首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dimethylsulphide (DMS) is an important sulphur‐containing trace gas produced by enzymatic cleavage of its precursor compound, dimethylsulphoniopropionate (DMSP), which is released by marine phytoplankton in the upper ocean. After ventilation to the atmosphere, DMS is oxidised to form sulphate aerosols which in the unpolluted marine atmosphere are a major source of cloud condensation nuclei (CCN). Because the micro‐physical properties of clouds relevant to climate change are sensitive to CCN concentration in air, it has been postulated that marine sulphur emissions may play a rôle in climate regulation. The Subantarctic Southern Ocean (41–53°S) is relatively free of anthropogenic sulphur emissions, thus sulphate aerosols will be mainly derived from the biogenic source of DMS, making it an ideal region in which to evaluate the DMS‐climate regulation hypothesis. We have extended a previous modelling analysis of the DMS cycle in this region by employing a coupled general circulation model (CGCM) which has been run in transient mode to provide a more realistic climate scenario. The CGCM output provided meteorological data under the IPCC/IS92a radiative forcing scenario. A DMS production model has been forced with the CGCM climate data to simulate the trend in the sea‐to‐air DMS flux for the period 1960 to 2080, corresponding to equivalent CO2 tripling relative to pre‐industrial levels. The results confirm a minor but non‐negligible increase in DMS flux in this region, in the range +1% to +6% predicted over the period simulated. Uncertainty analysis of the DMS model predictions have confirmed the positive sign for the change in DMS flux, that is a negative DMS feedback on warming.  相似文献   

2.
Concentrations of nitrate, ammonium and phosphate have been monitored from June to October 1989 in rain water collected at the Magdalen Islands (Gulf of St. Lawrence, Québec, Canada). Nitrate was the main dissolved organic nitrogen (DIN) compound with concentrations ranging from 2.2 to 95 μM. Ammonium was occasionally dominant and varied between 0.7 and 41 μM. Phosphate concentrations were low and extremely variable with values ranging from 0.2 μM to 2 μM. All three inorganic nutrients were positively correlated and the relationships best described by a non-linear regression model. NH4+:NO3 atomic ratios fell within the range of those previously measured, i.e. the northeast part of North America, and suggest a continental origin for both DIN and phosphate. Measured pH values failed to show high levels of acidity (pH=4.8 ±0.4).For the lagoonal system of the Magdalen Islands, atmospheric deposition is the major source of nitrate during the summer period we surveyed. In such an ecosystem the atmospheric inputs of DIN are greater than those from the sediment and may at times contribute up to 70% of the phytoplankton primary production requirements. In contrast, phosphate of rain origin was only of marginal importance relative to sediment inputs.  相似文献   

3.
A kinetic model for the OH-initiated homogeneous gas phase oxidation of dimethylsulfide (DMS) in the atmosphere (Saltelli and Hjorth, 1995), has been extended here to include the liquid phase chemistry. The updated model has then been employed to predict the temperature dependency of the MSA/nss-SO42- ratio. Model predictions have been compared with observational data reported in Bates et al. (1992). Sensitivity and uncertainty analysis has been performed in a Monte Carlo fashion to identify which are the important uncertainties on the input parameters and which are the possible combinations of parameter values that could explain the field observations. Results of the analysis have indicated that the temperature dependencies of the interactions between gas phase and liquid phase chemistry may to a large extent explain the observed T-dependence of the MSA/nss- SO42- ratio. The potential role of multi-phase atmospheric chemistry, not only in the case of SO2 but also of other oxidation products of DMS and, particularly, of DMS itself, has been highlighted.  相似文献   

4.
Potential impact of climate change on marine dimethyl sulfide emissions   总被引:1,自引:0,他引:1  
Dimethyl sulfide (DMS) is a biogenic compound produced in sea-surface water and outgased to the atmosphere. Once in the atmosphere, DMS is a significant source of cloud condensation nuclei in the unpolluted marine atmosphere. It has been postulated that climate may be partly modulated by variations in DMS production through a DMS-cloud condensation nuclei-albedo feedback. We present here a modelled estimation of the response of DMS sea-water concentrations and DMS fluxes to climate change, following previous work on marine DMS modeling ( Aumont et al., 2002 ) and on the global warming impact on marine biology ( Bopp et al., 2001 ). An atmosphere–ocean general circulation model (GCM) was coupled to a marine biogeochemical scheme and used without flux correction to simulate climate response to increased greenhouse gases (a 1% increase per year in atmospheric CO2 until it has doubled). The predicted global distribution of DMS at  1 × CO2  compares reasonably well with observations; however, in the high latitudes, very elevated concentrations of DMS due to spring and summer blooms of Phaeocystis can not be reproduced. At  2 × CO2  , the model estimates a small increase of global DMS flux to the atmosphere (+2%) but with large spatial heterogeneities (from −15% to +30% for the zonal mean). Mechanisms affecting DMS fluxes are changes in (1) marine biological productivity, (2) relative abundance of phytoplankton species and (3) wind intensity. The mean DMS flux perturbation we simulate represents a small negative feedback on global warming; however, the large regional changes may significantly impact regional temperature and precipitation patterns.  相似文献   

5.
Abstract

Dimethylsulfoxide (DMSO) is an ubiquitous, albeit poorly understood, component of the marine sulfur cycle. Conventionally, the accepted formation pathways are the photochemical and microbial oxidation of dimethylsulfide (DMS). The principal loss mechanism is thought to be via microbial transformation, either consumption or reduction to DMS. The interactions between DMSO and DMS are likely to be important in controlling sea surface concentrations of DMS, and thus DMSO could influence the role played by DMS in global climate regulation. This review examines current knowledge of the distribution of DMSO in aquatic environments and the possible link between DMSO, DMS and global climate control. Mechanisms for the formation and loss of DMSO are also considered in addition to some of the factors influencing these processes. The review also considers that DMSO may be biosynthesized by phytoplankton, representing a non‐DMS source for DMSO, and that DMSO can undergo photochemical oxidation, a potential loss mechanism for DMSO in the marine environment.  相似文献   

6.
A method has been developed for determining trace quantities of dimethyl sulfoxide (DMSO) in aqueous solutions using isotope dilution gas chromatography/mass spectrometry. The method consisted of first reducing DMSO to dimethyl sulfide (DMS), followed by purge and trap preconcentration of DMS. The concentration of DMSO was determined from the signal ratio obtained for the parent ions of DMS and d6-DMS, and the known aqueous concentration of d6-DMSO. The precision of this method was determined to be ± 2.9 %, based on replicate DMSO determinations of a test solution prepared by adding isotopically unenriched (h6-DMSO) to distilled water. The detection limit was 0.010 nmoles/L for the sampling conditions used in this study. This method was applied to the determination of DMSO concentrations in both rain and sea water. The concentration of DMSO in rain was found to be in the range of 2–4 nmoles/L for samples collected at an inland location (Phila, PA) and 8–11 nmoles/L for samples collected at a coastal location (Lewes, DE). Determination of DMSO in sea water required special sample preparation steps to eliminate positive interferences. A depth profile of DMS, DMSO, and dimethyl sulfoniopropionate (DMSP) concentrations is reported for sea water collected off the coast of Ocean City, Md, in August, 1990  相似文献   

7.
This study reports comparisonsbetween model simulations, based on current sulfurmechanisms, with the DMS, SO2 and DMSOobservational data reported by Bandy et al.(1996) in their 1994 Christmas Island field study. For both DMS and SO2, the model results werefound to be in excellent agreement with theobservations when the observations were filtered so asto establish a common meteorological environment. Thisfiltered DMS and SO2 data encompassedapproximately half of the total sampled days. Basedon these composite profiles, it was shown thatoxidation of DMS via OH was the dominant pathway withno more than 5 to 15% proceeding through Cl atoms andless than 3% through NO3. This analysis wasbased on an estimated DMS sea-to-air flux of 3.4 ×109 molecs cm-2 s-1. The dominant sourceof BL SO2 was oxidation of DMS, the overallconversion efficiency being evaluated at 0.65 ± 0.15. The major loss of SO2 was deposition to theocean's surface and scavenging by aerosol. Theresulting combined first order k value was estimated at 1.6 × 10-5 s-1. In contrast to the DMSand SO2 simulations, the model under-predictedthe observed DMSO levels by nearly a factor of 50. Although DMSO instrument measurement problems can notbe totally ruled out, the possibility of DMSO sourcesother than gas phase oxidation of DMS must beseriously considered and should be explored in futurestudies.  相似文献   

8.
A box model, involving simple heterogeneous reaction processes associated with the production of non-sea-salt sulfate (nss-SO 4 2– ) particles, is used to investigate the oxidation processes of dimethylsulfide (DMS or CH3SCH3) in the marine atmosphere. The model is applied to chemical reactions in the atmospheric surface mixing layer, at intervals of 15 degrees latitude between 60° N and 60° S. Given that the addition reaction of the hydroxyl radical (OH) to the sulfur atom in the DMS molecule is faster at lower temperature than at higher temperature and that it is the predominant pathway for the production of methanesulfonic acid (MSA or CH3SO3H), the results can well explain both the increasing tendency of the molar ratio of MSA to nss-SO 4 2– toward higher latitudes and the uniform distribution with latitude of sulfur dioxide (SO2). The predicted production rate of MSA increases with increasing latitude due to the elevated rate constant of the addition reaction at lower temperature. Since latitudinal distributions of OH concentration and DMS reaction rate with OH are opposite, a uniform production rate of SO2 is realized over the globe. The primary sink of DMS in unpolluted air is caused by the reaction with OH. Reaction of DMS with the nitrate radical (NO3) also reduces DMS concentration but it is less important compared with that of OH. Concentrations of SO2, MSA, and nss-SO 4 2– are almost independent of NO x concentration and radiation field. If dimethylsulfoxide (DMSO or CH3S(O)CH3) is produced by the addition reaction and further converted to sulfuric acid (H2SO4) in an aqueous solution of cloud droplets, the oxidation process of DMSO might be important for the production of aerosol particles containing nss-SO 4 2– at high latitudes.  相似文献   

9.
A global 3-D Lagrangian chemistry-transport model STOCHEM is used to describe the tropospheric distributions of four components of the secondary atmospheric aerosol: nitrate, sulphate, ammonium and organic compounds. The model describes the detailed chemistry of the formation of the acid precursors from the oxidation of SO2, DMS, NOx, NH3 and terpenes and their uptake into the aerosol. Model results are compared in some detail with the available surface observations. Comparisons are made between the global budgets and burdens found in other modelling studies. The global distributions of the total mass of secondary aerosols have been estimated for the pre-industrial, present day and 2030 emissions and large changes have been estimated in the mass fractions of the different secondary aerosol components.  相似文献   

10.
In the boreal biome, fire is the major disturbance agent affecting ecosystem change, and fire dynamics will likely change in response to climatic warming. We modified a spatially explicit model of Alaskan subarctic treeline dynamics (ALFRESCO) to simulate boreal vegetation dynamics in interior Alaska. The model is used to investigate the role of black spruce ecosystems in the fire regime of interior Alaska boreal forest. Model simulations revealed that vegetation shifts caused substantial changes to the fire regime. The number of fires and the total area burned increased as black spruce forest became an increasingly dominant component of the landscape. The most significant impact of adding black spruce to the model was an increase in the frequency and magnitude of large-scale burning events (i.e., time steps in which total area burned far exceeded the normal distribution of area burned). Early successional deciduous forest vegetation burned more frequently when black spruce was added to the model, considerably decreasing the fire return interval of deciduous vegetation. Ecosystem flammability accounted for the majority of the differences in the distribution of the average area burned. These simulated vegetation effects and fire regime dynamics have important implications for global models of vegetation dynamics and potential biotic feedbacks to regional climate.  相似文献   

11.
Summary  A K-type diffusion model coupled with a massconsistent wind model is applied for one of the rural biological waste disposal sites in Austrian Alps. The site is situated in the P?ls valley in the eastern Alps, 250 km south-west of Vienna in Austria Aim of the study is to demonstrate dispersion of H2S from the site to near by village. Model simulations are carried out each for an evening and a morning transition case characterized by flow reversals. The role of locally generated wind in changing the pollutant distribution over nearby residential area is investigated. Surface observations at two stations toward the open boundaries of the main valley are used to derive the turbulence parameters and then to obtain initial inputs of wind profiles. The turbulence parameters behave analogous to that over a plane terrain after the establishment of the valley wind. The model simulations are done for eight hours during the evening transition and eighteen hours for the morning transition by incorporating the wind field from a mass consistent wind model. The results are compared with SF6 tracer experiments conducted during those periods. The model outputs and the observations at various points inside the valley are in good correlation except for NW part of the valley after the reversal of valley wind. The results also reveal the potential of a simple approach with minimized inputs. Received August 15, 1997 Revised August 15, 1998  相似文献   

12.
A box model was constructed to investigate connections between the particulate MSA to non-sea-salt sulfate ratio, R, and DMS chemistry in a clean marine boundary layer. The simulations demonstrated that R varies widely with particle size, which must be taken into account when interpreting field measurements or comparing them with each other. In addition to DMS gas-phase chemistry, R in the submicron size range was shown to be sensitive to the factors dictating sulfate production via cloud processing, to the removal of SO2 from the boundary layer by dry deposition and sea-salt oxidation, to the entrainment of SO2 from the free troposphere, to the relative concentration of sub- and supermicron particles, and to meteorology. Three potential explanations for the increase of R toward high-latitudes during the summer were found: larger MSA yields from DMS oxidation at high latitudes, larger DMSO yields from DMS oxidation followed by the conversion of DMSO to MSA at high latitudes, or lower ambient H2O2 concentrations at high latitudes leading to less efficient sulfate production in clouds. Possible reasons for the large seasonal amplitude of R at mid and high latitudes include seasonal changes in the partitioning of DMS oxidation to the OH and NO3 initiated pathways, seasonal changes in the concentration of species participating the DMS-OH reaction pathway, or the existence of a SO2 source other than DMS oxidation in the marine boundary layer. Even small anthropogenic perturbations were shown to have a potential to alter the MSA to non-sea-salt sulfate ratio.  相似文献   

13.
This paper describes the datasets from the Scenario Model Intercomparison Project(ScenarioMIP) simulation experiments run with the Chinese Academy of Sciences Flexible Global Ocean–Atmosphere–Land System Model,GridPoint version 3(CAS FGOALS-g3). FGOALS-g3 is driven by eight shared socioeconomic pathways(SSPs) with different sets of future emission, concentration, and land-use scenarios. All Tier 1 and 2 experiments were carried out and were initialized using historical runs. A branch run method was used for the ensemble simulations. Model outputs were three-hourly, six-hourly, daily, and/or monthly mean values for the primary variables of the four component models. An evaluation and analysis of the simulations is also presented. The present results are expected to aid research into future climate change and socio-economic development.  相似文献   

14.
The performance of BCC (Beijing Climate Center) AGCM 2.0.1 (Atmospheric General Circulation Model version 2.0.1) in simulating the tropical intraseasonal oscillation (TIO) is examined in this paper.The simulations are validated against observation and compared with the NCAR CAM3 (Community Atmosphere Model version 3) results.The BCC AGCM2.0.1 is developed based on the original BCC AGCM (version 1) and NCAR CAM3.New reference atmosphere and reference pressure are introduced into the model.Therefore,the origi...  相似文献   

15.
The fourth-generation Canadian Regional Climate Model’s (CRCM4) precipitable water is evaluated and compared with observational data and ERA-Interim reanalysis data over five Canadian basins with simulations driven by ERA-Interim (two) and global climate models (two). Considering the 22 years of data available in the observations, we analyze precipitable water’s behaviour through its annual cycle, its daily distribution, and its annual daily maxima. For the simulations driven by reanalyses, differences in annual daily maximum values and their correlations with observations are examined. In general, the values for precipitable water simulated by CRCM4 are similar to those observed, and the model reproduces both the interannual and inter-basin variabilities. The simulation at 15 km resolution produces higher extreme values than simulations performed at 45 km resolution and higher than the observations taken at coarser resolution (1°), without much influence on the mean behaviour. Some underestimation is found with the simulation driven by the Canadian Centre for Climate Modelling and Analysis Model, version 3, a sign of a cold and dry bias, whereas the run driven by the European Centre Hamburg Model, version 5, is much closer to the observations, pointing to the importance of closely considering the regional–global model combination. Overall, CRCM4's ability to reproduce the major characteristics of observed precipitable water makes it a possible tool for providing precipitable water data that could serve as a basis for probable maximum precipitation and probable maximum flood studies at the basin scale.  相似文献   

16.
We investigated and evaluated the occurrence of fault zone tracer gases (CO2, He, Rn), volatile organohalogens (CH3Cl, CHCl3, CHBr3), alkanes and limonene in soil and nest gases of red wood ants (RWA) in comparison to ambient air, in a seismically active area. In this new approach, we compared RWA-free areas to RWA-areas by combining different investigation and analytical methods. In soil gas, the fault zone tracer gas Rn was surprisingly highly correlated to limonene, suggesting a combination of biotic production of limonene and abiotic degassing of Rn in a seismically active area; moderate correlations were found with trihalomethanes and other halocarbons. In RWA nests a variety of elevated concentrations of haloforms were found, while remaining below the atmospheric background values in RWA-free areas. The evidence of CHCl3 in RWA nests is the first record. Its average concentrations in nests of F. rufa and F. polyctena were up to 3 fold higher than atmospheric background and up to 28–70 fold higher compared to e.g. volcanic emissions being considered as one of its main geogenic sources. Thus, RWA nests could possibly be an additional source for CHCl3 liberation. Consequently, apart from RWA being bioindicators for seismically active degassing faults, they might also be used as bioindicators for CHCl3 formation in forest soils. Although we cannot yet differentiate between a geogenic/abiotic and a biotic formation. RWA nests will have to be reconsidered for halocarbon formation in future quantifications of geochemical cycles at global scale, since they impact organic soil chemistry through biotic and/or abiotic pathways. Therefore, further larger-scale research in different tectonic settings but also in well-known CHCl3 “hot spot” study areas such as the Klosterhede area (Denmark) should focus directly on gas sampling from confirmed active fault systems. Nests of other ant species should be addressed to compare seasonal, diurnal and nocturnal variations of degassing procedures in relation to earth tides, different geologic settings, and tectonic events such as earthquakes and on quantifying the fluxes to the atmosphere.  相似文献   

17.
Dimethylsulfide (DMS) measurements in the seawater of the subtropical and the temperate western Indian Ocean were conducted for the first time from 3 December to 20 December 1997. In total, 443 surface seawater DMS determinations were performed between 24°–49° S and 50° E–77° E with a frequency of 1 sample every 10 km. An important spatial variability was observed in seawater DMS concentrations with values ranging from 0.9 to 35.8 nM. DMS maxima coincided in most cases with thermal fronts and were in reasonable agreement with mean pigment figures obtained from satellite observations. The deduced DMS fluxes are consistent with long-term observations of atmospheric DMS and rainwater concentrations of nss- SO4= and MSA measured at Amsterdam island (37° S, 77° E); then account for the differences observed in atmospheric DMS concentrations between Amsterdam island and Cape Grim, Indian Ocean monitoring stations.  相似文献   

18.
A one-dimensional model of polar stratospheric cloud (PSC) formation and evolution during the polar winter, incorporating both HNO3 and H2O condensation, has been developed to investigate the interactions between Type I and Type II PSCs and the effects of these clouds on the stratospheric composition. Model simulations for various meteorological conditions and the results of extensive sensitivity tests are presented. Temperature oscillations, which have been included in the model, are shown to have an important influence on the characteristics and effects of the PSCs. The predicted proportions of the PSCs are consistent with observations of number, size, and optical effects, such as depolarization. Denitrification of stratospheric air by 35–88% is shown to occur in the presence of both Type I and Type II PSCs, with comparable nitrate removal in both types of clouds. Dehydration by Type II clouds simultaneously removes similar percentages of water vapour, up to 79% at lower altitudes. Altough dehydration is insensitive to most of the parameter variations except the minimum temperature, the process of denitrification, especially the proportion removed by Type I PSCs, is highly variable.  相似文献   

19.
一个植物冠层物理传输和生理生长过程的多层模式   总被引:12,自引:1,他引:11  
通过提出一个多层的植物冠层和土壤的模式,对冠层中辐射、热量、水汽和二氧化碳的传输等过程,光合、呼吸等生理过程以及土壤中水、热传输等过程进行了详细描述,并把物理过程与生理过程联系起来,实现了植被与大气的双向反馈;应用此模式于小麦生长期各主要过程的模拟,给出了与观测值一致的结果  相似文献   

20.
Solar radiation penetration in the upper ocean is strongly modulated by phytoplankton, which impacts the upper ocean temperature structure, especially in the regions abundant with phytoplankton. In the paper, a new solar radiation penetration scheme, based on the concentration of chlorophyll-a, was introduced into the LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics/Institute of Atmospheric Physics) Climate system Ocean Model (LICOM). By comparing the simulations using this new scheme with those using the old scheme that included the constant e-folding attenuation depths in LICOM, it was found that the sea surface temperature (SST) and circulation in the central and eastern equatorial Pacific were both sensitive to the amount of phytoplankton present. Distinct from other regions, the increase of chlorophyll-a concentration would lead to SST decrease in the central and eastern equatorial Pacific. The higher chlorophyll-a concentration at the equator in comparison to the off-equator regions can enlarge the subsurface temperature gradient, which in turn strengthens the upper current near the equator and induces an enhancing upwelling. The enhancing upwelling can then lead to a decrease in the SST in the central and eastern equatorial Pacific. The results of these two sensitive experiments testify to the fact that the meridional gradient in the chlorophyll-a concentration can result in an enhancement in the upper current and a decrease in the SST, along with the observation that a high chlorophyll-a concentration at the equator is one of the predominant reasons leading to a decrease in the SST. This study points out that these results can be qualitatively different simply because of the choice of the solar radiation penetration schemes for comparison. This can help explain previously reported contradictory conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号