首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last decade, even in areas that had been considered tectonically stable, a great amount of Cenozoic, including the Quaternary period, structural data have been collected throughout Brazil. The main goal of this study is to describe the Cenozoic structures and tectonic evolution of an area that is located at the border of the Paraná Basin in the state of São Paulo.The research methods consisted of the analysis of: (1) brittle structure data, mainly conjugate fractures and fault slip data; (2) lineaments traced on air photos and TM Landsat and radar images; and (3) a second-order base surface map.The study area, during the Cenozoic, has been affected by five strike–slip tectonic events, which generated mainly strike–slip faults, and secondarily normal and reverse ones. The events were named, from the oldest to the youngest, E1-NE, E2-EW, E3-NW, E4-NS, and E5-NNE; and the maximum principal stresses σ1 strike approximately NE–SW, E–W, NW–SE, N–S, and NNE–SSW, respectively. Event E2-EW seems to have been contemporaneous with the deposition of the Rio Claro Formation, the most important Cenozoic deposit of probable Neogenic age, and also to have controlled the distribution of its deposits. Event E3-NW was the strongest one in the area, as is pointed out by structural data, and the maximum principal stress σ1 of event E5-NNE is partially concordant with the orientation of σH-max of well break-out data in the Paraná Basin, suggesting a Neotectonic activity for this event. Finally, discontinuities parallel and correlated to the directions of strike–slip faults of the Cenozoic events seem to have actively controlled the sculpturing of the relief in the study area.  相似文献   

2.
Raquel   《Geoforum》2001,32(4)
If we had to point out one single feature to define Brazilian cities today, it would be the existence of a dual built environment: a landscape produced by private entrepreneurs and contained within the framework of detailed urban legislation, and another one, three times greater, self-produced by the poor and eternally situated in an intermediate zone between the legal and the illegal. In addition to being an expression of economic and social disparities, this contrast has profound implications on the form and functioning of the cities. The sprawl of the precarious peripheries has lead to an absurd disconnection of poorly urbanized spaces and the city center where jobs, cultural and economic opportunities are concentrated. The effects of this persistent territorial exclusion are devastating and occur in both the peripheries and the city center. The purpose of this paper is to explore the nexus between the precarious and risky urbanization which took place in Brazilian cities and the urban violence that seems to be the most recent and visible face of this model, using the concrete example of different cities in the state of São Paulo. In order to construct the links it is first important to understand how patterns of economic development and population trends have contributed to the generation of risk urbanization and how planning and urban management policies interact with it.  相似文献   

3.
Facies analysis of widely distributed exposures of the 32·6 km2 and 8·1-km-long Warm Spring Canyon fan, central Death Valley, shows that it has been built principally by debris-flow deposits. These deposits were derived from a mature Panamint Range catchment mostly underlain by Precambrian mudrock, quartzite and dolomite. Stacked, clast-rich and matrix-supported debris-flow lobes of slightly bouldery, muddy, pebble–cobble gravel in beds 20–150 cm thick dominate the fan from apex to toe, accounting for 75–98% of most exposures. Interstratified with the debris flows are less abundant (2–25% of cuts), thinner (5–30 cm) and more discontinuous beds of clast-supported and imbricated, pebble–cobble gravel deposited by overland flows and gully flows. This facies formed by the surficial fine-fraction water winnowing of the debris flows primarily during recessional flood stage of the debris-flow events. Two other facies associations make up a small part of the fan. The incised-channel tract consists of a 250-m-wide clast-supported ribbon of irregularly to thickly bedded, boulder, pebble, cobble gravel nested within debris-flow deposits. This channel fill is oriented generally perpendicular to the Panamint range front. It formed by extensive erosion and winnowing of debris flows deposited within the incised channel, into which all water discharge from the catchment is funnelled. The limited presence of this facies only straddling the present incised channel indicates that this channel overall has maintained a consistent position on the fan except for slight lateral shifts, some caused by strike-slip offset. Fault offset temporarily closed the upper incised channel, causing recessional debris-flow mud to be ponded behind the dam. The other local facies assemblage consists of subrounded to rounded, moderately sorted pebble gravel in low-angle cross-beds that slope both basinwards and fanwards. This gravel was deposited in beachface, backshore and shoreface barrier-spit environments that developed where Lake Manly impinged on the Warm Spring fan during late Pleistocene time. These deposits straddle headcuts into, and were derived from, erosion of the debris-flow deposits. Wave energy sorted finer sediment from the shore zone, concentrated coarser sediment and rounded the coarse to very coarse pebble fraction by selective reworking.  相似文献   

4.
Prior to the Silurian a lack of land vegetation is expected to have influenced the processes of sedimentation on alluvial fans, principally by causing increased rates of run-off and erosion in the fan catchments. In the Cambro-Ordovician Rozel Conglomerate Formation, this effect was central to the generation of alluvial fan deposits that are unusually deficient in sand and clay, despite being sourced from a catchment dominated by sandstone and mudstone. Seven facies are identified, interpreted as representing the deposits of: (i) shallow stream and sheetfloods, (ii) channelized, non-cohesive debrisflows, (iii) sub-aerial mud-rich debrisflows, (iv) sub-aqueous mud-rich debrisflows, (v) low energy streams that reworked abandoned fan sectors, (vi) a sandflat-playa lake system and (vii) talus slopes. The first two facies are both clast-supported conglomerate, comprise 98% of the deposit, and represent deposition on active depositional lobes and in the fan head trench. The remaining facies are the products of infrequent sedimentary processes, fan abandonment processes and marginal sub-environments. The facies assemblage in many ways mimics that of a modern-day, water-lain, arid region fan. However, the palaeolatitude of these fans was high and the climate is inferred to have been cool and wet. The near absence of sandstone and mudstone beds with few mudflows is ascribed to rapid hinterland uplift and high rates of erosion resulting in minimal chemical breakdown of source rocks in the catchments. Such high rates of erosion are in turn ascribed to a combination of frequent rainstorms and an absence of vegetation cover.  相似文献   

5.
Petrologic and geochronological work was carried out on a roadside outcrop of amphibolite facies orthogneisses near São Lourenço da Serra, about 50 km southwest of São Paulo City. These orthogneisses belong to the Embu Complex, within the Neoproterozoic Brasiliano Orogenic Cycle mobile belts of SE Brazil. The outcrop consists of predominantly foliated biotite tonalites and granodiorites, which were cut by granitic veins and pegmatites prior to final deformation. SHRIMP U/Pb measurements on zircons from one granodioritic–tonalitic gneiss indicate magmatic crystallization of the protolith at 811±13 Ma (MSWD=1.0). Zircons with dates of ca. 2000 and ca. 1000 Ma in this rock are interpreted as inherited from older crust. One zircon analyzed from the gneiss and three zircons from a discordant pegmatitic vein indicate an event at 650–700 Ma, perhaps related to the intrusion of the pegmatites. A regression of Rb–Sr whole rock data for four biotite gneisses yielded an imperfect isochron, giving an apparent age of 821±68 Ma and an elevated initial 87Sr/86Sr ratio of 0.719±0.005. The elevated initial 87Sr/86Sr ratio and the inherited zircons indicate involvement of older crust in the genesis of the gneisses. Rb–Sr feldspar and whole rock pairs yield ca. 560 Ma tielines, giving the time of final cooling below 300–350 °C, and the cessation of medium-grade metamorphism and ductile deformation. These results document a series of tectono-thermal events spanning 250 million years during the Brasiliano Orogenic Cycle. They relate to ca. 800 Ma magmatic arc activity and later allochthonous terrane assembly during closure of the Adamastor Ocean, resulting in the accretion of Western Gondwana.  相似文献   

6.
The Anvil Spring Canyon fan of the Panamint Range piedmont in central Death Valley was built entirely by water-flow processes, as revealed by an analysis of widespread 2- to 12-m-high stratigraphic cuts spanning the 9·7 km radial length of this 2·5–5·0° sloping fan. Two facies deposited from fan sheetfloods dominate the fan from apex to toe. The main one (60–95% of cuts) consists of sandy, granular, fine to medium pebble gravel that regularly and sharply alternates with cobbly coarse to very coarse pebble gravel in planar couplets 5–25 cm thick oriented parallel to the fan surface. The other facies (0–25% of cuts) comprises 10- to 60-cm-thick, wedge-planar and wedge-trough beds of pebbly sand and sandy pebble gravel in backsets sloping 3–28°. Both facies are interpreted as resulting from rare, sediment-charged flash floods from the catchment, and were deposited by supercritical standing waves of expanding sheetfloods on the fan. Standing waves were repeatedly initiated, enlarged, migrated, and then terminated either by gradually rejoining the flood or by more violent breakage and washout. The frequent autocyclic growth and destruction of standing waves during an individual sheetflood resulted in the deposition of multiple coarse and fine couplet and backset sequences 50–250 cm thick across the active depositional lobe of the fan. Erosional intensity during washout of the standing wave determined whether early-phase backset-bed deposits or washout-phase sheetflood couplet deposits were selectively preserved in a given cycle. Two minor facies are also found in the Anvil fan. Pebble–cobble gravel lags (0–20% of cuts) are present above erosional scours into the sheetflood couplet and backset deposits. They consist of coarse gravel concentrated through fine-fraction winnowing of the host sheetflood facies by sediment-deficient water flows. This reworking occurred during recessional flood stage or from non-catastrophic discharge during the long intervals between major flash floods. This facies is common at the surface, giving rise to a ‘braided-stream’ appearance. However, it is stratigraphically limited, present as thin, continuous to discontinuous beds or lenses that bound 50- to 250-cm-thick sheetflood sequences. The other minor facies of the Anvil fan consists of clast-supported and imbricated, thickly stratified, pebbly, cobbly, boulder gravel present in narrow, radially aligned ribbons nested within sheetflood deposits. This facies is interpreted as representing deposition in the incised channel of the fan, a subenvironment characterized by greater flow competence resulting from maintained depth from channel-wall confinement, and by more frequent water flows and winnowing events caused by its direct connection with the catchment feeder channel.  相似文献   

7.
The Miocene Barreiras Formation in the Middle Rio Capim area records an incised valley system for which facies analysis and ichnology (Skolithos, Ophiomorpha, Planolites, Gyrolithes, Taenidium) suggest an estuarine character. Three stratigraphic units are recognized (from bottom to top): Unit 1 includes an inner estuarine tidal channel complex and tidal flat/salt marsh deposits; Unit 2 consists of estuarine bay/lagoon and flood tidal delta deposits related to the estuary mouth; and Unit 3 includes a tidal channel with a tidal point bar, as well as tidal flat/salt marsh deposits similar to those from Unit 1. These units and their bounding surfaces record the history of relative sea level changes in the estuary. After a sea level drop, the valley was inundated and formed an amalgamated sequence boundary and transgressive surface. Transgression (Unit 1) promoted the landward shift of flood tidal deltas and lagoon settings (Unit 2). The system then moved seaward, with the superposition of inner estuarine deposits (Unit 3) over Unit 2. Facies architecture seems to have been controlled by tectonics, as shown by: the paleovalley orientation according to the main tectonic structures of the basin; the presence of faults and fractures that displace the basal unconformity; and the abundance of soft sediment deformation.  相似文献   

8.
Metamorphic conditions are described for three major tectonic entities on the basis of geothermobarometry in a huge Neoproterozoic nappe complex that verges toward the southern border of the São Francisco craton. The uppermost Socorro-Guaxupé Nappe, represented by its granulite facies basal portion, yields a maximum temperature and pressure of 890 °C and 11 kbar. Its metamorphic evolution is consistent with heating at the base of the crust as a result of an abnormally high geothermal gradient, probably due to underplating by the lithospheric mantle. The underlying Três Pontas-Varginha Nappe yields two somewhat distinct PT paths, both characterized by peak assemblages in the kyanite stability field. The basal kyanite-bearing granulites show higher peak pressure values (15 kbar at 840 °C) and a trajectory that continues in the kyanite stability field, whereas the upper sillimanite granulites show higher temperatures (880 °C at 13 kbar) and a steeper path toward the sillimanite stability field. Data for the Carmo da Cachoeira nappe reveal a steep trajectory, in which the elevated maximum pressure (18.5 kbar at 820 °C) was obtained from a garnet amphibolite that lies along its basal contact. The inverted metamorphic pattern previously observed across these sequences is confirmed by our thermobarometric data, which reveal that the highest temperatures were attained toward the top of the pile.  相似文献   

9.
Alluvial fans and fan deltas can, in principle, have exactly the same upstream conditions, but fan deltas by definition have ponding water at their downstream boundary. This ponding creates effects on the autogenic behaviour of fan deltas, such as backwater adaptation, mouth bars and backward sedimentation, whereas alluvial fans may lack these effects. Hence the present authors hypothesize that morphodynamics on alluvial fans are determined primarily by upstream boundary conditions, whereas morphodynamics on fan deltas are determined by both the upstream and the downstream boundary condition and changes therein. To isolate the effects of the upstream and downstream boundaries, five new alluvial fan experiments are compared with the details of three fan deltas published earlier that were formed under very similar and simple conditions. Similar to the fan deltas, the alluvial fans build up by sheet flow, whilst quasi‐regular periods of incision cause temporary channelized flow. Incision is followed by channel backfilling, after which the fan returns to sheet flow. The channelization and backfilling in alluvial fans is markedly less pronounced and more prone to autogenic disturbance than in fan deltas. The difference is caused by morphodynamics at the downstream boundary. In a fan delta, the flow expansion of the channel causes deposition of all the sediment, which forms a mouth bar and causes strong backfilling. In an alluvial fan, on the other hand, the slope break at the fan perimeter causes some deposition, but transport is not reduced to zero. Consequently, the backfilling in alluvial fans is less pronounced than in fan deltas. Other published experiments support this trend: removal of the mouth bar by a river leads to permanent channelization, whilst pronounced mouth‐bar formation in highly channelized deltas promotes backward sedimentation. The experimental results for this study predict that, when alluvial fans prograde into lakes or deep rivers, they transition to fan deltas with increasingly deeper channels and thicker backfill deposits.  相似文献   

10.
A sedimentary succession more than 5800 m thick, including the Lower Eocene to Lower Oligocene Fenghuoshan Group, the Lower Oligocene Yaxicuo Group, and the Lower Miocene Wudaoliang Group, is widely distributed in the Hoh Xil piggyback basin, the largest Cenozoic sedimentary basin in the hinterland of the Tibetan plateau. The strata of the Fenghuoshan and Yaxicuo groups have undergone strong deformation, whereas only minor tilting has occurred in the Wudaoliang Group. We analyze their sedimentary facies and depositional systems to help characterize continental collision and early uplift of the Tibetan plateau. The results indicate fluvial, lacustrine, and fan-delta facies for the Fenghuoshan Group, fluvial and lacustrine facies for the Yaxicuo Group, and lacustrine facies for the Wudaoliang Group. Development of the Hoh Xil basin underwent three stages: (1) the Fenghuoshan Group was deposited mainly in the Fenghuoshan-Hantaishan sub-basin between 56.0 and 31.8 Ma ago; (2) the Yaxicuo Group was deposited mainly in the Wudaoliang and Zhuolai Lake sub-basins between 31.8 and 30.0 Ma ago; and (3) the Wudaoliang Group was deposited throughout the entire Hoh Xil basin during the Early Miocene. The Fenghuoshan and Yaxicuo groups were deposited in piggyback basins during the Early Eocene to Early Oligocene, whereas the Wudaoliang Group was deposited in a relatively stable large lake. The Hoh Xil basin underwent two periods of strong north–south shortening, which could have been produced by the collision between India and Asia and the early uplift of the Tibetan plateau. The study suggests the Hoh Xil region could reach a high elevation during the Late Oligocene and the diachronous uplift history for the Tibetan plateau from east to west.  相似文献   

11.
Over the last decades, increasing water demands have fostered research to obtain high well yields in crystalline terrains where, besides the intrinsic properties of rocks, the groundwater flow depends on several factors. The depth of the wells, the lithotypes, the presence and thickness of sedimentary coverings and weathered layers, the landforms, the geological structures, and the effects of tectonic stresses are among the most investigated factors considered as determinant of well productivity. The influence of these factors on productivity of wells that exploit the Crystalline Aquifer System in the Jundiaí River Catchment, southeastern Brazil, is investigated in this work. The largest region of the studied area is located on the Precambrian Basement, partially covered by sedimentary deposits. The results show that the sedimentary deposits and the weathered layer are important for high well yield, but it also depends on the existence of a net of open fractures, in order to maintain high productivity. The sites that have more possibility of occurrence of such structures are the regional shear and fault zones and other minor structures with NW–SE and E–W directions, which characterize areas subjected to transtensional stress related to the neotectonics.  相似文献   

12.
The effects of climate change on eroding landscapes and the terrestrial sedimentary record are poorly understood. Using mountain catchment–alluvial fan systems as simple analogues for larger landscapes, a wide range of theoretical studies, numerical models and physical experiments have hypothesized that a change in precipitation rate could leave a characteristic signal in alluvial fan sediment flux, grain size and down‐system fining rate. However, this hypothesis remains largely untested in real landscapes. This study measures grain‐size fining rates from apex to toe on two alluvial fan systems in northern Death Valley, California, USA, which each have well‐exposed modern and ca 70 ka surfaces, and where the long‐term tectonic boundary conditions can be constrained. Between them, these surfaces capture a well‐constrained temporal gradient in climate. A grain‐size fining model is adapted, based on self‐similarity and selective deposition, for application to these alluvial fans. This model is then integrated with cosmogenic nuclide constraints on catchment erosion rates, and observed grain‐size fining data from two catchment‐fan systems, to estimate the change in sediment flux from canyon to alluvial fan that occurred between mid‐glacial and modern interglacial conditions. In a fan system with negligible sediment recycling, a ca 30% decrease in precipitation rate led to a 20% decrease in sediment flux and a clear increase in the down‐fan rate of fining, supporting existing landscape evolution models. Consequently, this study shows that small mountain catchments and their alluvial fan stratigraphy can be highly sensitive to orbital climate changes over <105 year timescales. However, in the second fan system it is observed that this sensitivity is completely lost when sediment is remobilized and recycled over a time period longer than the duration of the climatic perturbation. These analyses offer a new approach to quantitatively reconstructing the effects of past climate changes on sedimentation, using simple grain‐size data measured in the field.  相似文献   

13.
The Denizli Basin (southwestern Anatolia, Turkey) contains a record of environmental changes dating since the Early Miocene. Detailed facies analysis of the Neogene formations in this half-graben enables us to document successive depositional regimes and palaeogeographic settings. Sedimentation commenced in the Early Miocene with the deposition of alluvial-fan and fluvial facies (K?z?lburun Formation). At this stage, alluvial fans sourced from elevated areas to the south prograded towards the basin centre. The Middle Miocene time saw the establishment of marginal lacustrine and wetland environments followed by the development of a shallow lake (Sazak Formation). The uppermost part of this unit consists of evaporitic saline lake and saline mudflat facies that grade upward into brackish lacustrine deposits of Late Miocene-Pliocene age (Kolankaya Formation). The lake became shallower at the end of the Pliocene time, as is indicated by expansion shoreface/foreshore facies. In the Early Quaternary, the Denizli Basin was transformed into a graben by the activation of ESE-trending normal faults. Alluvial fans were active at the basin margins, whereas a meandering river system occupied the basin central part.Oxygen isotope data from carbonates in the successive formations show an alternation of wetter climatic periods, when fresh water settings predominated, and very arid periods, when the basin hosted brackish to hypersaline lakes. The Neogene sedimentation was controlled by an active, ESE-trending major normal fault along the basin's southern margin and by climatically induced lake-level changes. The deposition was more or less continuous from the Early Miocene to Late Pliocene time, with local unconformities developed only in the uppermost part of the basin-fill succession. The unconformable base of the overlying Quaternary deposits reflects the basin's transformation from a half-graben into a graben system.  相似文献   

14.
Erzurum, the biggest city of Eastern Anatolia Region in the Turkey, is located in Karasu Plain. Karasu Plain, located on the central segment of the Erzurum Fault Zone, is an intermountain sedimentary basin with a Miocene-Quaternary volcanic basement, andesitic-basaltic lava flows and fissure eruptions of basaltic lava. It was filled in the early Quaternary by lacustrine fan-delta deposits. The basin is characterized by NNE-SSW trending sinistral wrench faults on its eastern margin and ENE-WSW trending reverse faults on its southern margin. Both systems of active faults intersect very near to Erzurum, which is considered to be the most likely site for the epicenter of a probable future large earthquake. Historical records of destructive earthquakes, morphotectonic features formed by paleo-seismic events and instrument seismic data of region indicate to a very high regional seismicity. The residential areas of Erzurum are located on thick alluvial fan deposits forming under the control of faults on the central segment of the Erzurum Fault Zone, which is one of the most active fault belts of the East Anatolian Region. Over time, the housing estates of city such as Yenisehir and Yildizkent have been expanded toward to the west and southwest part of Erzurum as a consequence of rapid and massive construction during the last 30 years. Geotechnical investigation has therefore been undertaken the residential areas of city in order to characterize geotechnical properties over the varied lithologies examine the potential for geotechnical mapping and assess the foundation conditions of the present and future settlement areas. The geological field observations and operations have been performed to make the soil sampling and characterize the lateral and vertical changes in thickness of the alluvial deposits in trenches, excavations and deep holes with 6–12 m sections. The soil samples have been subjected to a series of tests under laboratory conditions to obtain physical and mechanical properties. Furthermore, the standard penetration tests have been applied to the soils under field conditions. The geological field observations, geotechnical data and distribution of bearing capacity have been considered for the geotechnical mapping. Based on the geotechnical map, there are five geotechnical zones distinguished in the study area.  相似文献   

15.
The Bocaina Plateau, which is situated on the eastern flank of the continental rift of southeastern Brazil, is the highest part of the Serra do Mar. Topographic relief in this area is suggested to be closely related to its complex tectono-magmatic evolution since the breakup of Western Gondwana and opening of the South Atlantic Ocean. Apatite fission track ages and track length distributions from 27 basement outcrops were determined to assess these hypotheses and reconstruct the denudation history of the Bocaina Plateau. The ages range between 303 ± 32 and 46 ± 5 Ma, and are significantly younger than the stratigraphic ages. Mean track lengths vary from 13.44 ± 1.51 to 11.1 ± 1.48 μm, with standard deviations between 1.16 and 1.83 μm. Contrasting ages within a single plateau and similar ages at different altitudes indicate a complex regional tectonothermal evolution. The thermal histories inferred from these data imply three periods of accelerated cooling related to the Early Cretaceous continental breakup, Early Cretaceous alkaline magmatism, and the Paleogene evolution of the continental rift of southeastern Brazil. The oldest fission track ages (> 200 Ma) were obtained in the Serra do Mar region, suggesting that these areas were a long-lived source of sediments for the Paraná, Bauru, and Santos basins.  相似文献   

16.
The easternmost domain of the Borborema Province, northeastern Brazil, presents widespread, extensional-related high-temperature metamorphism during the Brasiliano (=Pan-African) orogeny. This event reached the upper amphibolite to granulite facies and provoked generalized migmatization of Proterozoic metapelitic rocks of the Seridó Group and tonalitic to granodioritic orthogneisses of the Archean to Paleoproterozoic basement. We report new geochronological data based on electron microprobe dating of monazite from metapelitic migmatite and leuconorite within the high-T shear zones that make up the eastern continuation of the huge E–W Patos shear belt. These data were also constrained by using the Sm–Nd isotopic systematic on garnet from a syntectonic alkaline granite and two garnet-bearing leucosomes. The results suggest an age of about 578 to 574 Ma for the peak of the widespread high-T metamorphism. This event is best recorded by Sm–Nd garnet-whole rock ages. The U–Th–Pb isotopes on monazite of the metapelitic migmatite show a younger thermal event at 553 ± 10 Ma. When compared to the Sm–Nd garnet-whole rock ages, the U–Th–Pb electron probe monazite ages seem to record an event of slightly lower temperatures after the peak of the high-T metamorphism. This may reflect the difference in the isotopic behavior of the geochronological methods employed. Otherwise, the U–Th–Pb ages on monazites could indicate an event not yet very well defined. In anyway, this paper reveals the partial or even complete re-opening and resetting of the U–Th–Pb isotopic system produced by the action of low-T Ca-rich fluid.  相似文献   

17.
A 172 cm-long sediment core was collected from a small pristine lake situated within a centripetal drainage basin in a tropical karst environment (Ribeira River valley, southeastern Brazil) in order to investigate the paleoenvironmental record provided by the lacustrine geochemistry. Sediments derived from erosion of the surrounding cambisoils contain quartz, kaolinite, mica, chlorite and goethite. Accelerator mass spectroscopy (AMS) 14C dating provided the geochronological framework. Three major sedimentary units were identified based on the structure and color of the sediments: Unit III from 170 to140 cm (1030±60–730±60 yr BP), Unit II from 140 to 90 cm (730±60–360±60 yr BP) and Unit I from 90 to 0 cm (360±60–0 yr BP). Results of major and trace element concentrations were analysed through multivariate statistical techniques. Factor analysis provided three factors accounting for 72.4% of the total variance. F1 and F2 have high positive loadings from K, Ba, Cs, Rb, Sr, Sc, Th, light rare earth element (LREE), Fe, Cr, Ti, Zr, Hf and Ta, and high negative loadings from Mg, Co, Cu, Zn, Br and loss on ignition (LOI). F3, with positive loadings from V and non-metals As and Sb, accounts for a low percentage (9.7%) of the total variance, being therefore of little interpretative use. The profile distribution of F1 scores reveals negative values in Units I and III, and positive values in Unit II, meaning that K, Ba, Cs, Rb, Sr, Sc, Th, LREE, Fe, Cr, Ti, Zr, Hf and Ta are relatively more concentrated in Unit II, and Mg, Co, Cu, Zn and Br are relatively more abundant in Units I and III. The observed fluctuations in the geochemical composition of the sediments are consistent with slight variations of the erosion intensity in the catchment area as a possible response to variations of climatic conditions during the last millennium.  相似文献   

18.
Groundwater samples from different aquifers occurring at center/northeast portion of São Paulo State, Brazil, were collected and chemically analyzed. The waters leaching Mesozoic sediments are generally more acid (pHaverage=5.9) and have lower values for total dissolved solids (TDSaverage=105 mg/L) than those obtained for waters leaching Paleozoic sediments of Tubarão Group. First-degree trend surfaces revealed that the deeper tubular wells occur towards east/southeast and exploit Paleozoic sediments as well fractured/fissured diabases/basalts, whereas the tubular wells in the west/northwest region are shallower. Piper diagrams indicated that the majority of the waters are a blend of waters from different lithologies. Significant correlations were found among nitrate, chloride and bicarbonate, suggesting the occurrence of some anthropogenic inputs, whereas elevated alpha activity of geogenic 226Ra indicated the need of a broad radiometric survey in the area.  相似文献   

19.
The purpose of this report is to explain geochemical and stable isotopes trends in the Brazilian unit of the Guarani Aquifer System (Botucatu and Piramboia aquifers) in S?o Paulo State, Brazil. Trends of dissolved species concentrations and geochemical modeling indicated a significant role of cation exchange and dissolution of carbonates in downgradient evolution of groundwater chemistry. Loss of calcium by the exchange for sodium drives dissolution of carbonates and results in Na–HCO3 type of groundwater. The cation-exchange front moves downgradient at probably much slower rate compared to the velocity of groundwater flow and at present is located near to the cities of Sert?ozinho and águas de Santa Barbara (wells PZ-34 and PZ-148, respectively) in a shallow confined area, 50–70 km from the recharge zone. Part of the sodium probably enters the Guarani Aquifer System. together with chloride and sulfate from the underlying Piramboia Formation by diffusion related to the dissolution of evaporates like halite and gypsum. High concentrations of fluorine (up to 13.3 mg/L) can be explained by dissolution of mineral fluoride also driven by cation exchange. However, it is unclear if the dissolution takes place directly in the Guarani Aquifer System or in the overlying basaltic Serra Geral Formation. There is depletion in δ 2H and δ 18O values in groundwater downgradient. Values of δ 13C(DIC) are enriched downgradient, indicating dissolution of calcite under closed system conditions. Values of δ 13C(DIC) in deep geothermal wells are very high (>–6.0‰) and probably indicate isotopic exchange with carbonates with δ 13C about –3.0‰. Future work should be based on evaluation of vertical fluxes and potential for penetration of contamination to the Guarani Aquifer System. Electronic Publication  相似文献   

20.
Autogenic cycles of channelization, terminal deposit formation, channel backfilling and channel abandonment have been observed in the formation of fans and deltas. In subcritical flow, these terminal deposits are characterized as mouth bars that lead to flow bifurcation, backwater and eventual channel backfilling. Similar, although less well characterized, cycles also take place on supercritical subaerial and submarine fans. This study investigates the hydraulics and morphodynamics of autogenic incision and backfilling cycles associated with supercritical distributive channel flow in alluvial fans. The research questions of the study are: (i) how are supercritical autogenic cycles on alluvial fans different from the subcritical cycles; (ii) what are the hydraulic and sediment transport characteristics at the various stages of autogenic feedback cycles; and (iii) what role do the cycles play in the overall fan evolution? These questions are investigated in the laboratory, and emphasis is placed on measuring the hydraulic and topographic evolution of the systems during the cycles. The cycles arise quasi‐periodically under constant water and sediment discharge. Periods of sheet‐like flow are competent to move sediment () but not competent enough to carry the full imposed load. The net result is preferential deposition near the inlet, resulting in fan steepening and an increase in flow competency with time. At a sediment supply to capacity ratio of , the sheet‐like flow is unstable to small erosional events near the inlet, resulting in the collapse of the distributed flow to a strong channelized state. During channelization, a graded () supercritical (Fr > 1) channel develops and transports eroded and fed sediment up to and through the fan front – extending the fan, initiating a lobe shaped deposit and reducing the local slope. The slopes defined by a sheet‐like flow with and channelized flow with set the maximum and minimum slopes on the fan, respectively. Once formed, graded channels act as bypass conduits linking the inlet with the terminal deposit. On average, deposits are up to six channel depths in thickness and have volumes approximately five times that of the excavated channel. The main distinctive characteristics of the supercritical cycles relate to how the flow interacts with the terminal deposit. At the channel to deposit transition, the flow undergoes a weak hydraulic jump, resulting in rapid sedimentation, dechannelization and lateral expansion of the flow, and deposition of any remaining sediment on top of the channel fill and floodplain. This process often caps the channel as the deposit propagates up channel erasing memory of the excavated channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号