首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Sedimentology》2018,65(1):62-95
Despite advances in estuarine facies models, ancient bayhead delta deposits are not widely recognized or utilized, and their facies characteristics are poorly documented. Sedimentology of three well‐exposed, bayhead delta deposits within the well‐known stratigraphic framework of the Book Cliffs, Utah, and comparison to modern bayhead deltas provide insight into their variability, and a model for reservoir prediction. Bayhead deltas develop at the innermost part of bays within wave‐dominated and mixed‐energy estuaries on transgressive coastlines. The deposits of these deltas are valuable because they record the high‐frequency turnaround from transgression to regression; in turn, this delineates the long‐term transgression trajectory and informs reservoir prediction. This study uses outcrop data and synthesis of modern bayhead delta characteristics to define criteria for bayhead delta recognition, develop a detailed facies model and highlight their utility in a regional context. The following criteria for bayhead delta identification are proposed herein: (i) overall coarsening‐up pattern; (ii) small‐scale clinoform (5 to 15 m height; 100 to 1000 m length) showing a down‐clinoform decrease in grain size and palaeocurrent energy; (iii) increasing abundance of mud interbeds towards the clinoform toe; (iv) basinward‐directed palaeocurrents generated mainly by fluvial input with strong tidal overprint; (v) greatest tidal influence in the intertidal zone of the inactive delta front and better preservation of turbidites at clinoform toes; (vi) brackish trace and body fossils; and (vii) position within an overall backstepping stratigraphic succession. Ancient bayhead deltas described in this study are situated within a moderately rising to flatly rising transgressive interval over a 300 km transect. Steeply rising transgressive trajectories sequester sandy, thicker, better connected transgressive deposits in the inner part of the estuary where bayhead deltas tend to stack vertically. Flatter transgressive trajectories sequester sand in disparate, disconnected estuarine sandstone bodies with partial preservation of bayhead deltas. Proposed criteria aid recognition of bayhead delta deposits in other basins to reconstruct transgressive shoreline trajectories that inform reservoir models and volumetrics.  相似文献   

2.
Environmental processes such as tides, waves, storms, drought and flood leave tell–tale responses in sedimentary deposits. Careful study of modern environments and their standard depositional sequences has led to sophisticated reconstruction of ancient sedimentary environments. Only recently have 'ideal' carbonate rock sequences been constructed and used to interpret geological history. When the lateral array of contemporaneous carbonate sequences is known, it becomes possible to trace the evolutionary history of continents and ocean basins.  相似文献   

3.
4.
Tsunamis are unpredictable, catastrophic events, and so present enormous difficulties for direct studies in the field or laboratory. However, their sedimentary deposits yield evidence of a wide variety of hydrodynamic conditions caused by flow transformations on a spatial and temporal scale. Tsunami deposits ranging from the Miocene to modern times identified at different localities along the Chilean coast are described to provide a database of their characteristics. Among the typical features associated with tsunami deposits are well-rounded megaclasts eroded from coastal alluvial fans or beaches by very dense, competent flows. Sand injections from the base of these flows into the substrate indicate very high dynamic pressures, whereas basal shear carpets suggest hyperconcentrated, highly sheared flows. Turbulence develops in front of advancing debris flows, as indicated by megaflutes at the base of scoured channels.  相似文献   

5.
Carbonate aeolian deposits are common along arid to semiarid, wind-exposed, present-day coastlines bordered by productive carbonate ramps. Lithified carbonate dunes (aeolianites) have been described around the world in marine terraces of Quaternary age, but these deposits have seldom been identified in the Pre-Quaternary record. Several authors have suggested that this scarcity reflects that these deposits form and are preserved only during icehouse periods characterized by high-amplitude sea-level changes. Others [e.g. McKee and Ward Carbonate Depositional Environments (1983) , AAPG Memoirs, Vol. 33, pp. 131–170] suggest that the scarcity of aeolianites in the Pre-Quaternary record could reflect the ‘great difficulty in recognising wind blown carbonate deposits and in differentiating between them [aeolianites] and other carbonate sands of nearshore environments’. It has been considered that carbonate shoreface/foreshore deposits are very difficult to discriminate petrographically from backshore deposits. This petrographic study of recent sediments from the shoreface to backshore along the northern coast of Chrissi Island, Crete, confirms that carbonate aeolian sands can be very easily misinterpreted as shoreface deposits. Textural examination of thin sections by image analysis techniques indicates, however, that grain orientation patterns differ between facies. Shoreface deposits exhibit a unimodal distribution of grain orientation (flat rose diagram), whereas backshore deposits show a tendency towards a bimodal distribution with a significant proportion of vertical grains. This observation has been confirmed in Pleistocene aeolianites from Tunisia and Western Australia. Grain verticality thus seems to be a reliable criterion for discriminating wind-lain carbonate bodies from shoreface deposits. Vertical grains in aeolian carbonate deposits could reflect gravity effects (e.g. reorientation of grains because of meteoric water percolation and air pull-up). Laboratory experiments conducted on carbonate sands under the action of percolating waters confirm this hypothesis. This reorganization process is preferentially developed in recently deposited and loosely packed sands resulting from grainfall and/or grainflow. In addition, this suggests that the presence of vertical grain orientation might be an indicator of the frequency and intensity of rainfalls during deposition.  相似文献   

6.
In May 1974 a powerful flood flushed the Grand River basin, Ontario. The effects on the bedload were drastic in a narrow (30 m) and deep (40 m) rock walled and floored gorge near Elora, Ontario. Along Irvine Creek, the tributary occupying the gorge, the gravel cover was reworked in several types of bars, predominantly transverse and point bars. The bars formed very rapidly in response to essentially steady, non-uniform flow that developed during a brief period of high flood. Superimposed on major bars are several minor sedimentary features such as coarse transverse ribs, chute channels and bars, longitudinal ribs, imbrication clusters, backsets with well developed imbrication, that were formed under very high stream discharge. Structures like imbrication clusters, transverse ribs and small riffle bars require a ‘live bed’ situation to form, and they develop when stones come to a stop either because they cluster during transport, or because keystone effects occur along shallow channels. In Irvine Creek, very few sedimentary features were formed during waning and low flood stages: only some shadow deposits and a few Ostler lenses. The few fines that were available were lost downstream or filled in lower parts of gravel beds. This study confirms that in streams that experience strong seasonal fluctuations in discharge, bedforms that develop during high floods have a high probability of preservation. In gravelly deposits, foreset structures and plane beds are most commonly preserved, although they may be difficult to recognize in old deposits, which may appear massive, particularly if the gravel has been infilled with finer pebbles and sand. In the case of Irvine Creek, all deposits are organized, and lateral and vertical variations in textures, particularly imbrication and packing, are very useful in the recognition of sedimentary structures.  相似文献   

7.
Geothermal systems ancient and modern: a geochemical review   总被引:1,自引:0,他引:1  
R.W. Henley  A.J. Ellis 《Earth》1983,19(1):1-50
Geothermal systems occur in a range of crustal settings. The emphasis of this review is on those occurring in regions of active or recently active volcanism, where magmatic heat at depths up to 8 km leads to convection of groundwater in the upper crust. Hot water (and steam) flows are controlled by the permeability of the crust and recent data have emphasised the dominance of secondary permeability, especially fractures. Drilling to depths of up to 3 km in these systems encounters near-neutral pH alkali chloride waters with temperatures up to about 350°C and chloride contents generally in the range 500 to 15,000 mg kg?1 although much higher salinities are encountered in some systems such as in the Imperial Valley, California. Stable isotope studies indicate the predominance of a meteoric source in the majority of geothermal systems although seawater predominates in some regions, such as Reykjanes, Iceland. Mixing of waters from both sources also occurs in some systems and some magmatic fluid may also be present.The major element geochemistry of geothermal fluids is determined by a set of temperature-dependent mineral-fluid equilibria although chloride and rare gas contents appear to be independent variables reflecting the sources of these components (sedimentary or volcanic rocks, seawater, magmatic fluids, etc).Boiling in the upper portion of geothermal systems is accompanied by the transfer of acidic gases (CO2 and H2S) to the resultant steam which may penetrate the surface as fumarolic activity or become condensed into shallow groundwaters giving rise, with oxidation, to distinctive low pH sulphate bicarbonate water.Fluid inclusion, stable isotope and mineral alteration studies have led to the recognition in many Tertiary hydrothermal ore deposits of physical and chemical environments analogous to those encountered in the present-day systems. The vein-type gold-silver, Carlin-type gold and porphyry-type copper-molybdenum deposits of the western United States are particularly well studied examples. Sub-ocean floor equivalents of the terrestrial geothermal systems have been recognized in ocean floor spreading centres such as the East Pacific Rise and deep-sea submersible vehicles have allowed visual observation of sea floor hot springs actively depositing metal sulphides. These environments may parallel those of the Cyprus-type massive sulphide depositing systems, while sub-sea floor systems of the type responsible for Kuroko-type massive sulphide deposits may eventually be encountered in island are settings.  相似文献   

8.
9.
The vein graphite deposits of Sri Lanka are located in a Precambrian high grade metamorphic terrain dominated by granulite facies rocks. The vein graphite has been interpreted as being of solid phase lateral secretion origin, derived by hydrothermal solutions or of biogenic origin. Based on what is known on the composition of the fluids under granulite facies conditions and the role of these fluids in their transport through the crust, the origin of the graphite is proposed to be the direct consequence of granulite facies metamorphism in the presence of a CO2 rich fluid under low fO2 conditions. This CO2 rich fluid could promote hydraulic fracturing and precipitation of vein graphite. Textures and structures of the vein graphite indicate syntectonic deposition by a crack-seal process under granulite facies metamorphic conditions. This model is supported by temperature estimates on graphite based on XRD data and stable carbon isotopes of graphite that suggest a deep-seated crustal origin.  相似文献   

10.
The Pleistocene Higashikanbe Gravel, which crops out along the Pacific coast of the Atsumi Peninsula, central Japan, consists of well‐sorted, pebble‐ to cobble‐size gravel beds with minor sand beds. The gravel includes large‐scale foreset beds (5–10 m high) and overlying subhorizontal beds (0·5–3 m thick), showing foreset and topset structure, from which the gravel has previously been interpreted as deposits of a Gilbert‐type delta. However, (1) the gravel beds lack evidence of fluvial activity, such as channels in the subhorizontal beds; (2) the foresets incline palaeolandwards; (3) the gravels fill a fluvially incised valley; and (4) the gravels overlie low‐energy deposits of a restricted environment, such as a bay or an estuary. The foresets generally dip towards the inferred palaeoshoreline, indicating landward accretion of gravel. Reconstruction of the palaeogeography of the peninsula indicates that the Higashikanbe Gravel was deposited as a spit similar to that developed at the western tip of the present Atsumi Peninsula, rather than as a delta. According to the new interpretation, the large‐scale foreset beds are deposits on the slopes of spit platforms and accreted in part to the sides of small islets that are fragments of the submerging spit during relative sea‐level rise. The subhorizontal beds include nearshore deposits on the spit platform topsets and deposits of gravel shoals or bars, which are reworked sediments of the spit beach gravels during a transgression. The lack of spit beach facies in the subhorizontal beds results from truncation by shoreface erosion. Dome structure, which is a cross‐sectional profile of a recurved gravel spit at its extreme point, and sandy tidal channel deposits deposited between the small islets were also identified in the Higashikanbe Gravel. The Higashikanbe Gravel fills a fluvially incised valley and occupies a significant part of a transgressive systems tract, suggesting that gravelly spits are likely to be well developed during transgressions. The large‐scale foreset beds and subhorizontal beds of gravelly spits in transgressive systems tracts contrast with the foreset and topset beds of deltas, characteristic of highstand, lowstand and shelf‐margin systems tracts.  相似文献   

11.
Sandstone mounds occur in some shallow marine heterolithic deposits from the Late Precambrian Stangenes Formation (N. Norway) and the Cambro-Ordovician Crozon Formation (N. W. France) and Cabos Series (N.W. Spain). The sediments displaying the mounds accumulated in partially protected tidal flat/ lagoonal environments immediately before and during major transgressions. The mounds are erosional features typically occurring on the tops of sheet sandstones (ca. 50–500 mm thick) some of which may have a storm washover origin. Mound genesis related to periodic emergence and late stage run-off is supported by their intimate association with mudcracks and other very shallow water features (e.g. bidirectional current-formed structures, wave ripples, ladder and interference patterns, mudflakes, etc.). Variation in mound morphology suggests that post-depositional dissection began as elongate ridge-gully couplets with secondary erosion of the ridge flanks leading to the development of more characteristic hemispherical geometries. Emergence may have been a function of tidal fluctuations and/or subsidence of storm surge events. Facies sequences point to the repeated filling of these inshore environments by storm washovers superimposed on ambient tidal conditions which possibly resulted from the progressive decay of beach barriers during transgression.  相似文献   

12.
Marginal Triassic deposits in Glamorgan, South Wales, occur beneath and laterally equivalent to the Keuper Marl. They consist of coarse elastics, locally interbedded with finer sediments, limestones and replaced evaporites. Fluviatile sediments are chiefly sorted conglomerates and cross-bedded sandstones of stream-flood origin. Other conglomerates and sandstones, associated with siltstone and calcrete, are interpreted as the deposits of semi-permanent streams with well-developed floodplains. Ill-sorted breccias accumulated as screes against former cliffs. Matrix-supported conglomerates of mudflow origin are a minor facies. Thin graded beds were deposited from sheet floods and other finer clastic sediments formed on floodplains and playas. Lacustrine shore-zone elastics, limestones and evaporites are also present. The distribution of the various facies is related to the Trassic geomorphology, which was controlled by the structure of the underlying Palaeozoic. The South Wales Coalfield formed an upland area bounded to the south by an escarpment. Stream-flood conglomerates of the Radyr-Llandaff area were part of an alluvial fan which formed at the foot of this escarpment, perhaps at the mouth of a canyon on the site of the present-day Taff gorge. South of the escarpment semi-permanent streams with well-developed floodplains occupied a broad valley, draining eastwards and cut into the axial region of the plunging Cowbridge anticline. South of the anticline, stream-flood and sheet-flood deposits interdigitated with wave-rippled and desiccated siltstones deposited on playas. The latter, together with the shore-zone sediments, were marginal to the lake in which the Keuper Marl accumulated. With rising base-level during the Norian, the Keuper Marl facies spread north and west into the Vale of Glamorgan, covering the Marginal Triassic and inliers of Carboniferous Limestone.  相似文献   

13.
Contourites: Their recognition in modern and ancient sediments   总被引:1,自引:0,他引:1  
D.A.V. Stow  J.P.B. Lovell 《Earth》1979,14(3):251-291
We suggest that publication of evidence that the continental rise of the western North Atlantic has been shaped by bottom currents flowing parallel to bathymetric contours (Heezen, Hollister and Ruddiman, 1966) marked the beginning of a revolution in sedimentology comparable to the turbidite revolution launched by Kuenen and Migliorini in their classical 1950 paper.Intensification of slow, thermohaline circulation on the western margins of the ocean basins leads to high-velocity, deep, boundary currents, capable of eroding, transporting and depositing fine-grained sediment. Long-period, direct current measurements suggest a complex, periodic flow for these currents, while bottom photographs indicate their influence on the sediment surface. Sediment ridges in the North Atlantic can be closely related to the deep-water circulation pattern. Other morphological features (ripples, furrows, waves), echogram characteristics, and the presence of well-developed nepheloid layers cannot be uniquely attributed to the action of bottom currents.Critical review of marine-based investigations reveals a lack of generally accepted criteria for the recognition of contourites on the basis of sediment character. We discuss the problems in establishing such criteria and recognize that: (a) a continuum may exist between dilute turbidity flows, bottom currents and hemipelagic settling; (b) interbedded turbidites, contourites and hemipelagites are common, especially in a rise environment; and (c) composition and other criteria may be only locally applicable. However, we can identify two main contourite groups, muddy contourites and sandy contourites, and have proposed new criteria for their recognition. Muddy contourites are generally bioturbated, have poorly defined bedding, and contain biogenic sand often concentrated into irregular layers. They may be texturally and compositionally distinct from interbedded turbidites, and have relatively high CaCO3 and organic carbon contents. Sandy contourites occur as thin, bioturbated, irregular lag-deposits, or as reworked tops of sandy turbidites. In the latter case they may be clean, well sorted, parallel- or cross-laminated, but show no offshore trends or vertical structural sequence. Grain orientation shows the bottom current direction, often superimposed upon the original turbidite fabric.Reveiw of land-based work shows that there is growing recognition of the need for a new concept to complement turbidity-current theory, but that there have been relatively few claims of firm contourite identification. Recognition of ancient contourites has been based either on the application of previous sedimentological criteria, or on an interpretation of the broader environmental framework. It is suggested that it is lack of suitable criteria for the identification of contourites rather than a true scarcity of these rocks that has led to such a restricted literature.Mindful of problems created by diagenesis, tectonic activity and the limited preservation potential of many diagnostic features of marine contourites, we do suggest criteria, and a procedure, for the recognition of contourites in land-based work. Sandy contourites of the reworked-turbidite variety may be the most easily recognised; the presence of bimodal palaeocurrent directions at about 90° is an important indicator of this type.The geological significance of contourites in palaeo-oceanographical, palaeogeographical and tectonic reconstructions is emphasised, especially in relation to work on passive (Atlantic-type) continental margins. We also refer to the possible economic significance of contourites as exploration for hydrocarbons moves into deeper waters.  相似文献   

14.
Perennially ice‐covered lakes can have significantly different facies than open‐water lakes because sediment is transported onto the ice, where it accumulates, and sand grains preferentially melt through to be deposited on the lake floor. To characterize the facies in these lakes, sedimentary deposits from five Antarctic perennially ice‐covered lakes were described using lake‐bottom observations, underwater video and images, and sediment cores. One lake was dominated by laminated microbial mats and mud (derived from an abutting glacier), with disseminated sand and rare gravel. The other four lakes were dominated by laminated microbial mats and moderately well to moderately sorted medium to very coarse sand with sparse granules and pebbles; they contained minor interstitial or laminated mud (derived from streams and abutting glaciers). The sand was disseminated or localized in mounds and 1 m to more than 10 m long elongate ridges. Mounds were centimetres to metres in diameter; conical, elongate or round in shape; and isolated or deposited near or on top of one another. Sand layers in the mounds had normal, inverse, or no grading. Nine mixed mud and sand facies were defined for perennially ice‐covered lakes based on the relative proportion of mud to sand and the style of sand deposition. While perennially ice‐covered lake facies overlap with other ice‐influenced lakes and glaciomarine facies, they are characterized by a paucity of grains coarser than granules, a narrow range in sand grain sizes, and inverse grading in the sand mounds. These facies can be used to infer changes in ice cover through time and to identify perennially ice‐covered lakes in the rock record. Ancient perennially ice‐covered lakes are expected on Earth and Mars, and their characterization will provide new insights into past climatic conditions and habitability.  相似文献   

15.
Microstructural analysis of glacial deposits has recently been used as a research tool to determine sediment genesis. However, the occurrence of microstructures in deposits of known origin has not been sufficiently documented, hindering our ability to confidently interpret microstructures in sediments of unknown origin. Our objective is to present a calibration study of microstructures of recent sediment flow deposits and associated sediments from the Matanuska Glacier, Alaska, and to evaluate the degree of commonality with microstructures found in subglacially deformed sediments. Microstructures in sediment flow deposits can be formed as a result of sediment transport, deposition, and/or post-depositional processes, and are related to the viscosity regime of the source flow. Characteristic microstructures formed during brittle deformation include shears, faults, and brecciation; microstructures formed during ductile deformation include folds, pressure shadows, re-orientation of clasts around a 'core' stone, fine laminations, basal shear zones, imbrication, and flow fabrics. Other microstructures include fluid escape and injection structures, clast haloes, and fissility. The results of our comparison suggest that sediment flow deposits share many microstructures in common with subglacially deformed sediments.  相似文献   

16.
水涛 《华东地质》2010,(3):169-175
自2009年入冬以来北半球经受了创记录的严寒侵袭,联合国IPCC报告的权威性受到质疑.地球气候变化趋向陷入纷争的境地.从地质学和考古学的视角,以更长的时间周期去认识和了解气候变化规律和成因机制,或许对将来气候的长期预报有所启示.地球在漫长的演化史中经历了以千万年计的"地质气候旋回"、千百年计的"史前气候周期"及近现代以百年计的"世纪气候波动".不同级次的周期均为内在自然因素所制约,CO2含量在地球演化史中趋于波动下降过程,当代的CO2浓度和气温均处于地质史的低点.人类活动可能在百年尺度内存在对气候和生态环境的影响.自20世纪初开始至今近百年升温趋向中,令人关注的是在中国曾有1941年、1969年、2009~2010年之交极度低温的出现,"低温节点"时距约为30~40年,似与海洋存在数十年为变化周期之说相近.由此引发对人为因素导致持续增温的质疑. 2009年入冬以来的严寒是否为近百年升温波动周期的终结抑或只是次级的突变因素所致,尚有待观察.但自然因素主导的周期波动规律不可逆转,不能被未经实证而被夸大了的"人为因素"所左右.  相似文献   

17.
Counter point bar deposits in the meandering Peace River, North‐central Alberta, Wood Buffalo National Park, are distinct from point bar deposits in terms of morphology, lithofacies and reservoir potential for fluids. Previously referred to as the distal‐most parts of point bars, point bar tails and concave bank‐bench deposits, counter point bar deposits have concave morphological scroll patterns rather than convex as with point bars. The Peace is a large river (bankfull discharge 11 700 m3 sec?1, width 375 to 700 m, depth 15 m, gradient 0·00004 or 4 cm km?1) in which counter point bar deposits are dominated by silt (80% to 90%), which contrasts with sand‐dominant (90% to 100%) point bar deposits. Beginning at the meander inflection (transition from convex to concave), counter point bar deposit stratigraphy thickens as a wedge‐like architecture in the distal direction until the deposit is nearly as thick as the point bar deposits. The low permeability silt‐dominant lithofacies in counter point bar deposits will limit reservoir extent and movement of fluids in both modern and ancient subsurface fluvial deposits. In the exploration and extraction of bitumen and heavy oil in subsurface fluvial rocks, identification and mapping of reservoir potential of point bar deposits and counter point bar deposits is now possible in the fluvial‐dominated tidal estuarine Lower Cretaceous Middle McMurray Formation, North‐east Alberta. Recent geophysical advances have facilitated imaging of some ancient buried point bar deposits and counter point bar deposits which, on the basis of morphological shape of sedimentary bodies observed from seismic amplitude, can be interpreted and mapped as depositional elements or blocks that contain associated sandstone or siltstone dominant lithofacies, respectively. As counter point bar deposits exhibit poor permeability and thus limit reservoir potential for water, natural gas, light crude, heavy oil and bitumen, counter point bar deposits should be avoided in resource developments. Geophysical imaging, interpretation and mapping of point bar deposit and counter point bar deposit elements provide new opportunities to improve recovery of bitumen and heavy oil and reduce development costs in subsurface cyclic steam stimulation and steam‐assisted gravity drainage projects by not drilling into counter point bar deposits.  相似文献   

18.
Shoreface sandstone deposits within the Early Carnian part of the Snadd Formation of the Norwegian Barents Sea can be traced for hundreds of kilometres in the depositional strike direction and for tens of kilometres in the depositional‐dip direction. This study uses three‐dimensional seismic attribute mapping and two‐dimensional regional seismic profiles to visualize the seismic facies of these shoreface deposits and to map their internal stratigraphic architecture at a regional scale. The shoreface deposits are generally elongate but show variable width from north‐east to south‐west, which corresponds to a sediment source in the northern part of the basin and a southward decrease in longshore sediment transport. The Snadd Formation presents an example of how large‐scale progradational shoreface deposits develop. The linear nature of its shoreface deposits contrasts with more irregular, cuspate wave‐dominated deltaic shorelines that contain river outlets, and instead implies longshore drift as the main sediment source. In map view, discrete sets of linear features bounded by truncation surfaces scale directly to beach ridge sets in modern counterparts. The shoreface deposits studied here are characteristic in terms of scale and basin‐wide continuity, and offer insight into the contrast between shallow marine deposition under stable Triassic Greenhouse and fluctuating Holocene Icehouse climates. Findings presented herein are also important for hydrocarbon exploration in the Barents Sea, because they describe a hitherto poorly understood reservoir play in the Triassic interval, wherein the most prominent reservoir plays have so far been considered to be found in channelized deposits in net‐progradational delta‐plain strata that form the topsets to shelf‐edge clinoforms. The documented presence of widespread wave‐dominated shoreface deposits also has implications for how the relative importance of different sedimentary processes is considered within the basin during this period.  相似文献   

19.
《Quaternary Science Reviews》2003,22(18-19):2007-2035
Dust raising and transport are common and important processes in Australia today. The aridity of the Australian continent and high climatic variability result in widespread dust raising in the arid and semi-arid areas and transport to the humid margins and surrounding oceans. The supply of erodible particles appears to be the greatest limitation on total flux of transported dust. Dust raising is greatest in the Lake Eyre Basin, including the Simpson Desert, and Murray-Darling Basin where internal drainage renews supplies of fine particles to the arid zone. In the west and northwest dust entrainment is low, despite considerable aridity. The marine record of dust flux shows at least a threefold increase in dust flux, compared with the Holocene, in the last glacial maximum in both tropical and temperate Australia, driven by weakened Australian monsoon rains and drier westerly circulation, respectively. Despite the widespread confirmation of aeolian dust deposits in southeastern and southwestern Australia, dated or quantified records are extremely rare. The dominant model of Australian dust deposits, the clay-rich ‘parna’, is shown to be poorly substantiated while modern and ancient dust deposits examined in detail are shown to bear a strong similarity to conventional definitions of loess.  相似文献   

20.
Modern solar energetic particles (SEPs) have been studied for about 50 years by satellites and groundbased observations. These measurements indicate much about the nature of SEPs but cover too short a period to quantify the probabilities of very large solar particle events. Many SEPs have high enough energies to make nuclides in material in which they interact. Radionuclides measured in lunar samples have been used to extend the record about SEPs back several million years. Some new measurements of modern SEPs during the last solar cycle and new results for nuclides made by SEPs in lunar samples are presented and their implications discussed. Both the modern and ancient records need to be improved, and methods to get a better understanding of solar energetic particles discussed. The fluxes of SEPs during the last million years show an increasing trend when averaged over shorter radionuclide half-lives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号