyrite aggregates, could have accelerated the above process and thus maximized the relative content of FAMEs at ZD3-2(400–420 cm depth) and ZS5-2(241–291 cm depth).  相似文献   

3.
Palaeoenvironmental assessment of past C3 and C4 vegetation distributions relies on end member data from plant analyses. In southwestern Africa, end member data of the carbon number distribution of n-alkanes from leaf waxes and their carbon isotopic composition were available for the rainforest and the savannah. To complement this, we analysed the n-alkane parameters of 41 C3 plants and 11 C4 plants from the transition region, i.e., the wood- and shrubland of Angola. The combined results for the rainforest, the wood- and shrubland and the savannah show an increase in the average chain length (ACL) of C3 and C4 plants and an increasingly enriched carbon stable isotope composition for the C3 plants from the equator towards southern Africa. The enlarged database was applied to the data of a north–south transect of deep-sea surface sediments already used in a previous study, which resulted in the proxies showing a good reflection of the vegetation on the adjacent southwest African continent in terms of %C4 plant cover. Applying end member values for ACL and δ13C obtained from the enlarged database by two different averaging methods (arithmetic average and median) to the n-alkane data from the sediment transect yielded similar vegetation reconstructions. In addition, a correlation between ACL and growth height of the plants is discussed, indicating that the ACL may be useful as a tree abundance parameter. Thus, the enlarged end member database strengthens the n-alkane parameters as tools for palaeoenvironmental studies.  相似文献   

4.
Lipids extracted from lacustrine deposits in the paleolake Qarhan of the Qaidam basin in the northeastern Tibetan Plateau were determined by conventional gas chromatography-mass spectrometry. Several series of biomarkers were identified, mainly including n-alkanes, n-alkan-2-ones, n-alkanoic acids, branched alkanes, triterpenoids and steroids, indicative of various biogenic contributions. On the basis of cluster analysis, the n-C15, n-C17, n-C19 alkanes were proposed to be derived from algae and/or photosynthetic bacteria, the n-C21, n-C23, n-C25 homologues from aquatic plants, and the n-C29, n-C31 homologues from vascular plants. In contrast, the n-C27 alkane is not categorized in the n-C29 and n-C31 group of alkanes, probably due to more complex origins including both aquatic and vascular plants, and/or differential biodegradation. Stratigraphically, layers-2, 4 and 5 were found to show a close relationship in n-alkane distribution, associated with a positive shift in carbon isotope composition of bulk organic matter (δ13Corg), inferring a cold/dry period. Layers-1 and 6 were clustered together in association with a negative δ13Corg, excursion, probably indicating a relatively warm/humid climate. The potential coupling between the n-alkane distributions and δ13Corg, suggests a consequence of vegetation change in response to climate change, with the late MIS3 being shown to be unstable, thought to be the climatic optimum in the Tibetan Plateau. Our results suggest that the cluster analysis used in this study probably provides an effective and authentic method to investigate the n-alkane distribution in paleolake sediments.  相似文献   

5.
Geochemical (element analysis, molecular analysis of organic compounds), physical, palynological, mineralogical and sedimentary facies analysis were performed to characterise the sedimentary record in Fuentillejo maar‐lake in the Central Spanish Volcanic Field of Campo de Calatrava, in order to reconstruct the palaeoenvironmental and palaeoclimatic processes which controlled vegetation patterns and deposition of different sedimentary facies. The upper 20 m of core FUENT‐1 show variations in clastic input, water chemistry, vegetation and organic fraction sources in the lake throughout the Late Pleistocene and Holocene. The temporal framework provided by 14C accelerator mass spectrometry dating allows assigning the sequence to the last 50 cal. ka BP. Arid phases identified in the FUENT‐1 sequence are correlated to Heinrich events (HE) and to stadials of the Dansgaard/Oeschger (D/O) cycles. Siliciclastic facies with high magnetic susceptibility values, high Juniperus pollen content, a low Paq index (aquatic macrophysics proxy index), a decrease in the relative percentage of the n‐C27 and an increase in the n‐C31 alkanes are indicative of arid and colder climatic events related to HE 2, HE 1 and the Younger Dryas (YD). Similar short cold and arid phases during the Holocene were identified at 9.2–8.6, 7.5–7 and 5.5–5 cal. ka BP. In dolomite–mud facies, the pollen data show an increase in the herbs component, mainly – Chenopodiaceae, Artemisia and Ephedra – steppe taxa; a low Paq index, a decrease in the relative percentage of the n‐C27 alkane and an increase in the n‐C31 alkane are also observed. This facies was probably the result of lower lake levels and more saline–alkaline conditions, which can be interpreted as linked to arid–warm periods. These warm and arid phases were more frequent during Marine Isotope Stage (MIS) 3 and the interstadials of MIS 2. HE 4, HE 2, HE 1 and the YD in core FUENT‐1 were immediately followed by increases of warm steppe pollen assemblages that document rapid warming similar to the D/O cycles but do not imply increasing humidity in the area. Fuentillejo hydrology is controlled by changes in the atmospheric and oceanic systems that operated on the North Atlantic region at millennial scale during the last 50 cal. ka BP. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Simultaneous mass spectral detection and stable carbon isotope analysis was performed on individual indigenous n-alkanes isolated from single C4 and C3 plant species and on a series of aliphatic and polycyclic aromatic hydrocarbons (PAH) produced from the combustion of these same biomass materials. The analysis technique used a combined gas chromatograph-mass spectrometer/combustion/isotope ratio mass spectrometer (GC-MS/C/IRMS). Precision (2σ) for replicate measurements of individual compounds in standard solutions using this novel configuration ranged between 0.2 and 0.5‰ for n-alkanes and 0.3 and 0.8‰ for PAH. Accuracy of the n-alkane measurements ranged between 0.1 and 0.4‰ and that of the PAH measurements ranged between 0.2 and 0.9‰. Replicate GC-MS/C/IRMS measurements on the combustion-derived n-alkene/alkane pairs were performed to within a precision of between 0.1 and 1.1‰ and the precision for the combustion PAH was similar to the standard PAH solution. No notable isotopic effects were observed when altering the temperature of the combustion process from 900 to 700°C, or as a result of the individual n-alkenes/alkanes partitioning between the gaseous and condensate fractions. Combustion-derived n-alkenes/alkanes ranged from C11 to C31, and the C4-derived n-alkenes/alkanes were approx. 8‰ more enriched in 13C than the C3-derived compounds. Both the C4 and C3-derived n-alkenes/alkanes (C20-C30) were isotopically similar to the indigenous n-alkanes and were 2-3‰ more depleted in 13C than the lower mol. wt (C1111-C19) n-alkenes/alkanes, suggesting an independent origin for the lower mol. wt compounds. Combustion-generated C4 and C3-derived 2-, 3-, and 4-ring PAH were also isotopically distinct (Δδ = 10‰). Unlike the n-alkenes/alkanes, no compound-to-compound variations were observed between the low and high mol. wt PAH. This study demonstrates that the isotopic composition of original plant biomass material is mainly preserved in the aliphatic hydrocarbons and PAH generated by its combustion. Consequently, analyses of these compounds in sediments impacted by fire occurrences may provide useful information about paleo-fire activity that may help elucidate the impact biomass burning may have had and could have on climate-biosphere interactions.  相似文献   

7.
Cenozoic climatic and environmental changes in the arid Asian interior, and their possible relations with global climatic changes and the Tibetan Plateau uplift, have been intensively investigated and debated over past decades. Here we present 40-Myr (million years)-long n-alkane records from a continuous Cenozoic sediment sequence in the Dahonggou Section, Qaidam Basin, northern Tibetan Plateau, to infer environmental changes in the northern basin. A set of n-alkane indexes, including ACL, CPI and Paq, vary substantially and consistently throughout the records, which are interpreted to reflect relative contributions from terrestrial vascular plants vs. aquatic macrophytes, and thus indicate depositional environments. ACL values vary between 21 and 30; CP1 values range from 1.0 to 8.0; and Paq values change from 〈0.1 to 0.8 over the past 40-Myr. We have roughly identified two periods, at 25.8-21.0 Ma (million years ago) and 13.0-17.5 Ma, with higher ACL and CPI and lower Paq values indicating predominant lacustrine environments. Lower ACL and CPI values, together with higher Paq values, occurred at 〉25.8 Ma, 17.5-21.0 Ma, and 〈13.0 Ma, corresponding to alluvial fan/river deltaic deposits and shallow lacustrine settings, consistent with the observed features in sedimentological facies. The inferred Cenozoic environmental changes in the northern Qaidam Basin appear to correspond to global climatic changes.  相似文献   

8.
With a production of 208.2 m3/d, heavy oil was produced by drill stem test (DST) from three shallow reservoirs in Sand Group Nos. Ⅰ and Ⅲ of the Neogene Guantao Formation (NgⅠ and NgⅢ) and the Eogene Dongying Formation (Ed) in an exploratory well Ban-14-1 within the Qianmiqiao region, Bohai Bay Basin, northern China. Based on the GC and GC-MS data of the NgⅠ and NgⅢ heavy oil samples, all n-alkanes and most isoprenoid hydrocarbons are lost and the GC baseline appears as an evident "hump", implying a large quantity of unresolved complex mixture (UCM), which typically revealed a result of heavy biodegradation. However, there still is a complete series of C14-C73 n-alkanes in the high-temperature gas chromatograms (HTGC) of the heavy oil, among which, the abundance of C30- n-alkanes are drastically reduced. The C35-C55 high molecular weight (HMW) n-alkanes are at high abundance and show a normal distribution pattern with major peak at C43 and an obvious odd-carbon-number predominance with CPI37-55 and  相似文献   

9.
10.
Ocean Drilling Program Leg 155 Site 942 on the Amazon Fan is an ideal location for monitoring palaeoclimatic changes within a significant proportion of the Amazon Basin. We present n‐alkane δ13C and taraxerol and laevoglucosan concentration records from this site covering the last 38 ka. The entire n‐alkane δ13C record is constrained between ?31‰ and ?34‰, which is well within the isotopic range occupied by C3 vegetation. The concentration and relative abundance of taraxerol, a mangrove indicator, varies by over an order of magnitude, but seems to have had no effect on the n‐alkane δ13C record. The laevoglucosan concentrations are extremely low during the last glacial period, suggesting a relatively low occurrence of forest fires. Laevoglucosan concentrations are highest between 13.5 and 12.5 ka, suggesting an increased incidence of Amazon forest fires at the very end of the Younger Dryas. These records, combined with previously published pollen records from Site 932, reveal no evidence for massive incursions of grasslands into Amazonia during the last glacial period, despite evidence of reduced outflow of the Amazon River indicating more arid conditions. We therefore suggest that savannah encroachment, as proposed by the Pleistocene refuge hypothesis, can be refuted as an explanation for high species endemism within the Amazon Basin, and alternative explanations are required. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Atmospheric dust samples collected along a transect off the West African coast have been investigated for their lipid content and compound-specific stable carbon isotope compositions. The saturated hydrocarbon fractions of the organic solvent extracts consist mainly of long-chain n-alkanes derived from epicuticular wax coatings of terrestrial plants. Backward trajectories for each sampling day and location were calculated using a global atmospheric circulation model. The main atmospheric transport took place in the low-level trade-wind layer, except in the southern region, where long-range transport in the mid-troposphere occurred. Changes in the chain length distributions of the n-alkane homologous series are probably related to aridity, rather than temperature or vegetation type. The carbon preference of the leaf-wax n-alkanes shows significant variation, attributed to a variable contribution of fossil fuel- or marine-derived lipids. The effect of this nonwax contribution on the δ13C values of the two dominant n-alkanes in the aerosols, n-C29 and n-C31 alkane, is, however, insignificant. Their δ13C values were translated into a percentage of C4 vs. C3 plant type contribution, using a two-component mixing equation with isotopic end-member values from the literature. The data indicate that only regions with a predominant C4 type vegetation, i.e. the Sahara, the Sahel, and Gabon, supply C4 plant-derived lipids to dust organic matter. The stable carbon isotopic compositions of leaf-wax lipids in aerosols mainly reflect the modern vegetation type along their transport pathway. Wind abrasion of wax particles from leaf surfaces, enhanced by a sandblasting effect, is most probably the dominant process of terrigenous lipid contribution to aerosols.  相似文献   

12.
The sedimentary record of the volcanic lake known as the Fuentillejo maar (central Spain) offers the opportunity to determine the palaeoenvironmental evolution of the central-southern part of the Iberian Peninsula during the Middle and Upper Pleistocene. A total of 439 samples from the upper 88 m of a ca. 142 m long core (spanning the last ca. 355 ka) were examined. The interval corresponds to the last 220 ka of the record. High n-alkane CPI values and the presence of sulfur revealed that little diagenetic signal attenuation or modification had occurred. A number of n-alkane-based indices (e.g. predominant n-alkane, ACL, Paq and TARHC ratios, and the proportion of C27, C29 and C31 n-alkanes with respect to the summed C27 + C29 + C31) alkanes, showed changing conditions in the organic matter input to the maar lake over time, with episodes involving a major input of terrestrial vegetation, alternating with others in which algae or a mixed input of terrestrial plants, aquatic macrophytes and algae occurred. The proportions of C27, C29 and C31 were useful for reconstructing the palaeoenvironmental evolution of the basin as they allowed assignment of several dry intervals during which grasses developed, while during humid phases trees expanded at the expense of grasses.In general, we found good correspondence between these episodes and the climatic cycles observed in δ18O records from ices cores in Greenland and Antarctica, as well as from marine cores. Thus, we conclude that global palaeoclimatological changes were recorded in the maar record. Likewise, Heinrich Events appeared to be reflected in the n-alkane indices. This was confirmed by single spectral analysis and cross spectral analysis with the insolation curve on 21 July at a latitude of 65°N. The approach revealed that the cycles interpreted in the Fuentillejo record (103, 41, 23 and 19 ka) showed evidence of orbital influence related to the astronomical cycles of the eccentricity variation in the Earth’s orbit, the Earth’s obliquity oscillation, and the precession variation (Milankovitch theory).  相似文献   

13.
This study provides a reconstruction of the environmental evolution since 128 ka recorded by the lipid biomarkers of the C15–C35 n-alkanes, the C13–C33 n-alkan-2-ones and the C12–C30 n-alkanols isolated from the Tawan loess section, Northwest China. Variations in paleoenvironment are reconstructed from the values of the carbon preference index (CPI), the average chain length (ACL), the L/H (ratio of lower-molecular-weight to higher-molecular-weight homologues), the n-alkane C27/C31 ratios, and the n-alkan-2-one C27/C31 ratio. These parameters indicate the dominance of grasses over the west Chinese Loess Plateau (CLP) during the late Pleistocene. Lower values of the CPI and the ACL values, respectively, indicate stronger microbial reworking of organic matter and changes in plant species, which are both indicative of a warmer-wetter environment. Furthermore, the fluctuations of environment recorded in the Tawan section exhibit ten phases that show obvious cycles between warm periods and cold intervals. This study reveals that changes in the biomarker proxies agree well with changes in the magnetic susceptibility and grain size, and it indicates a huge potential for paleoenvironmental reconstructions by using the n-alkan-2-one and n-alkanol proxies.  相似文献   

14.
In this study, we use a combined biomarker and macrofossil approach to reconstruct the Holocene climate history recorded in Trifna Sø, Skallingen area, eastern North Greenland. Chronological information is derived from comparison of lithological, biogeochemical and macrofossil characteristics with a well‐dated record from nearby Lille Sneha Sø. Following local deglaciation around c. 8 cal. ka BP, the local peak warmth occurred between c. 7.4 and 6.2 cal. ka BP as indicated by maximum macrofossil abundances of warmth‐demanding plants (Salix arctica and Dryas integrifolia) and invertebrates (Daphnia pulex and Chironomidae). Warm conditions were dominated by terrestrial organic matter (OM) sedimentation as implied by the alkane‐based Paq ratio, but increased aquatic productivity is indicated when temperature was highest around 6.5 cal. ka BP. The n‐C29/n‐C31 alkane ratio shows that vegetation in the catchment was dominated by shrubs after deglaciation, but shifted towards relatively more grassy/herbaceous vegetation during peak warmth. After 5.4 cal. ka BP, the disappearance of warmth‐demanding plant and invertebrate macrofossils indicates cooling in the Skallingen area. This cooling was characterized by a significant shift towards dominance of aquatic OM sedimentation in Trifna Sø as implied by high Paq ratios. Cooling was also associated with a shift in vegetation type from dwarf‐shrub heaths towards relatively more herbaceous vegetation in the catchment, stronger erosion and more oligotrophic conditions in the lake. Our data show that mean air temperatures inferred using branched glycerol dialkyl glycerol tetraethers (brGDGTs) do not seem to accurately reflect the local climatic history. Irrespective of calibration, methylation of branched tetraethers (MBT) palaeothermometry cannot be reconciled with the macrofossil evidence and seems to be biased by either changing brGDGT sources (in situ vs. soil‐derived) or changing species assemblages and/or an unknown physiological response to changing environmental conditions at high latitude.  相似文献   

15.
植物化石和土壤中的有机质碳同位素指标常用来反映古气候的变化,然而碳同位素这个指标在特定地区反映气候的定量关系缺乏检验。研究剖面选择自中国的秦岭(34°14'24″N,106°55'30″E)到蒙古人民共和国北部,接近贝加尔湖地区(51°35'08″N, 100°45'49″E)的研究剖面线,选择了3种C3植物(Artemisia scoparia, Ajania achilleides 和 Artemisia frigida),在剖面线上沿南北方向上每隔4'到5'采取一个样点,共选取161个C3植物茎叶样品进行了δ13 C值测定。同时收集了剖面线附近气象站的降水、气温等资料,用插值方法得到每个采样点的气温、降水数据。分析表明:C3植物的δ13 C值分布范围为-30 ‰ ~-22 ‰ ,其平均值为-26.81 ‰ ,该平均值较全球C3植物δ13 C平均值偏正。通过对比C3植物δ13 C与年均温、年均降水量、生长季节的干燥度等随纬度的变化规律,发现C3植物δ13 C、年均降水量、生长季节的干燥度有非常一致的变化趋势,而C3植物δ13 C和年均温不具有一致性。通过一元回归分析也同样发现C3植物δ13 C与年均降水量呈线性负相关关系(y=-0.0077x-24.838,n=161,R2=0.4418,p=0.01),与生长季节的干燥度呈线性正相关关系(y=0.7328x-28.806,n=161,R2=0.3685,p=0.01),而与年均温度没有明显的相关关系(y=-0.0461x-26.756,n=161,R2=0.0232,p=0.01)。在本研究区C3植物δ13 C对年均降水量和生长季节的干燥度响应十分显著,而对温度的响应不明显。研究区具有明显的降水和温度的梯度分布特征,是验证植物碳同位素与气候关系的理想场所,而土壤中的有机质碳同位素与其地面上的植物碳同位素息息相关。研究也说明,在本研究区或其他气候植物组合相似的地区可以利用古土壤中的有机质碳同位素来定量或半定量地反映古气候的变化。  相似文献   

16.
High resolution records of long chain n-alkanol biomarkers were obtained from a peat-lacustrine core from the Dingnan profile in southern China. The n-alkanol distributions are characterized by the predominance of even-over-odd carbon number and maximize at C24 or C26. On the basis of the reported n-alkanol records in the literature and the n-alkane record in our samples, we concluded that the n-alkanol ratio of C26/C30 varying from 1.25 to 6.48, together with the n-alkanol ratio C22/C24 less than unity, is indicative of the presence of a dominant forest paleovegetation. A 2000-year cycling in the variation of the n-alkanol ratio C26/C30 is identifiable in our profile, and probably results from the change in the abundance of the grass relative to trees induced by a cyclic paleoclimate. The n-alkanol ratio C24/C26 appears to be more sensitive to change in precipitation than in temperature, and may be a potential indicator of precipitation/humidity, with increased values being associated with relatively dry conditions. The paleovegetation and the paleoclimate reconstructed on the basis of the n-alkanol records for the recent 18000 cal a BP in general accord with the pollen data and other lipid evidence recorded in the Dingnan region in southern China. In particular, both the n-alkanol records and the pollen data infer the different paleoclimate conditions for the two peat sequences, with a cool and wet climate dominating in the lower peat deposition formed during the latest Pleistocene and a change to a drier and cooler climate occurring in the upper peat sequence in mid-Holocene.  相似文献   

17.
Four massive brecciated, chimney-like, and slender pipe network carbonate samples(JA-4, JA-5, JX-8 and BG-12) were collected from southwestern Taiwan, which were suggested to have formed as a result of anaerobic oxidization of methane(AOM). Considering that the environmental conditions of the carbonates precipitation and the sources of carbon and organic matter need to be further declared, molecular fossils and compound-specific carbon isotopic investigations of the carbonates were conducted in this study. According to lipid biomarkers of 2,6,10,15,19-pentamethyleicosane(PMI) and squalane diagnostic to methanotrophic archaea, as well as the extremely low δ13C values(as low as -113.4‰) detected in samples JA-4, JA-5 and JX-8, these carbonates were revealed to be a result of AOM. Based on the varied δ13C values of characteristic archaea biomarkers in specific samples, biogenic methane was proposed to be responsible for the formation of samples JA-4 and JA-5, whereas a mixed carbon source of 13C-depleted methane and 13C-enriched residual CO_2 from methanogenesis was suggested for the carbonate of JX-8 due to the co-occurrence of a highly positive δ13 Ccarb value(+8‰) and a moderate 13C depletion of PMI. The low content of AOM-related biomarkers and the absence of indicators for ANME-2 suggested that these carbonates were formed in weak seep settings. By comparison, no typical lipid biomarkers for methanotrophic archaea was detected in carbonate BG-12. The short-chain and long-chain n-alkanes accounted for 30% and 45% of all hydrocarbons, respectively, with a CPI value of 1.2, suggesting that the n-alkanes were derived from both marine organisms and terrestrial inputs. A low thermal maturity could be revealed by the incomplete equilibrium value of the C31αβ 22S/(22S+22R) ratio(0.5), and the carbonate BG-12 was probably deposited in a suboxic condition indicated by a value of Pr/Ph ratio(2.5).  相似文献   

18.
若尔盖高原全新世气候序列的类脂分子化石记录*   总被引:3,自引:0,他引:3  
基于可靠的年代标尺,结合青藏高原泥炭沉积剖面的有机碳、孢粉等相关资料,首次在该区利用类脂分子化石指标建立了全新世以来的气候与环境演化序列。结果表明,正构烷烃、脂肪酸和脂肪醇等类脂分子化石指标存有意义的规律性变化。其中,反映低等菌藻生物和高等植物相对变化的轻组分与重组分之比L/H以及平均碳链长度ACL具有很好的古气候意义,即L/H高,ACL低,指示气候偏暖湿;L/H低,ACL高,指示气候偏干冷。各个类脂分子化石指标记录的气候信息在细节上具有一定的差异,可能是不同类脂物分子的地球化学行为和生物组成结构的不同以及对气候因素温湿组合变化响应各异的体现。同时,也较好地揭示了类脂分子化石具有自己的敏感性,在细节上较传统的有机碳指标在记录气候信息上更为敏感。该研究进一步突出了这些泥炭类脂分子化石在第四纪研究中的重要地位和应用潜力。  相似文献   

19.
An isobathic transect of marine surface sediments from 1°N to 28°S off southwest Africa was used to further evaluate the potential of the chain length distribution and carbon stable isotope composition of higher plant n-alkanes as proxies for continental vegetation and climate conditions. We found a strong increase in the n-C29–33 weighted mean average δ13C values from −33‰ near the equator to around −26‰ further south. Additionally, C25–35 n-alkanes reveal a southward trend of increasing average chain length from 30.0 to 30.5. The data reflect the changing contribution of plants employing different photosynthetic pathways (C3 and C4) and/or being differently influenced by the environmental conditions of their habitat. The C4 plant proportions calculated from the data (ca. 20% for rivers draining the rainforest, to ca. 70% at higher latitude) correspond to the C4 plant abundance in continental catchment areas postulated by considering prevailing wind systems and river outflows. Furthermore, the C4 plant contribution to the sediments correlates with the mean annual precipitation and aridity at selected continental locations in the postulated catchment areas, suggesting that the C4 plant fraction in marine sediments can be used to assess these environmental parameters.  相似文献   

20.
Peats in a sediment core from Ruoergai bog, which has a cold and moist plateau climate with major source input from herbaceous plants, have been studied by GC–MS in order to understand the composition and diagenetic processes of lipids in this depositional environment. Long chain components (C21–C35) predominate in the n-alkanes, n-alk-1-enes, n-fatty acids, n-alkan-2-ones and n-alkanols with a maximum of C31, C27, C22 or C24, C23 or C25 and C22, respectively. A herbaceous origin for these long chain compounds is suggested, and this is supported by their stable carbon isotopic compositions. Diterpenoid hydrocarbons with abietane, pimarane and kaurane skeletons, some of which have not been reported often in modern sediments, are prominent and are derived from higher plants. Several triterpenoid ketones and alcohols with oleanane or lupane skeletons, and a series of des-A-triterpenoid hydrocarbons which have not been reported often in modern sediments are also present, and are assigned to a higher plant source. Hopanoids, including their alkanes, alkenes, ketones, alcohols and esters, are abundant and of bacterial origin. Steroid ketones and alkanols are dominated by C29 homologues. C28 and C29 steroids are derived mainly from higher plants, whereas the C27 component is assigned to a microbial source. The presence of short-chain n-alkanes with no odd-even carbon predominance, bacterially derived fatty acids (C14, C15, iso- and unsaturated acids), n-alkan-2-ones, des-A-triterpenoid hydrocarbons, hopanoids and some steroid ketones indicate that intense microbial reworking of the organic matter has taken place in this depositional environment. The chemical and biochemical conversions of some cyclic alkenes to alkanes, such as tricyclic diterpenoids, tetracyclic terpenoids and steroid ketones, are also evident with depth. The dominance of C20 components in the diterpenoid hydrocarbons may reflect an oxidizing or reducing depositional condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号