首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Carboniferous magmatism is one of the most important tectonothermal events in the Central Asian Orogenic Belt(CAOB). However, the final closure time of the Kalamaili Ocean between East Junggar and Harlik Mountain is still debated. Early Carboniferous(332 Ma) and late Carboniferous(307–298 Ma) granitic magmatism from Kalamaili fault zone have been recognized by LA-ICP-MS zircon U-Pb dating. They are both metaluminous highly fractionated I-type and belong to the high-K calc-alkaline. The granitoids for early Carboniferous have zircon ε_(Hf)(t) values of-5.1 to +8.5 with Hf model ages(T_(DM2)) of 1.78–0.83 Ga, suggesting a mixed magma source of juvenile material with old continental crust. Furthermore, those for late Carboniferous have much younger heterogeneous zircon ε_(Hf)(t) values(+5.1 to +13.6) with Hf model ages(T_(DM2)=1.03–0.45 Ga) that are also indicative of juvenile components with a small involvement of old continental crust. Based on whole-rock geochemical and zircon isotopic features, these high-K granitoids were derived from melting of heterogeneous crustal sources or through mixing of old continental crust with juvenile components and minor AFC(assimilation and fractional crystallization). The juvenile components probably originated from underplated basaltic magmas in response to asthenospheric upwelling. These Carboniferous highly fractionated granites in the Kalamaili fault zone were probably emplaced in a post-collisional extensional setting and suggested vertical continental crustal growth in the southern CAOB, which is the same or like most granitoids in CAOB. This study provides new evidence for determining the post-accretionary evolution of the southern CAOB. In combination with data from other granitoids in these two terranes, the Early Carboniferous Heiguniangshan pluton represents the initial record of post-collisional environment, suggesting that the final collision between the East Junggar and Harlik Mountain might have occurred before 332 Ma.  相似文献   

2.
The South Altyn continental block is an important geological unit of the Altyn Tagh orogenic belt, in which numerous Neoproterozoic granitoids crop out. Granitoids are mainly located in the Paxialayidang–Yaganbuyang area and can provide indispensable information on the dynamics of Rodinia supercontinent aggregation during the Neoproterozoic. Therefore, the study of granitoids can help us understand the formation and evolutionary history of the Altyn Tagh orogenic belt. In this work, we investigated the Yaganbuyang granitic pluton through petrography, geochemistry, zircon U–Pb chronology, and Hf isotope approaches. We obtained the following conclusions:(1) Yaganbuyang granitoids mainly consist of two-mica granite and granodiorite. Geochemical data suggested that these granitoids are peraluminous calc–alkaline or high-K calc–alkaline granite types. Zircon U–Pb data yielded ages of 939±7.1 Ma for granodiorite and ~954 Ma for granitoids, respectively.(2) The εHf(t) values of two–mica granite and granodiorite are in the range of-3.93 to +5.30 and-8.64 to +5.19, respectively. The Hf model ages(TDM2) of two-mica granite and granodiorite range from 1.59–.05 Ga and 1.62–2.35 Ga, respectively, indicating that the parental magma of these materials is derived from ancient crust with a portion of juvenile crust.(3) Granitoids formed in a collisional orogen setting, which may be a response to Rodinia supercontinent convergence during the Neoproterozoic.  相似文献   

3.
The Shaitian granite complex(SGC) spans more than 80 Ma of crustal growth in the Arabian–Nubian Shield in southeast Egypt.It is a voluminous composite intrusion(60 km~2) comprising a host tonalite massif intruded by subordinate dyke-like masses of trondhjemite,granodiorite and monzogranite.The host tonalite,in turn,encloses several,fine-grained amphibolite enclaves.U-Pb zircon dating indicates a wide range of crystallization ages within the SGC(800 ± 18 Ma for tonalites;754 ± 3.9 Ma for trondhjemite;738 ± 3.8 Ma for granodiorite;and 717 ± 3.2 Ma for monzogranite),suggesting crystallization of independent magma pulses.The high positiveεNdi(+6–+8) indicate that the melting sources were dominated by juvenile material without any significant input from older crust.Application of zircon saturation geothermometry indicates increasing temperatures during the generation of melts from 745 ± 31 ℃ for tonalite to 810 ± 25 ℃ for trondhjemite;840 ± 10 ℃ for granodiorite;and 868 ± 10 ℃ for monzogranite.The pressure of partial melting is loosely constrained to be below the stability of residual garnet(10 kbar) as inferred from the almost flat HREE pattern((Gd/Lu)N= 0.9–1.1),but 3 kbar for the stability of residual amphibole as inferred from the significantly lower NbNand TaNcompared with LREENand the sub-chondrite Nb/Ta ratios exhibited by the granitic phases.The inverse relation between the generation temperatures and the ages estimates of the granitoid lithologies argue against a significant role of fractional crystallization.The major and trace element contents indicate the emplacement of the SGC within a subduction zone setting.It lacks distinctive features for melt derived from a subducted slab(e.g.high Sr/Y and high(La/Yb)Nratios),and the relatively low MgO and Ni contents in all granite phases within the SGC suggest melting within the lower crust of an island arc overlying a mantle wedge.Comparison with melts produced during melting experiments indicates an amphibolite of basaltic composition is the best candidate as source for the tonalite,trondhjemite and granodiorite magmas whereas the monzogranite magma is most consistent with fusion of a tonalite protolith.Given the overlapping Sm-Nd isotope ratios as well as several trace element ratios between monzogranite and tonalite samples,it is reasonable to suggest that the renewed basaltic underplating may have caused partial melting of tonalite and the emplacement of monzogranite melt within the SGC.The emplacement of potassic granite(monzogranite) melts subsequent to the emplacement of Na-rich granites(tonalitetrondhjemite-granodiorite) most likely suggests major crustal thickening prior arc collision and amalgamation into the over thickened proto-crust of the Arabian-Nubian shield.Eventually,after complete consolidation,the whole SGC was subjected to regional deformation,most probably during accretion to the Saharan Metacraton(arc–continent collisions) in the late Cryogenian-Ediacaran times(650–542 Ma).  相似文献   

4.
This paper presents age and geochemical data of a recently identified Late Paleozoic volcanic sequence in central Jilin Province, with aims to discuss the petrogenesis and to constrain the tectonic evolution of the Central Asian Orogenic Belt in this area. Firstly, the volcanic rocks have zircon U-Pb ages of 290–270 Ma. Secondly, they are characterized by(a) ranging in composition from the low-K tholeiite series to high-K calc-alkaline series;(b) enrichment in light rare earth elements and depletion of heavy rare earth elements, with negative Eu anomalies; and(c) negative Nb, Ta, and Ti anomalies. Finally, the volcanic rocks yield εHf(t) values of +7.1 to +17. These data suggest that the central Jilin volcanic rocks were possibly derived from predominant partial melting of a depleted lithospheric mantle that might have been modified by subducted slab–derived fluids. Combined with previous studies, the Late Paleozoic–Early Mesozoic magmatism in Central Jilin can be divided into two stages:(a) a volcanic arc stage(290–270 Ma) represented by low-K to high–K, tholeiite to calc–alkaline plutons and(b) a syn–collisional stage(260–240 Ma) represented by high-K calc–alkaline I-type granites. Furthermore, the timing and the tectonic setting of the above magmatic rocks show that the arc was probably produced by the northward subduction of the Paleo-Asian Ocean and that the final closure of the Paleo-Asian Ocean occurred prior to the Early Triassic.  相似文献   

5.
The East Kunlun Orogenic Belt(EKOB) provides an important link to reconstruct the evolution of the Proto-Tethys and Paleo-Tethys realm. The EKOB is marked by widespread Early Paleozoic magmatism.Here we report the petrology, bulk geochemistry, zircon Ue Pb dating and, Lue Hf and SreN d isotopic data of the Early Paleozoic granitic rocks in Zhiyu area of the southern EKOB. Based on the zircon U-Pb dating, these granitoids, consisting of diorite, granodiorite and monzogranite, were formed during 450 -430 Ma the Late Ordovician to Middle Silurian. The diorite and granodiorite are high Sr/Y ratio as adakitic affinities, and the monzogranite belongs to highly fractionated I-type. Their(~(87)Sr/~(86)Sr)ivalues range from 0.7059 to 0.7085, εNd(t) values from -1.6 to -6.0 and the zircon εHf(t) values show large variations from +9.1 to -8.6 with Hf model ages(T_(DM2)) about 848 Ma and 1970 Ma. The large variations of whole-rock Nd and zircon Hf isotopes demonstrate strong isotopic heterogeneity of the source regions which probably resulted from multi-phase underplating of mantle-derived magmas. Geochemical and isotopic studies proved that the diorite and granodiorite had been derived from partial melting of heterogeneous crustal source with variable contributions from ancient continental crust and juvenile components, and the monzogranites were representing fractional crystallization and crustal contamination for arc magma. The Early Paleozoic adakitic rocks and high-K calc-alkaline granitoids in the southern EKOB were likely emplaced in a continental marginal arc setting possibly linked to the southwards subduction of the Paleo Kunlun Ocean and the magma generation is linked to partial melting of thickened continental crust induced by underplating of mantle-derived magmas.  相似文献   

6.
The Yangla copper deposit, located in western Yunnan Province, China, is a typical giant, newly started mining copper deposit with an estimated Cu reserves of about 1,200,000 tons. The deposit is spatially and temporally associated with the Linong granodiorite, which is rich in SiO2 (SiO2=58.25 wt%–69.84 wt%) and alkalis (Na2O+K2O=5.98 wt%–8.34 wt%), indicating an association with shoshonitic series to high-K calc-alkaline series granites, and shows low contents of TiO2 (0.35 wt%–0.48 wt%), MgO (1.51 wt%–1.72 wt%), and Al2O3 (13.38 wt%–19.75 wt%). The δ34S values of sulfides of the main ore stage from copper ores vary range from ?4.2‰ to ?0.9‰, indicating a much greater contribution from the mantle to the ore-forming fluids. The δ34S values of the late ore stage is ?9.8‰, indicating enrichment of biogenic sulfur which may derive from the crustal hydrothermal fluid. The 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb of sulfides of the main ore stage from copper ores range within 38.66–38.73, 15.71–15.74 and 18.35–19.04, respectively, implying that the Pb was derived from the mantle, with the crustal component, probably representing mixtures of mantle lead and crustal lead. Sulfide of the late ore stage in their Pb isotopic composition, 208Pb/204Pb= 38.69, 207Pb/204Pb=15.70, 206Pb/204Pb=18.35, implying that the Pb was derived from the crust. The Linong granodiorite is syn-collisional, produced by partial melting of thickened lower crust, which was triggered by the westward subduction of the Jinshajiang Oceanic plate. During a transition in geodynamic setting from collision-related compression to extension, gently dipping ductile shear zones (related to subduction) were transformed to brittle shear zones, consisting of a series of thrust faults in the Jinshajiang tectonic belt. The tensional thrust faults would have been a favorable environment for ore-forming fluids. The ascending magma provided a channel for the ore-forming fluid from the mantle wedge. After the magma arrived at the base of the early-stage Linong granodiorite, the platy granodiorite at the base of the body would have shielded the late-stage magma from the fluid. The magma would have cooled slowly, and some of the ore-forming fluid in the magma would have entered the gently dipping thrust faults near the Linong granodiorite, resulting in mineralization.  相似文献   

7.
The Jiajiwaxi pluton in the southern portion of the West Kunlun Range can be divided into two collision–related intrusive rock series, i.e., a gabbro–quartz diorite–granodiorite series that formed at 224±2.0 Ma and a monzonitic granite–syenogranite series that formed at 222±2.0 Ma. The systematic analysis of zircon U-Pb geochronology and bulk geochemistry is used to discuss the magmatic origin(material source and thermal source), tectonic setting, genesis and geotectonic implications of these rocks. The results of this analysis indicate that the parent magma of the first series, representing a transition from I-type to S-type granites, formed from thermally triggered partial melting of deep crustal components in an early island–arc–type igneous complex, similar to an I-type granite, during the continental collision orogenic stage. The parent magma of the second series, corresponding to an S-type granite, formed from the partial melting of forearc accretionary wedge sediments in a subduction zone in the late Palaeozoic–Triassic. During continued collision, the second series magma was emplaced into the first series pluton along a central fault zone in the original island arc region, forming an immiscible puncture-type complex. The deep tectonothermal events associated with the continent–continent collision during the orogenic cycle are constrained by the compositions and origins of the two series. The new information provided by this paper will aid in future research into the dynamic mechanisms affecting magmatic evolution in the West Kunlun orogenic belt.  相似文献   

8.
The metallogenetic porphyry bodies in the Nongping Au-Cu deposit, in the eastern Yanbian area, mainly include porphyritic granodiorite and biotite granodiorite porphyry. They are featured with high silicon and enrichment in sodium, and classified into sodic rocks of low-K tholeiitic basalt series. Except slightly low Sr content, the rock basically has the geochemical characteristics of the adakite: relatively high A12O3 content, relatively low MgO content, depletion in Y and Yb; relative enrichment in large ion lithophile elements (LILEs) and light rare-earth elements (LREEs), relatively low content of high field strength elements (HFSEs); positive Eu anomaly or weak negative Eu anomaly. In situ zircon dating technology LA-MC-ICP-MS was used to conduct single-grain zircon dating of biotite granodiorite porphyry, and the results show that the age of metallogenetic porphyry body is 100.04±0.88 Ma, indicating that the porphyry bodies were emplaced in the late Cretaceous period. According to the regional tectonic setting and the comparison with the same kind of deposits, we think that the metallogenetic porphyry bodies in the Nongping Au-Cu deposit have a close genetic connection with the subduction of the Pacific plate in the late Yanshanian period. The adakitic magma generated from partial melting of the subducting plate has high formation temperature, high oxygen fugacity, and volatile constituents’ enrichment, so it is helpful for enrichment of metallogenetic elements and plays an important role in the formation of porphyry Au-Cu deposits in this region.  相似文献   

9.
The Baleigong granites, located in the western part of the southwestern Tianshan Orogen(Kokshanyan region, China), records late Paleozoic magmatism during the late stages of convergence between the Tarim Block and the Central Tianshan Arc Terrane. We performed a detailed geochronological and geochemical study of the Baleigong granites to better constrain the nature of collisional processes in the Southwest Tianshan Orogen. The LA-ICP-MS U-Pb zircon isotopic analyses indicate that magmatism commenced in the early Permian(~282 Ma). The granite samples, which are characterized by high contents of SiO_2(67.68–69.77 wt%) and Al_2O_3(13.93–14.76 wt%), are alkali-rich and Mg-poor, corresponding to the high-K calc-alkaline series. The aluminum saturation index(A/CNK) ranges from 0.93 to 1.02, indicating a metaluminous to slightly peraluminous composition. Trace element geochemistry shows depletions in Nb, Ta, and Ti, a moderately negative Eu anomaly(δEu=0.40–0.56), enrichment in LREE, and depletion in HREE((La/Yb)_N=7.46–11.78). These geochemical signatures are characteristic of an I-type granite generated from partial melting of a magmatic arc. The I-type nature of the Baleigong granites is also supported by the main mafic minerals being Fe-rich calcic hornblende and biotite. We suggest that the high-K, calc-alkaline I-type granitic magmatism was generated by partial melting of the continental crust, possibly triggered by underplating by basaltic magma. These conditions were likely achieved in a collisional tectonic setting, thus supporting the suggestion that closure of the South Tianshan Ocean was completed prior to the Permian and was followed(in the late Paleozoic) by collision between the Tarim Block and the Central Tianshan Arc Terrane.  相似文献   

10.
The Jiangda–Deqen–Weixi continental margin arc(DWCA) developed along the base of the Changdu–Simao Block and was formed as a result of the subduction of the Jinsha River Ocean Slab and the subsequent collision. The Ludian batholith is located in the southern part of the DWCA and is the largest batholith in northwest Yunnan. Granite samples from the Ludian batholith yield an early Middle Permian age of 271.0 ± 2.8 Ma. The geochemical data of the early Middle Permian granitoids show high Si2 O, low P2 O5 and MgO contents that belong to calc-alkaline series and peraluminous I-type rocks. Their εHf(t) values range from-5.01 to +0.58, indicating that they were formed by hybrid magmas related to the subduction of the Jinsha River Tethys Ocean. The monzonite and monzogranite samples yield Late Permian ages of 250.6 ± 1.8 Ma and 252.1 ± 1.3 Ma, respectively. The Late Permian granitoids are high-K calc alkaline and shoshonite series metaluminous I-type rocks. Their εHf(t) values range from-4.12 to-1.68 and from-7.88 to-6.64, respectively. The mixing of crustal and mantle melts formed the parental magma of the Late Permian granitoids. This study, combined with previous work, demonstrates the process from subduction to collision of the Jinsha River Paleo-Tethys Ocean.  相似文献   

11.
Paleoproterozoic granitoids are an important constituent of the Jiao–Liao–Ji Belt(JLJB). The spatial-temporal distribution and types of Paleoproterozoic granitoids are closely related to the evolution of the JLJB. In this paper, we review the field occurrence, petrography, geochronology, and geochemistry of Paleoproterozoic granitoids on Liaodong Peninsula, northeast China. The Paleoproterozoic granitoids can be divided into pre-tectonic(~2.15 Ga; peak age=2.18 Ga) and post-tectonic(~1.85 Ga) granitoids. The pre-tectonic granitoids are magnetite and hornblende–biotite monzogranites and granodiorites. Pre-tectonic monzogranites are widespread in the JLJB and have A_2-type affinities. In contrast, pretectonic granodiorites are only present in the Simenzi area and have adakitic affinities. The post-tectonic granitoids consist of porphyritic monzogranite, syenite, diorite, granodiorite, quartz monzonite, monzogranite, and granitic pegmatite, which are adakitic rocks and I-, S-, and A_2-type granitoids. The assemblage of pre-tectonic A_2-type granitoids and adakitic rocks indicates the initial tectonic setting of the JLJB was a continental back-arc basin. The assemblage of post-tectonic adakitic rocks and I-, S-, and A_2-type granitoids indicates a post-collisional setting. The 2.20–2.15 Ga A_2-type granitoids and adakitic rocks were associated with the initial stage of back-arc extension, and the peak of back-arc extension is inferred from the subsequent(2.15–2.10 Ga) mafic intrusive activity. The ~1.90 Ga adakitic rocks mark the beginning of the postcollisional stage, which was followed by the intrusion of low-temperature S-and I-type granitoids. High-to low-pressure granitoids(S-type) were generated during the peak of post-collisional lithospheric delamination and asthenospheric upwelling. The emplacement of later granitic pegmatites occurred during the waning of the orogeny.  相似文献   

12.
A large amount of igneous rocks in NE China formed in an extensional setting during Late Mesozoic. However, there is still controversy about how the Mongol-Okhotsk Ocean and the Paleo-Pacific Ocean effected the lithosphere in NE China. In this paper, we carried out a comprehensive study for andesites from the Keyihe area using LA-ICP-MS zircon UPb dating and geochemical and Hf isotopic analysis to investigate the petrogenesis and tectonic setting of these andesites. The U-Pb dating yields an Early Cretaceous crystallization age of 128.3±0.4 Ma. Geochemically, the andesites contain high Sr(686–930 ppm) and HREE contents, low Y(11.9–19.8 ppm) and Yb(1.08–1.52 ppm) contents, and they therefore have high Sr/Y(42–63) and La/Yb(24–36) ratios, showing the characteristics of adakitic rocks. Moreover, they exhibit high K_2O/Na_2O ratios(0.57–0.81), low Mg O contents(0.77–3.06 wt%), low Mg# value(17–49) and negative εHf(t) values(-1.7 to-8.5) with no negative Eu anomalies, indicating that they are not related to the oceanic plate subduction. Based on the geochemical and isotopic data provided in this paper and regional geological data, it can be concluded that the Keyihe adakitic rocks were affected by the Mongol-Okhotsk tectonic regime, forming in a transition setting from crustal thickening to regional extension thinning. They were derived from the partial melting of the thickened lower crust. The closure of the Mongol-Okhotsk Ocean may finish in early Early Cretaceous, followed by the collisional orogenic process. The southern part region of its suture belt was in a post-orogenic extensional setting in the late Early Cretaceous.  相似文献   

13.
Late Mesozoic Nb-rich basaltic andesites and high-Mg adakitic volcanic rocks from the Hailar-Tamtsag Basin,northeast China,provide important insights into the recycling processes of crustal materials and their role in late Mesozoic lithospheric thinning.The Late Jurassic Nb-rich basaltic andesites(154 ± 4 Ma) are enriched in large-ion lithophile and light rare earth elements,slightly depleted in high-field-strength elements,and have high TiO_2,P_2 O_5,and Nb contents,and(Nb/Th)PM and Nb/U ratios,which together with the relatively depleted Sr-Nd-Hf isotopic compositions indicate a derivation from a mantle wedge metasomatized by hydrous melts from subducted oceanic crust.The Early Cretaceous high-Mg adakitic volcanic rocks(129-117 Ma) are characterized by low Y and heavy rare earth element contents,and high Sr contents and Sr/Y ratios,similar to those of rocks derived from partial melting of an eclogitic source.They also have high Rb/Sr, K_2 O/Na_2 O,and Mg#values,and high MgO, Cr, and Ni contents.These geochemical features sugge st that the adakitic lavas were derived from partial melting of delaminated lower continental crust,followed by interaction of the resulting melts with mantle material during their ascent Our data,along with available geological,paleomagnetic,and geophysical evidence,lead us to propose that recycling of Paleo-Pacific oceanic crustal materials into the upper mantle due to flat-slab subduction and rollback of the Paleo-Pacific Plate during the late Mesozoic likely provided the precondition for lithospheric thinning in northeast China,with consequent lithospheric delamination causing recycling of continental crustal materials and further lithospheric thinning.  相似文献   

14.
Xiba granitic pluton is located in South Qinling tectonic domain of the Qinling orogenic belt and consists mainly of granodiorite and monzogranite with significant number of microgranular quartz dioritic enclaves. SHRIMP zircon U–Pb isotopic dating reveals that the quartz dioritic enclaves formed at 214±3 Ma, which is similar to the age of their host monzogranite (218±1 Ma). The granitoids belong to high-K calc-alkaline series, and are characterized by enriched LILEs relative to HFSEs with negative Nb, Ta and Ti anomalies, and right-declined REE patterns with (La/Yb)N ratios ranging from 15.83 to 26.47 and δEu values from 0.78 to 1.22 (mean= 0.97). Most of these samples from Xiba granitic pluton exhibit εNd(t) values of ?8.79 to ?5.38, depleted mantle Nd model ages (TDM) between 1.1 Ga and 1.7 Ga, and initial Sr isotopic ratios (87Sr/86Sr)i from 0.7061 to 0.7082, indicating a possible Meso- to Paleoproterozoic lower crust source region, with exception of samples XB01-2-1 and XB10-1 displaying higher (87Sr/86Sr)i values of 0.779 and 0.735, respectively, which suggests a contamination of the upper crustal materials. Quartz dioritic enclaves are interpreted as the result of rapid crystallization fractionation during the parent magmatic emplacement, as evidenced by similar age, texture, geochemical, and Sr-Nd isotopic features with their host rocks. Characteristics of the petrological and geochemical data reveal that the parent magma of Xiba granitoids was produced by a magma mingling process. The upwelling asthenosphere caused a high heat flow and the mafic magma was underplated into the bottom of the lower continent crust, which caused the partial melting of the lower continent crustal materials. This geodynamic process generated the mixing parent magma between mafic magma from depleted mantle and felsic magma derived from the lower continent crust. Integrated petrogenesis and tectonic discrimination with regional tectonic evolution of the Qinling orogen, it is suggested that the granitoids are most likely products in a post-collision tectonic setting.  相似文献   

15.
The Liuyuan area,which is located on the southern margin of the Beishan orogenic belt,develops abundant Early Paleozic granitoids.SHRIMP zircon U-Pb dating yielded a weighted mean 206Pb/238U age of 421±8 Ma for the Liuyuan granodiorite(Zhao Zehui et al.,2007),implying its Late Silurian intrusion.Geochemical compositions showed that the Liuyuan granodiorite is characterized by high SiO2(65.01%-67.31%),A12O3(17.17%-18.05%) and Na2O(Na2O/K2O=1.67-1.87) but low Mg# contents calculated as 100×Mg2+/(Mg2++∑Fe2+) from 28.77 to 31.15,as well as being enriched in Sr(472×10-6-517×10-6) but depleted in Yb(1.2×10-6-1.42×10-6) and Y(12.8×10-6-14×10-6).The REEs are characterized by right-inclined patterns with LREE enrichment,HREE depletion and slightly negative Eu anomalies(Eu/Eu*=0.91-0.97).Major and trace elements indicate that the granodiorite is an adakite.The Nb/Ta values of the granodiorite vary from 10.80 to 18.01 and Nb/U from 6.32 to 10.09,both lying between the values of the crust and the mantle.The rock has low εNd(t) values(-2.5--0.8) and high ISr(0.706321-0.706495).Geochemical and Sr-Nd isotopic compositions indicate that the Liuyuan granodiorite is possibly derived from partial melting of thickening lower crust,related to mantle underplating.The Yb-Ta and Y+Nb-Rb discriminant diagrams imply the Liuyuan granodiorite intruded in a local extensional tectonic setting during late collision.Combined with previous studies on geochronology,geochemistry and tectonic setting of granitoids,we interprete that the constraint of this adakite in the Liuyuan area indicates that the tectonic setting may have transformed from collision to extension during the Early Devonian.  相似文献   

16.
Intrusion-related gold deposits(IRGDs) occur in the Eastern Desert(ED) of Egypt within magmatic districts that are exploited for tungsten and tin mineralization. IRGDs and intrusion-related rare metal deposits(IRRMDs) are almost invariably linked with the late to post collisional Younger Granites(YGs) that have three successive phases(I, II and III). At ~635–630 Ma, the ED underwent a transition in deformation style from compressional to extensional and a switch from subduction with crustal thickening to delamination with crustal thinning. This transition was concurrent with the emplacement of a short magmatic pulse(~635–630 Ma) that represents a transition between orogenic gold deposits and IRGDs. K-rich calc alkaline granites(phase I and II of the YGs) hosting IRGDs like the Hangalia deposit were emplaced during the time span 630–610 Ma. Alkaline magmatism began at 610 Ma, coexisting with the K-rich calc-alkaline magmatism over the 610–590 Ma time span, where the Fawakhir(598 ± 3 Ma) and Um Had(596 ± 2 Ma) granites that host the IRGDs were emplaced. In time, the alkaline magmatism became more alkaline giving rise to phase III of the YGs that hosts IRRMDs. A distinct metallogenic epoch comprising both IRGDs and IRRMDs, was undergoing extreme growth at ~600 Ma.  相似文献   

17.
The Carboniferous volcanic rocks in western Hainan Island consist of a series of oceanic tholeite and rhyoporphyrite,showing bimodal nature.Similar geochemical characters,in terms of abun-daces and relative rations of incompatible elements and REE and the REE patterns,between the basalt and continental rift-associated tholeiite indicate the occurrence of Late Paleozoic rifting in the area.The basaltic magma,with a low degree of evolution,was originated from deep mantle,show-ing contamination by low crustal material.The rhyolite is thought to be formed from partial melting of the continental crust by higher thermal flow in a rift environment rather than from fractional crystallization of a basaltic magma.  相似文献   

18.
<正>The Nadingcuo high-K calc-alkaline rocks mainly composed of trachyte and trachyandesite are the largest outcrop area of volcanic rocks in southern Qiangtang terrane in the Tibetan plateau. However,their exact source and peterogenesis are still debated.~(40)Ar-~(39)Ar and LAM-ICPMS zircon U-Pb isotopic dating confirm that these rocks erupted in Eocene.In addition,the Nadingcuo volcanic rocks are characterized by high Sr/Y content ratios,similar with the adakite derived from partial melting of oceanic crust.They can be further classified as high Mg~#(Mg~#=48-57) and low Mg~# (Mg~#=33-42) subtypes.The Nadingcuo adakitic rocks have relatively low(~(87)Sr/~(86)Sr)_i and highε_(Nd)(t), showing a trend of similarity to the Dongcuo ophiolite present in the Bangong-Nujiang oceanic crust. Simple modeling indicates that the Nadingcuo adakitic rocks are a mix resulting from the basalt of Bangong-Nujiang Ocean with 10%-20%crustal material of Lhasa terrane.On these bases we suggest that the low Mg~# Nadingcuo adakitic rocks are the product of partial melting of remnant oceanic crust with small sediment,and the high Mg~# rocks are the result of reaction between rising melt of remnant oceanic crust with subducted sediment and mantle wedge.Therefore,the origin of Nadingcuo adakitic rocks may be related to intracontinental subduction triggered by collision of India-Asia during Cenozoic.  相似文献   

19.
The Tafresh granitoids are located at the central part of the Urumieh-Dokhtar Magmatic Arc(UDMA) in Iran. These rocks, mainly consisting of diorite and granodiorite, were emplaced during the Early Miocene. They are composed of varying proportions of plagioclase + K-feldspar + hornblende ± quartz ± biotite. Discrimination diagrams and chemical indices of amphibole phases reveal a calc-alkaline affinity and fall clearly in the crust-mantle mixed source field. The estimated pressure, derived from Al in amphibole barometry, is approximately 3 Kb. The granitoids are I-type, metaluminous and belong to the calc-alkaline series. They are all enriched in light rare earth elements and large ion lithophile elements, depleted in high field strength elements and display geochemical features typical of subduction-related calc-alkaline arc magmas. Most crystal size distribution(CSD) line patterns from the granitoids show a non-straight trend which points to the effect of physical processes during petrogenesis.The presence of numerous mafic enclaves, sieve texture and oscillatory zoning along with the CSD results show that magma mixing in the magma chamber had an important role in the petrogenesis of Tafresh granitoids. Moreover, the CSD analysis suggests that the plagioclase crystals were crystallized in a time span of less than 1000 years, which is indicative of shallow depth magma crystallization.  相似文献   

20.
Post-collisional magmatism contains important clues for understanding the reworking and growth of continental crust, as well as lithospheric delamination and orogenic collapse. Early Devonian magmatism has been identified in the North Qilian Orogenic Belt (NQOB). This paper reports an integrated study of petrology, whole-rock geochemistry, Sm-Nd isotope and zircon U-Pb dating, as well as Lu-Hf isotopic data, for two Early Devonian intrusive plutons. The Yongchang and Chijin granites yield zircon U-Pb ages of 394–407 Ma and 414 Ma, respectively. Both of them are characterized by weakly peraluminous to metaluminous without typical aluminium-rich minerals, LREE-enriched patterns with negative Eu anomalies and a negative correlation between P2O5 and SiO2 contents, consistent with geochemical features of I-type granitoids. Zircons from the studied granites display negative to weak positive εHf(t) values (?5.7 to 2.1), which agree well with those of negative εNd(t) values (?6.4 to ?2.9) for the whole-rock samples, indicating that they were derived from the partial melting of Mesoproterozoic crust. Furthermore, low Sr/Y ratios (1.13–21.28) and high zircon saturation temperatures (745°C to 839°C, with the majority being >800°C) demonstrated a relatively shallow depth level below the garnet stability field and an additional heat source. Taken together, the Early Devonian granitic magmatism could have been produced by the partial melting of ancient crustal materials heated by mantle-derived magmas at high-temperature and low-pressure conditions during post-collisional extensional collapse. The data obtained in this study, when viewed in conjunction with previous studies, provides more information about the tectonic processes that followed the closure of the North Qilian Ocean. The tectonic transition from continental collision to post-collisional delamination could be constrained to ~430 Ma, which is provided by the sudden decrease of Sr/Y and La/Yb ratios and an increase in zircon εHf(t) values for granitoids. A two-stage tectonic evolution model from continental collision to post-collisional extensional collapse for the NQOB includes (a) continental collision and crustal thickening during ca. 455–430 Ma, characterized by granulite-facies metamorphism and widespread low-Mg adakitic magmatism; (b) post-collisional delamination of thickened continental crust and extensional collapse of orogen during ca. 430–390 Ma, provided by coeval high-Mg adakitic magmatism, A-type granites and I-type granitoids with low Sr-Y ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号