首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The perturbation method for two critical arguments is applied to the 3/2 resonance between Jupiter's and the Asteroid's mean motions. The radius of convergence of the series in eccentricity is smaller than in the 2/1 case and the chaotic regions in the plane (a,e) are less important.  相似文献   

2.
We consider the general spatial three body problem and study the dynamics of planetary systems consisting of a star and two planets which evolve into 2/1 mean motion resonance and into inclined orbits. Our study is focused on the periodic orbits of the system given in a suitable rotating frame. The stability of periodic orbits characterize the evolution of any planetary system with initial conditions in their vicinity. Stable periodic orbits are associated with long term regular evolution, while unstable periodic orbits are surrounded by regions of chaotic motion. We compute many families of symmetric periodic orbits by applying two schemes of analytical continuation. In the first scheme, we start from the 2/1 (or 1/2) resonant periodic orbits of the restricted problem and in the second scheme, we start from vertical critical periodic orbits of the general planar problem. Most of the periodic orbits are unstable, but many stable periodic orbits have been, also, found with mutual inclination up to 50?–60?, which may be related with the existence of real planetary systems.  相似文献   

3.
Ke Zhang  Douglas P. Hamilton 《Icarus》2007,188(2):386-399
We investigate the orbital resonant history of Proteus and Larissa, the two largest inner neptunian satellites discovered by Voyager 2. Due to tidal migration, these two satellites probably passed through their 2:1 mean-motion resonance a few hundred million years ago. We explore this resonance passage as a method to excite orbital eccentricities and inclinations, and find interesting constraints on the satellites' mean density () and their tidal dissipation parameters (Qs>10). Through numerical study of this mean-motion resonance passage, we identify a new type of three-body resonance between the satellite pair and Triton. These new resonances occur near the traditional two-body resonances between the small satellites and, surprisingly, are much stronger than their two-body counterparts due to Triton's large mass and orbital inclination. We determine the relevant resonant arguments and derive a mathematical framework for analyzing resonances in this special system.  相似文献   

4.
Secular perturbations of asteroids are derived for mean motion resonance cases under the assumptions that the disturbing planets are moving along circular orbits on the same plane and that critical arguments are fixed at stable equilibrium points. Under these assumptions the equations of motion are reduced to those of one degree of freedom with the energy integral. Then equi-energycurves on (2g-X) plane (g and X being, respectively, the argument of perihelion and (1–e2)1/2) are derived for given values of the two constant parameters, the semi-major axis and =(1–e2)1/2 cos i, and the variations of the eccentricity and the inclination as functions of the argument of perihelion are graphically estimated. In fact this method is applied to numbered asteroids with commensurable mean motions to estimate the ranges of the variations of orbital elements.The same method is also applied to the Pluto-Neptune system and the results are found to agree with those of numerical integrations and show that the argument of perihelion of Pluto librates around 90°.  相似文献   

5.
A comparative study is made between the 2/1 and the 3/2 resonant asteroid motion, with the aim to understand their different behaviour (gap in the 2/1 resonance, group in the 3/2 resonance). A symplectic mapping model is used, for each of these two resonances, assuming the asteroid is moving in the three-dimensional space under the gravitational perturbation of Jupiter. It is found that these resonances differ in several points, and although there is, in general, more chaos in the phase space close to the 3/2 resonance, even in the model of circular orbit of Jupiter, there are regions, close to the secondary resonances, which are less chaotic in the 3/2 resonance compared to the 2/1 resonance, and consequently trapping can take place.  相似文献   

6.
Dynamics of Two Planets in the 2/1 Mean-Motion Resonance   总被引:1,自引:1,他引:0  
The dynamics of two planets near a first-order mean-motion resonance is modeled in the domain of the general three-body planar problem. The system studied is the pair Uranus-Neptune (2/1 resonance). The phase space of the resonance and near-resonance regions is studied by means of surfaces of section and spectral analysis techniques. After a thorough investigation of the topology of the phase space, we find that several regimes of motion are possible for the Uranus-Neptune system, and the regions of transition between the regimes of motion are the seats of chaotic motion. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Earlier work indicates a comparatively rapid chaotic evolution of the orbits of some Hilda asteroids that move at the border of the domain occupied by the characteristic parameters of the objects at the 3/2 mean motion resonance. A simple Jupiter–Saturn model of the forces leads to numerical results on some of these cases and allows a search for additional resonances that can contribute to the chaotic evolution. In this context the importance of the secondary resonances that depend on the period of revolution of the argument of perihelion is pointed out. Among the studied additional resonances there are three-body resonances with arguments that depend on the mean longitudes of Jupiter, Saturn, and asteroid, but on slowly circulating angular elements of the asteroid as well, and the frequency of these arguments is close to a rational ratio with respect to the frequency of the libration due to the basic resonance.  相似文献   

8.
We use numerical integrations to investigate the dynamical evolution of resonant Trojan and quasi-satellite companions during the late stages of migration of the giant planets Jupiter, Saturn, Uranus, and Neptune. Our migration simulations begin with Jupiter and Saturn on orbits already well separated from their mutual 2:1 mean-motion resonance. Neptune and Uranus are decoupled from each other and have orbital eccentricities damped to near their current values. From this point we adopt a planet migration model in which the migration speed decreases exponentially with a characteristic timescale τ (the e-folding time). We perform a series of numerical simulations, each involving the migrating giant planets plus test particle Trojans and quasi-satellites. We find that the libration frequencies of Trojans are similar to those of quasi-satellites. This similarity enables a dynamical exchange of objects back and forth between the Trojan and quasi-satellite resonances during planetary migration. This exchange is facilitated by secondary resonances that arise whenever there is more than one migrating planet. For example, secondary resonances may occur when the circulation frequencies, f, of critical arguments for the Uranus-Neptune 2:1 mean-motion near-resonance are commensurate with harmonics of the libration frequency of the critical argument for the Trojan and quasi-satellite 1:1 mean-motion resonance . Furthermore, under the influence of these secondary resonances quasi-satellites can have their libration amplitudes enlarged until they undergo a close-encounter with their host planet and escape from the resonance. High-resolution simulations of this escape process reveal that ≈80% of jovian quasi-satellites experience one or more close-encounters within Jupiter’s Hill radius (RH) as they are forced out of the quasi-satellite resonance. As many as ≈20% come within RH/4 and ≈2.5% come within RH/10. Close-encounters of escaping quasi-satellites occur near or even below the 2-body escape velocity from the host planet. Finally, the exchange and escape of Trojans and quasi-satellites continues to as late as 6-9τ in some simulations. By this time the dynamical evolution of the planets is strongly dominated by distant gravitational perturbations between the planets rather than the migration force. This suggests that exchange and escape of Trojans and quasi-satellites may be a contemporary process associated with the present-day near-resonant configuration of some of the giant planets in our Solar System.  相似文献   

9.
Third and fourth order mean motion resonances are studied in the model of the restricted three-body problem by numerical methods for mass parameters corresponding approximately to the Sun?CJupiter and Sun?CNeptune systems. In the case of inner resonances, it is shown that there are two regions of libration in the 8:5 and 7:4 resonances, one at low, the other at high eccentricities. In the 9:5 and 7:3 resonances libration can exist only in one region at high eccentricities. The 5:2 and 4:1 resonances are very regular, with one librational zone existing for all eccentricities. There is no visible region of libration at any eccentricities in the 5:1 resonance, the transition between the regions of direct and retrograde circulation is very sharp. In the case of outer resonances, the 8:5 and 7:4 resonances have also two regions of libration, but the 9:5 resonance has three, the 7:3 resonance two librational zones. The 5:2 resonance is again very regular, but it is parted for two regions of libration at high eccentricities. Libration is possible in the 4:1 resonance only at high eccentricities. The 5:1 resonance is very symmetric. In the case of outer resonances, a comparison is made with trans-Neptunian objects (TNO) in higher order mean motion resonances. Several new librating TNOs are identified.  相似文献   

10.
A migrating planet can capture planetesimals into mean motion resonances. However, resonant trapping can be prevented when the drift or migration rate is sufficiently high. Using a simple Hamiltonian system for first- and second-order resonances, we explore how the capture probability depends on the order of the resonance, drift rate and initial particle eccentricity. We present scaling factors as a function of the planet mass and resonance strength to estimate the planetary migration rate above which the capture probability drops to less than half. Applying our framework to multiple extrasolar planetary systems that have two planets locked in resonance, we estimate lower limits for the outer planet's migration rate, allowing resonance capture of the inner planet.
Mean motion resonances are comprised of multiple resonant subterms. We find that the corotation subterm can reduce the probability of capture when the planet eccentricity is above a critical value. We present factors that can be used to estimate this critical planet eccentricity. Applying our framework to the migration of Neptune, we find that Neptune's eccentricity is near the critical value that would make its 2 : 1 resonance fail to capture twotinos. The capture probability is affected by the separation between resonant subterms and so is also a function of the precession rates of the longitudes of periapse of both planet and particle near resonance.  相似文献   

11.
The resonance C1 occurs when the longitude of the perigee measured from the equinox becomes a slow angle in the doubly averaged equations of motion. This resonance is one of the critical inclination family with I 46°. For prograde Earth satellite orbits, up to five critical points can be identified. Only simple pitchfork bifurcations occur for the single resonance C1. A two degrees of freedom system is studied to check how a coupling of two lunisolar resonances affects the results furnished by the analysis of an isolated resonance case. In the system with two critical angles (g+h and h,+2 , seven types of critical points have been identified. The critical points arise and change their stability through 11 bifurcations. If the initial conditions are selected close to the critical points, the system becomes chaotic as shown in Poincaré maps.  相似文献   

12.
The 2/1 mean motion resonance with Jupiter, intersecting the main asteroid belt at ≈3.27  au, contains a small population of objects. Numerical investigations have classified three groups within this population: asteroids residing on stable orbits (i.e. Zhongguos), those on marginally stable orbits with dynamical lifetimes of the order of 100 Myr (i.e. Griquas), and those on unstable orbits. In this paper, we reexamine the origin, evolution and survivability of objects in the 2/1 population. Using recent asteroid survey data, we have identified 100 new members since the last search, which increases the resonant population to 153. The most interesting new asteroids are those located in the theoretically predicted stable island A, which until now had been thought to be empty. We also investigate whether the population of objects residing on the unstable orbits could be resupplied by material from the edges of the 2/1 resonance by the thermal drag force known as the Yarkovsky effect (and by the YORP effect, which is related to the rotational dynamics). Using N -body simulations, we show that test particles pushed into the 2/1 resonance by the Yarkovsky effect visit the regions occupied by the unstable asteroids. We also find that our test bodies have dynamical lifetimes consistent with the integrated orbits of the unstable population. Using a semi-analytical Monte Carlo model, we compute the steady-state size distribution of magnitude   H < 14  asteroids on unstable orbits within the resonance. Our results provide a good match with the available observational data. Finally, we discuss whether some 2/1 objects may be temporarily captured Jupiter-family comets or near-Earth asteroids.  相似文献   

13.
We present numerical evidence that diffusion in the herein studied multidimensional near-integrable Hamiltonian systems departs from a normal process, at least for realistic timescales. Therefore, the derivation of a diffusion coefficient from a linear fit on the variance evolution of the unperturbed integrals fails. We review some topics on diffusion in the Arnold Hamiltonian and yield numerical and theoretical arguments to show that in the examples we considered, a standard coefficient would not provide a good estimation of the speed of diffusion. However, numerical experiments concerning diffusion would provide reliable information about the stability of the motion within chaotic regions of the phase space. In this direction, we present an extension of previous results concerning the dynamical structure of the Laplace resonance in Gliese-876 planetary system considering variations of the orbital parameters accordingly to the error introduced by the radial velocity determination. We found that a slight variation of the eccentricity of planet c would destabilize the inner region of the resonance that, though chaotic, shows stable when adopting the best fit values for the parameters.  相似文献   

14.
Families of nearly circular periodic orbits of the planetary type are studied, close to the 3/1 mean motion resonance of the two planets, considered both with finite masses. Large regions of instability appear, depending on the total mass of the planets and on the ratio of their masses.Also, families of resonant periodic orbits at the 2/1 resonance have been studied, for a planetary system where the total mass of the planets is the 4% of the mass of the sun. In particular, the effect of the ratio of the masses on the stability is studied. It is found that a planetary system at this resonance is unstable if the mass of the outer planet is smaller than the mass of the inner planet.Finally, an application has been made for the stability of the observed extrasolar planetary systems HD82943 and Gliese 876, trapped at the 2/1 resonance.  相似文献   

15.
The three-dimensional secular behavior of a system composed of a central star and two massive planets is modeled semi-analytically in the frame of the general three-body problem. The main dynamical features of the system are presented in geometrical pictures allowing us to investigate a large domain of the phase space of this problem without time-expensive numerical integrations of the equations of motion and without any restriction on the magnitude of the planetary eccentricities, inclinations and mutual distance. Several regimes of motion of the system are observed. With respect to the secular angle Δ?, possible motions are circulations, oscillations (around 0° and 180°), and high-eccentricity/inclination librations in secular resonances. With respect to the arguments of pericenter, ω1 and ω2, possible motions are direct circulation and high-inclination libration around ±90° in the Lidov-Kozai resonance. The regions of transition between domains of different regimes of motion are characterized by chaotic behavior. We apply the analysis to the case of the two outer planets of the υ Andromedae system, observed edge-on. The topology of the 3-D phase space of this system is investigated in detail by means of surfaces of section, periodic orbits and dynamical spectra, mapping techniques and numerical simulations. We obtain the general structure of the phase space, and the boundaries of the spatial secular stability. We find that this system is secularly stable in a large domain of eccentricities and inclinations.  相似文献   

16.
A mapping model is constructed to describe asteroid motion near the 3 : 1 mean motion resonance with Jupiter, in the plane. The topology of the phase space of this mapping coincides with that of the real system, which is considered to be the elliptic restricted three body problem with the Sun and Jupiter as primaries. This model is valid for all values of the eccentricity. This is achieved by the introduction of a correcting term to the averaged Hamiltonian which is valid for small values of the ecentricity.We start with a two dimensional mapping which represents the circular restricted three body problem. This provides the basic framework for the complete model, but cannot explain the generation of a gap in the distribution of the asteroids at this resonance. The next approximation is a four dimensional mapping, corresponding to the elliptic restricted problem. It is found that chaotic regions exist near the 3 : 1 resonance, due to the interaction between the two degrees of freedom, for initial conditions close to a critical curve of the circular model. As a consequence of the chaotic motion, the eccentricity of the asteroid jumps to high values and close encounters with Mars and even Earth may occur, thus generating a gap. It is found that the generation of chaos depends also on the phase (i.e. the angles andv) and as a consequence, there exist islands of ordered motion inside the sea of chaotic motion near the 3 : 1 resonance. Thus, the model of the elliptic restricted three body problem cannot explain completely the generation of a gap, although the density in the distribution of the asteroids will be much less than far from the resonance. Finally, we take into account the effect of the gravitational attraction of Saturn on Jupiter's orbit, and in particular the variation of the eccentricity and the argument of perihelion. This generates a mixing of the phases and as a consequence the whole phase space near the 3 : 1 resonance becomes chaotic. This chaotic zone is in good agreement with the observations.  相似文献   

17.
1992年以来,在海王星外的太阳系发现了近千个小天体,称为Kuiper带天体(KBO)或Edgeworth—Kuiper带天体,其中有一部分偏心率和倾角较大的小天体与海王星之间存在3:2平运动共振,轨道特征类似冥王星,命名为类冥王星,自KBO发现以来,天文学家们进行了多次小天区的搜索,发现了几个质量较大的KBO,通过数值计算,在轨道参数空间发现了两个和冥王星一样同时具有3种共振的区域,在这两个区域里的小天体既避免了海王星的强摄动又不会与冥王星密切交会,轨道非常稳定,因此有可能在其中发现质量较大的类冥王星。  相似文献   

18.
An adiabatic approximation for the non-planar, circular, restricted 3BP is presented for the external resonance 4/7. It can be used as a model for resonant Kuiper belt objects. The Hamiltonian is truncated at the fourth order in eccentricities and inclinations. After averaging, we have a system of two degrees of freedom with two frequencies. Numerical calculations show that the ratio of these frequencies is ~102. Having introduced suitable canonical variables, we used the adiabatic approach introduced by Wisdom in a different context. We left slow variables frozen and after solving the pendulum problem for fast variables, we used the averaged effect of fast variables on slow variables. In this way we obtained the guiding trajectories for slow variables as contour lines of adiabatic invariant. We discuss the existence of a chaotic region which is formed by trajectories crossing a critical curve which corresponds to the separatrix of fast pendulum motion, where the assumption of sharp division between fast and slow frequencies is not correct and the adiabatic theory fails. The model works well for e ~ 0.1 and can be used for finding the chaotic regions, but for e~ 0.17 it becomes unsatisfactory due to truncation and bad convergence of the Laplace expansion. Qualitatively it can, however, help us to understand how the protective mechanism works as the interplay of mean motion and Kozai–Lidov resonance.  相似文献   

19.
We demonstrate that the chaotic orbits of Prometheus and Pandora are due to interactions associated with the 121:118 mean motion resonance. Differential precession splits this resonance into a quartet of components equally spaced in frequency. Libration widths of the individual components exceed the splitting, resulting in resonance overlap which causes the chaos. Mean motions of Prometheus and Pandora wander chaotically in zones of width 1.8 and 3.1 deg yr−1, respectively. A model with 1.5 degrees of freedom captures the essential features of the chaotic dynamics. We use it to show that the Lyapunov exponent of 0.3 yr−1 arises because the critical argument of the dominant member of the resonant quartet makes approximately two separatrix crossings every 6.2 year precessional cycle.  相似文献   

20.
For the 3 : 1 Jovian resonance problem, the time scales of the two degrees of freedom of the resonant Hamiltonian are well-separated [5]. With the adiabatic approximation, the solution for the fast oscillations can be found in terms of the slowly varying variables. Thus the rapidly oscillating terms in the slow oscillation equations can be treated as forced terms. We refer to the resonance between the forcing and intrinsic frequencies as a forced secondary one in this paper. We discuss the forced secondary resonances in asteroidal motion at the 3 : 1 commensurability by using Wisdom's method. The results show that the orbits situated originally near the resonance will leave the neighbourhood of resonance and tend to the separatrices and critical points for different energies, respectively. We have not found any stochastic web as expected in this case. Moreover, we study the problem of validity on the approximation of a system.The Project Supported by the National Natural Science Foundation of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号