首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
Phosphatase may accelerate the process of lake eutrophication through improving phosphorus bioavailability. This mechanism was studied in three Chinese eutrophic shallow lakes (Lake Taihu, Lake Longyang and Lake Lianhua). Phosphatase activity was related to the concentration of soluble reactive phosphorus (SRP) and chlorophyll a. Stability of dissolved phosphatase in reverse micelles may be attributed to molecular size, conformation and active residues of the enzyme. At the site with Microcystis bloomed in Lake Taihu, dissolved phosphatase activity was higher and more stable in micelles, SRP concentrations were lower in interstitial water, the contents of different forms of phosphorus and the amounts of aerobic bacteria were lower while respiration efficiency was higher in sediments. Phosphobacteria, both inorganic and organic and other microorganisms were abundant in surface water but rare in sediments. Therefore, internal phosphorus may substantially flux into water column by enzymatic hydrolysis and anaerobic release, together with mobility of bacteria, thereby initiating the bloom. In short, biological mechanism may act in concert with physical and chemical factors to drive the internal phosphorus release and accelerate lake eutrophication.  相似文献   

2.
The phosphorus fractions, the alkaline phosphatase activity (APA) and other water chemical parameters were concomitantly monitored from April 2003 to October 2004 in different eco-type sites of Lake Taihu. During the stages of algae growth, the phosphorus fractions and their relationships with APA in different ecotype sites were discussed and the phosphorus mineralization rate was calculated. In the water of Lake Taihu, most of the phosphorus (70.2%) could be attributed to the suspended particulate phosphorus, while the dissolved reactive phosphorus (DRP) seems to contribute less than 7%. About 58% of the total phosphorus, however, can be hydrolyzed as inorganic phosphate to compensate for phosphorus deficiency of algae and bacteria growth. During the different algae growth stages, the APA and its Kinetic parameters were varied significantly between different ecotype sites of Lake Taihu. This trend is also visible by comparing the phosphorus mineralization rate, and the most rapidly phosphorus turnover time is only several minutes. The fast recycle of phosphorus can, to some extent, be explained that the phosphorus source of algal blooms. The phytoplankton seems to compensate for phosphorus deficiency by using the alkaline phosphatase to hydrolyze phosphomonoesters.  相似文献   

3.
在滇池福保湾不同区域应用Peeper(渗析膜式)技术,分析了底泥间隙水NH4 -N、Po43--p的垂向分布特征和近表层10cm内底泥的微生物活性(FDA)、碱性磷酸酶活性(APA),并对它们之间的相互关系进行了统计分析.结果表明,NH4 -N和Po43--p浓度自上覆水向下层间隙水呈先升后降趋势,反映它们有自间隙水向上覆水扩散的潜在危害;底泥有机质(Loss-on-Ignion,LOI)、APA和FDA活性也有从表层底泥向下层逐步降低的趋势.在空问分布上,Po43--p浓度变化为河口区>湾心区>西部沿岸区>东部沿岸区,与沉积物中LOI、APA和FDA活性的大小顺序基本相同.间隙水NH4 6-N浓度与表层10cm内底泥的APA和FDA活性具有显著正相关性(α=0.01).Po43--p浓度与底泥APA和FDA活性具有负相关性.但相关系数很低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号