首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The northern part of the central India tectonic zone (CITZ) is occupied by the Proterozoic Mahakoshal Belt, which is mainly comprised of granitoids and volcano-sedimentary lithounits. The granitoids (ca. 1880–1710 Ma) are exposed as small circular to elliptical-shaped, stock-like intrusive bodies, such as Nerueadamar granitoids (NG), Tumiya granitoids (TG), Jhirgadandi granitoids (JG), Dudhi granite gneiss (DG), Raspahari granitoids (RG), Katoli granitoids (KG), and Harnakachar granitoids (HG), collectively forming the granite gneissic complex (GGC). The geochemistry of biotites, host granitoids, and enclaves from these plutons has been investigated in order to understand the redox condition and likely tectonic affinity of host granitoids. The Al2O3–MgO–FeOt contents and operated elemental substitution in biotites strongly suggest the diverse nature of host magmas such as calc-alkaline, metaluminous (I-type), peraluminous (S-type), and transitional between I- and S-types, which appear to have formed in subduction zone and syn-collisional tectonic settings. The transitional (I-S)-type granitoids inferred based on biotite compositions, however, represent both metaluminous (HG) and peraluminous (DG and KG) granitoids in terms of whole-rock molar A/CNK (Al2O3/CaO + Na2O + K2O) ratios. Ages of granitoid magmatism and its field association with contemporaneous volcano-sedimentary lithounits clearly mark the post-collisional tectonic setting, which contradicts the subduction-related tectonic setting inferred from biotites of JG and microgranular enclave (JE) hosted in JG. Whole-rock major and trace elements broadly suggest the existence of collision tectonics during the formation of granitoid plutons. The JG, KG, and DG contain a bt-Kf-mag-qtz assemblage, and their parental magmas evolved under moderate oxidizing environments (?O2 = ?12.03 to ?13.27 bars). On the other hand, RG (bt-gt-Kf-pl-qtz), NG (bt-ms-Kf-pl-qtz), and TG (bt-ms-Kf-pl-qtz) represent pure crustal-derived magmas evolved in strongly reducing conditions formed under a syn-collisional tectonic setting as evident from their mineral assemblages and biotite and whole-rock compositions. Granitoid plutons of the Mahakoshal Belt were most likely formed during amalgamation of the Columbian supercontinent.  相似文献   

2.
Felsic magmatism in the southern part of Himachal Higher Himalaya is constituted by Neoproterozoic granite gneiss (GGn), Early Palaeozoic granitoids (EPG) and Tertiary tourmaline-bearing leucogranite (TLg). Magnetic susceptibility values (<3 ×10?3 SI), molar Al2 O 3/(CaO + Na2 O + K 2O) (≥1.1), mineral assemblage (bt–ms–pl–kf–qtz ± tur ± ap), and the presence of normative corundum relate these granitoids to peraluminous S-type, ilmenite series (reduced type) granites formed in a syncollisional tectonic setting. Plagioclase from GGn (An10–An31) and EPG (An15–An33) represents oligoclase to andesine and TLg (An2–An15) represents albite to oligoclase, whereas compositional ranges of K-feldspar are more-or-less similar (Or88 to Or95 in GGn, Or86 to Or97 in EPG and Or87 to Or94 in TLg). Biotites in GGn (Mg/Mg + Fet= 0.34–0.45), EPG (Mg/Mg + Fet= 0.27–0.47), and TLg (Mg/Mg + Fet= 0.25–0.30) are ferribiotites enriched in siderophyllite, which stabilised between FMQ and HM buffers and are characterised by dominant 3Fe\(\rightleftharpoons \)2Al, 3Mg\(\rightleftharpoons \)2Al substitutions typical of peraluminous (S-type), reducing felsic melts. Muscovite in GGn (Mg/Mg + Fet=0.58–0.66), EPG (Mg/Mg + Fet=0.31?0.59), and TLg (Mg/Mg + Fet=0.29–0.42) represent celadonite and paragonite solid solutions, and the tourmaline from EPG and TLg belongs to the schorl-elbaite series, which are characteristics of peraluminous, Li-poor, biotite-tourmaline granites. Geochemical features reveal that the GGn and EPG precursor melts were most likely derived from melting of biotite-rich metapelite and metagraywacke sources, whereas TLg melt appears to have formed from biotite-muscovite rich metapelite and metagraywacke sources. Major and trace elements modelling suggest that the GGn, EPG and TLg parental melts have experienced low degrees (~13, ~17 and ~13%, respectively) of kf–pl–bt fractionation, respectively, subsequent to partial melting. The GGn and EPG melts are the results of a pre-Himalayan, syn-collisional Pan-African felsic magmatic event, whereas the TLg is a magmatic product of Himalayan collision tectonics.  相似文献   

3.
沙麦钨矿床位于内蒙古东乌旗地区,是该区目前已探明的中型岩浆热液型钨矿床。矿体主要赋存在黑云母二长花岗岩和黑云母二长花岗斑岩中,对这两种花岗质岩石的岩相学、岩石地球化学和LA-ICP-MS锆石U-Pb年代学进行了研究。结果表明,黑云母二长花岗岩锆石U-Pb年龄为135.6±1.6 Ma和136.3±1.8 Ma,黑云母二长花岗斑岩锆石U-Pb年龄为138.6±1.1 Ma,二者侵位时间均为早白垩世。两种花岗质岩体具有富SiO2(73.73%~78.23%)、高钾钠(Na2O+K2O)(7.56%~8.89%)、贫MgO(0.09%~0.20%)、贫CaO(0.51%~0.89%)、贫TiO2(0.03%~0.12%)的特征,属于过铝质-高钾钙碱性系列;微量元素富集Rb、K、Th和U,相对亏损Sr、Ba、Nb、P和Ti元素,具有强烈的Eu负异常,具有较高的FeOT含量,较高的FeOT/MgO和FeOT/(FeOT+M...  相似文献   

4.
叶茂  赵赫  赵沔  舒珣  张若曦  杨水源 《岩石学报》2017,33(3):896-906
灵山花岗岩体在平面上为一环状分布的侵入体,中心为角闪石黑云母花岗岩,外围为黑云母花岗岩。在角闪石黑云母花岗岩中分布有大量的暗色镁铁质微粒包体。黑云母是大多数中酸性火成岩中比较重要的一种镁铁质矿物,它能很好地反映寄主岩浆的属性和成岩时的物理、化学条件,因此,本文对这两种花岗岩及镁铁质微粒包体中的黑云母开展了系统的岩相学观察和电子探针化学组成研究,探讨灵山岩体的物质来源、成岩条件和岩浆的混合作用过程。研究结果表明两种花岗岩体的黑云母具有不同化学成分,而暗色镁铁质微粒包体中黑云母的化学成分则变化较大。三种黑云母均在低氧逸度条件下晶出。两种花岗岩中的黑云母均富Fe贫Mg,属于铁质黑云母,含铁系数[(Fe~(3+)+Fe~(2+))/(Fe~(3+)+Fe~(2+)+Mg~(2+))]分别为0.65~0.70,0.72~0.78,FeOT/MgO均接近7.04。MF值[2×Mg/(Fe~(2+)+Mg+Mn)]分别为0.64~0.76和0.48~0.60,指示两种花岗岩的物质来源都是以壳源为主。镁铁质微粒包体中黑云母的MF值变化范围比较大,为0.63~1.06,为铁质黑云母到镁质黑云母,暗示包体岩浆经历过不同程度的岩浆混合作用。镁铁质微粒包体中部分黑云母与角闪石黑云母花岗岩中黑云母的结晶条件相似,而部分则有明显差异,推测是由于基性的镁铁质包体岩浆注入到酸性的花岗岩浆是一个连续多阶段的过程。  相似文献   

5.
Low to medium grade crystalline rocks locally known as Bomdila Group extensively covers the Lesser Himalayan region in Western Arunachal Himalaya. This Group consists dominantly of mylonitic gneisses of granitic composition of Palaeoproterozoic age, named as Bomdila mylonitic gneiss (BMG) and a small body of hornblende bearing granite of Mesoproterozoic age known as Salari granite (SG). The BMG is affinity to peraluminous (A/CNK > 1.1) with high content of SiO2, K2O/Na2O ratio, normative corundum, high ratio of FeOt/MgO in biotite (3.21–5.11) that shows characteristics of S-type granite whereas SG has granodiorite composition with high Na2O, low K2O, presence of hornblende, normative diopside, low A/CNK ratio (<1.1) and low FeOt/MgO ratio in biotite (1.58–1.60) indicates metaluminous I-type granite affinity. The SG has more fractionated nature of REE [(Ce/Yb)N = 9.06–18.53] and minor negative Eu anomalies [EuN/Eu* = 0.69–0.94] as compared to BMG which has less fractionation of REE [(Ce/Yb)N = 5.95–9.16] and strong negative Eu anomalies [EuN/Eu* = 0.37–0.43]. Geochemical and petrological studies suggest that the SG and BMG are not genetically related; SG appears to have derived from igneous source whereas the BMG have been derived from sedimentary source, however these granitoids might have produced during the same thermal event.  相似文献   

6.
The Karbi Anglong hills (erstwhile Mikir hills) in northeast India are detached and separated from the Meghalaya plateau by a NW-SE trending Kopili rift. The Karbi Anglong hills granitoids (KAHG) and its granite gneissic variants belong to Cambrian plutons formed during Pan-African orogenic cycle, which commonly intrude the basement granite gneisses and Shillong Group metasediments. The KAHG can be broadly classified into three major granitoid facies viz., coarse grained porphyritic granitoid, medium grained massive non-porphyritic granitoid, and granite gneiss, which share a common mineral assemblage of plagioclase-K-feldspar-quartz-biotite±hornblende-apatite-titanite-zircon-magnetite but differ greatly in mineral proportion and texture. Modal mineralogy of KAHG, granite gneiss and basement granite gneiss largely represents monzogranite and syenogranite. The magnetic susceptibility (MS) of the KAHG, granite gneiss and basement granite gneiss varies widely between 0.11×10-3 and 43.144×10-3 SI units, corresponding to ilmenite series (<3×10-3 SI; reduced type) and magnetite series (>3×10-3 SI; oxidized type) of granitoids respectively. The observed MS variations are most likely intrinsic to heterogeneous source regions, modal variations of orthomagnetic and ferromagnetic minerals, and tectonothermal and deformational processes that acted upon these rocks. The primary and re-equilibrated compositions of biotites from the KAHG, granite gneiss and basement granite gneiss suggest calcalkaline, metaluminous (I-type) nature of felsic host magma formed in a subduction or post-collisional to peraluminous (S-type) host magma originated in syn-collisional tectonic settings, which were evolved and stabilized between FMQ and NNO buffers typically corresponding to reducing and oxidising magma environments respectively.  相似文献   

7.
福建李家坊金矿为何宝山矿田近年新发现的中型金矿床,矿区内广泛发育火成岩岩体,然而,由于缺少对其岩浆活动时限及地球化学特征的研究,各类岩体与金矿化的关系尚不明确.针对这一问题,文章通过全岩主微量元素分析和LA-ICP-MS锆石U-Pb定年及微量元素测试,约束李家坊金矿床内火成岩岩体成岩年龄,并讨论了其地球化学特征.研究表...  相似文献   

8.
Palaeoproterozoic (ca 2,480 Ma) felsic magmatism of Malanjkhand region of central Indian Precambrian shield, referred to as Malanjkhand granitoids (MG), contain xenoliths of country rocks and mesocratic to melanocratic, fine-grained porphyritic microgranular enclaves (ME). The shape of ME is spheroidal, ellipsoidal, discoidal, elongated, and lenticular, varying in size from a few centimeters to about 2 m across. The contact of ME with the host MG is commonly sharp, crenulate, and occasionally diffuse, which we attribute to the undercooling and disaggregation of ME globules within the cooler host MG. The ME as well as MG show hypidiomorphic texture with common mineral Hbl-Bt-Kfs-Pl-Qtz assemblage, but differ in modal proportions. The variation in minerals' composition, presence of apatite needles, elongated biotites, resorbed plagiclase, ocellar quartz, and other mafic–felsic xenocrysts strongly oppose the restite and cognate origins of ME. Compositions of plagioclases (An3–An29), amphiboles (Mg/Mg+Fe2+=0.55–0.69), and biotites (Mg/Mg+Fe2+=0.46–0.60) of ME are slightly distinct or similar to those of MG, which suggest partial to complete equilibration during mafic–felsic magma interactions. Al-in-amphibole estimates the MG pluton emplacement at ca 3.4 ± 0.5 kbar, and therefore, magma mixing and mingling must have occurred at or below this level. The substitution in biotites of ME and MG largely suggests subduction-related, calc–alkaline metaluminous (I-type) nature of felsic melts. Most major and trace elements against SiO2 produce near linear variation trends for ME and MG, probably generated by the mixing of mafic and felsic magmas in various proportions. Trace including rare earth elements patterns of ME–MG pairs, however, show partial to complete equilibration, most likely governed by different degrees of elemental diffusion. The available evidence supports the model of ME origin that coeval mafic (enclave) and felsic (MG) magmas produced a hybrid (ME) magma layer, which injected into cooler, partly crystalline MG, and dispersed, mingled, and undercooled as ME globules in a convectively dynamic magma chamber.  相似文献   

9.
对位于湘中EW向白马山-紫云山成矿带东端的秋旺冲金矿区中的脉岩进行了岩石学和地球化学研究。研究结果显示,这些脉岩主要为似斑状花岗岩、含电气石花岗岩和文象花岗岩属富硅、富碱的准铝-弱过铝质、钙碱性花岗岩,其地球化学特征表现为富集Rb、K、Th、U、Ce、Nd、Zr和Hf元素,强烈亏损Ra、Sr、P和Ti元素,稀土元素总量低,轻重稀土元素分馏均不明显,重稀土元素相对较富集,Eu负异常极为明显。通过岩石成因和构造环境判别图解结合区域上前人的研究成果,提出该区脉岩成因类型属于高分异的Ⅰ型花岗岩,是在碰撞造山后伸展构造环境中形成的。综合矿区及毗邻矿床的地质勘查资料分析,认为该区脉岩与金矿化存在空间对应关系,对金成矿有指示意义。  相似文献   

10.
余海军  李文昌 《岩石学报》2016,32(8):2265-2280
本文首次在格咱岛弧休瓦促Mo-W矿区识别出印支晚期似斑状黑云母花岗岩,并确定其结晶年龄为200.93±0.65Ma,同时获得燕山晚期二长花岗岩结晶年龄83.57±0.32Ma;即首次在休瓦促Mo-W矿区内厘定出印支晚期和燕山晚期两期花岗岩浆叠加活动,而Mo-W成矿作用与燕山晚期二长花岗岩具有成因关系。岩石地球化学显示燕山晚期二长花岗岩具有较高的SiO_2和全碱含量及较低的Fe、Mg、Ca和P含量,呈准铝质-弱过铝质;富集Rb、Th、U、Nb、Zr和轻稀土元素,亏损Ba、Sr、P、Eu,具有高分异I型花岗岩特征;其形成于与拉萨-羌塘板块碰撞相关的陆内伸展环境,主要来自中-基性下地壳物质的部分熔融,为Mo-W成矿作用提供了重要的物质基础。相对于二长花岗岩,印支晚期似斑状黑云母花岗岩具有较低的SiO_2、Na_2O+K_2O含量和A/CNK比值,较高的Mg、Ca和P含量;富集Th、U、Rb和轻稀土元素,强烈亏损Nb、Ta、Zr、Hf等高场强元素,为准铝质高钾钙碱性具有岛弧岩浆性质的花岗岩,可能形成于甘孜-理塘洋壳俯冲作用结束后,松潘-甘孜地块和义敦岛弧碰撞后伸展环境,为俯冲期改造后形成的下地壳部分熔融的产物。  相似文献   

11.
Kinwat crystalline inlier exposes Palaeoproterozoic granitoids belonging to the northern extensions of younger phase of Peninsular gneissic complex (PGC) within Deccan Trap country in Eastern Dharwar Craton (EDC) and bounded in south by a major NW-SE trending lineament (Kaddam fault). Geochemically, the Kinwat granitoids are similar to high-K, calc-alkaline to shoshonite magnesian granitoids and subdivided into two major groups, i.e. felsic group (pink and grey granites) and intermediate to felsic group (hybrid granitoids). The felsic group (∼67–74% SiO2) shares many features with Neoarchaean to Palaeoproterozoic high potassic granites of PGC such as higher LILE and LREE content and marked depletion in Eu, P and HFSE, especially Nb, Ti, relative to LILE and LREE. The hybrid granitoids (∼58–67% SiO2) have comparatively higher Ca, Mg and Na contents and slightly lower REE content than the granitoids of felsic group. Both, felsic and hybrid granitoids are metaluminous to weakly peraluminous and belong to highly fractionated I-type suite as evidenced by negative correlation of SiO2 with MgO, FeOt, CaO, Na2O, Al2O3, whereas K2O, Rb and Ba show sympathetic relationship with SiO2. Moderate to strong fractionated REE patterns (Ce/YbN: ∼54–387) and strong negative Eu anomalies (Eu/Eu*: 0.13–0.41) are quite apparent in these granitoids. The geochemical characteristics together with mineralogical features such as presence of biotite±hornblende as the dominant ferromagnesian mineral phases point towards intracrustal magma source, i.e. derivation of magma by partial melting of probably tonalitic igneous protolith at moderate crustal levels for felsic granites, whereas hybrid granitoids appear to be products of juvenile mantle-crust interaction, in an active continental margin setting.  相似文献   

12.
赣北大湖塘超大型钨矿位于九岭钨多金属矿集区东部。本文对大湖塘钨矿石门寺矿段矿物学特征进行了系统的研究,结合同位素示踪分析了成岩成矿物质来源。岩相学研究表明,石门寺矿段蚀变以黑云母化、云英岩化及碱交代(钾长石化、钠长石化)作用为主。黑云母化的过程中释放了一定量的挥发分,云英岩化和碱交代作用除萃取部分的成矿物质外,使岩体中的Ca2+大量活化迁移。晋宁晚期黑云母花岗闪长岩与燕山中期似斑状花岗岩、花岗斑岩矿物成分研究表明:(1)斜长石普遍富钠,似伟晶岩壳主晶为钾长石,客晶为钠长石;(2)黑云母具有富铁贫镁的特点,黑云母花岗闪长岩及似斑状花岗岩中的黑云母均为铁质黑云母,花岗斑岩中黑云母为铁叶云母。黑云母成分指示大湖塘石门寺矿段花岗岩类均为过铝质S型花岗岩,成岩物质均为壳源。石英氢、氧同位素及黑钨矿氧同位素研究表明成矿流体为岩浆水。黄铜矿、辉钼矿硫同位素表明成矿流体中硫来自于岩浆。结合前人研究成果,本文认为富钨的双桥山群浅变质岩在燕山中期发生了部分熔融,产生了高分异的富含钨元素及挥发分的岩浆,岩浆分异演化过程中形成的含矿热液使侵入体自身及围岩发生大规模的蚀变作用,进而在燕山中期侵入岩的内外接触带形成了大湖塘超大型钨多金属矿床。  相似文献   

13.
Summary The oxygen and strontium isotope compositions of the Cambro-Ordovician granitoids cropping out in the Wilson Terrane (Granite Harbour Intrusives–GHI) constrain the petrological evolution of the magmatism in Antarctica, related to the Ross Orogeny. The measured δ18OWR values of these intrusives define three different compositional groups: the metaluminous rocks (MAG), with δ18OWR ranging from 6.9 (olivine gabbro) to 11.4‰ (monzogranite); the unaltered peraluminous granites (PAG), having δ18OWR values ranging from 10.6 to 13.2‰, and the foliated peraluminous leucogranites (SKG), characterised by δ18OWR values above 14‰. The analysis of equilibrium mineral assemblages indicates that the high δ18OWR values are magmatic and unaffected by low-temperature processes. A few peraluminous granites sampled in the vicinity of Cenozoic intrusions show anomalously low δ18OWR, due to meteoric-hydrothermal alteration. The isotopic data indicate that the coeval and spatially related metaluminous mafic and felsic intrusives forming the GHI were not comagmatic: the mafic and intermediate rocks were likely derived from lower crustal contamination of a pristine basaltic magma; their δ18OWR values were also increased during emplacement, due to the interaction with the adjacent 18O-rich hydrous felsic magmas (mixing). Oxygen isotope data indicate that the crustal sources producing the Granite Harbour intrusives were not homogeneous: the felsic metaluminous intrusives were produced by partial melting of fertile rock with possible igneous origin, whereas partial melting of a metapelitic source rock is claimed for the genesis of the peraluminous granites. Received February 9, 2001; revised version accepted August 10, 2001  相似文献   

14.
安徽牯牛降A型花岗岩的年代学、地球化学和构造意义   总被引:9,自引:6,他引:3  
谢建成  陈思  荣伟  李全忠  杨晓勇  孙卫东 《岩石学报》2012,28(12):4007-4020
皖南地区牯牛降岩体位于扬子板块东南缘,江南隆起带内。本文报道了牯牛降花岗岩体新的锆石U-Pb年龄和地球化学数据,并对岩体成因及其构造意义进行了探讨。锆石原位LA-ICP-MS U-Pb定年表明牯牛降岩体的形成年龄为130.1±1.3Ma (95% confidence, MSWD=0.55)。结合己发表的其他高质量锆石U-Pb同位素年龄数据表明皖南地区花岗岩的形成年龄主要集中在125~130Ma。牯牛降花岗岩为高钾钙碱性、准铝质岩石,SiO2 含量为72.21%~74.85%,具有高K2O含量(>5.11%)、高铁值(FeOT/(FeOT+MgO)>0.91)和K2O/Na2O比值(>1.61),低MgO和CaO含量的特征。微量元素地球化学性质上表现为强烈亏损Ba、Sr、Eu(Eu*/Eu=0.29~0.30),富集REE(>419×10-6)、Rb、Th 和U,较高的高场强元素Zr、Nb、Y和Ga含量。主量和微量元素均表现为A型花岗岩的特征。非常低的Mg#值(0.14~0.16)和较低Cr含量(Cr=10×10-6),高Yb(7.08×10-6~9.02×10-6)、Y(78.7×10-6~90.8×10-6)含量和较高的Th/U比值(5.17~7.79)说明古老地壳物质的部分熔融可能是牯牛降岩体主要形成机制。牯牛降A2型花岗岩特征代表了拉张的碰撞后构造环境。  相似文献   

15.
青海龙羊峡地区侵入岩LA-ICP-MS锆石U-Pb年龄及其地质意义   总被引:2,自引:0,他引:2  
石玉莲  霍清  潘鑫  田滔  李生虎 《地质通报》2018,37(7):1246-1257
青海龙羊峡地区侵入体岩石类型为正长花岗岩、二长花岗岩及花岗闪长岩,岩石中Al_2O_3=11.78%~15.11%,K_2O=3.57%~5.58%,A/NK=1.14~1.63,A/CNK=0.87~0.97,TFe O/(TFeO+MgO)=0.74~0.91,岩石具偏铝质中-高钾钙碱性花岗岩特征。用LA-ICP-MS测得龙羊峡侵入岩体的正长花岗岩和二长花岗岩中的锆石~(206)Pb/~(238)U年龄为243.5±2.9Ma(MSWD=5.2)和247.2±1.7Ma(MSWD=0.97),这2个年龄被解释为岩体侵位年龄。代表了印支运动在西秦岭造山带西段与东昆仑造山带转换衔接部位的共和坳拉谷的构造演化的地质记录。青海龙羊峡地区侵入岩体的形成时代及构造环境的确定,对研究共和坳拉谷的构造演化及动力学机制具有重要意义。  相似文献   

16.
Biotites from mafic rocks occurring at different stratigraphic levels of the Ivrea-Verbano Mafic Complex are studied. The rocks are gabbros and diorites. All the biotites are intermediate between phlogopite and annite [0.282 (up to 7.14 and 9.32 wt%, respectively) with respect to those of the diorites (up to 1.26 and 6.26 wt%, respectively). Systematic compositional variations support the substitution model 2 IV Si+( IV R2+)2 IV Al+ VI Ti (R2+=Fe+Mg+Mn) in gabbros and IV Si+ VI Al IV Al+ VI Ti in diorites. A predominance of disordered stacking sequences, coexisting with 1M, 2M 1 and 3T polytypes was observed in all biotites. It was possible to carry out structural refinements only on three biotites-2M 1 from diorites (R-values between 2.68 and 3.77) and one biotite-1M from gabbros (R-value=3.09). It was shown that: (1) the reduced thickness of the tetrahedral sheet in Ba-rich biotites supports the coupled substitution IV Si+ XII K IV Al+ XII Ba; (2) the interlayer site geometry is affected by the whole layer chemistry and does not reflect only local chemical variations; (3) in two samples of the 2M 1 polytype, the M(1) octahedral site is larger and more distorted than the M(2) sites because of the preferential ordering of Fe2+ in the M(1) site, whereas one sample shows complete cation disorder in the octahedral sites. Biotite-1M shows that Fe2+ can also be located in the M(2) site. Some of the differences between the biotites of gabbros and diorites (e.g. Ba concentration and exchange vectors) may be linked to the host rock composition and to its crystallization process. Biotite occurs in trace amounts in gabbros and its crystallization is related to the interstitial melt which contributed to the adcumulus growth of the main rock forming phases and became highly enriched in K, Ba and Ti. Diorites are the result of equilibrium crystallization of a residual melt rich in incompatible elements, where biotite is a major constituent.  相似文献   

17.
Partial melting experiments on Nigerian charnockitic monzonite associated with migmatised gneisses provide consanguineous liquids from which the metaluminous and peraluminous younger granites may be derived. After 40–60% melting at 750–800° C the liquids are metaluminous with hastingsite-fayalite granite affinities. On cooling towards the granite system minimum these liquids can evolve into metaluminous hastingsite-biotite granite and peraluminous biotite granite compositions. These experiments show that partial melting of charnockitic monzonites cannot yield peralkaline liquids at the specified conditions (750–850° C).Syenitic rocks of this province may either reflect the action of late stage albitising fluids on residual charnockitic material after partial melt extraction or the collection of feldspar floated from a hastingsite-fayalite granite liquid.  相似文献   

18.
佛冈高分异I型花岗岩的成因:来自Nb-Ta-Zr-Hf等元素的制约   总被引:12,自引:8,他引:4  
陈璟元  杨进辉 《岩石学报》2015,31(3):846-854
华南南岭地区发育有大面积的与钨锡成矿相关的侏罗纪花岗岩,然而其中有些花岗岩的成因类型却难以确定。本文以佛冈岩体为例,结合前人已发表数据,对佛冈花岗岩体中Nb、Ta、Zr和Hf等元素的迁移特征及其原理进行探讨,并对佛冈花岗岩的成因类型进行了厘定。随着分异程度增加,佛冈花岗岩Nb和Ta含量增加,Nb/Ta(3.6~15.3)和Zr/Hf(17.3~38.9)比值降低并发生分异。随着Zr含量的降低,佛冈花岗岩的Zr/Hf比值降低,这一特征表明锆石的分离结晶作用使得佛冈花岗岩的Zr/Hf比值分异。Nb/Ta比值分异可能与角闪石和黑云母的分离结晶作用有关。随着Nb/Ta比值降低,Y/Ho比值增加,这一特征表明佛冈花岗岩Nb/Ta比值的分异也和岩浆演化后期的流体有关。佛冈花岗岩不含原生的富铝矿物,为准铝质到弱过铝质岩石。随着分异程度增加,佛冈花岗岩P2O5含量降低,表明它不是S型花岗岩。随着Y/Ho比值增加和Nb/Ta和Zr/Hf比值降低,佛岗花岗岩Ga/Al和Fe OT/Mg O比值增加,从典型I型花岗岩特征演化到类似A型花岗岩的地球化学特征。因此,我们认为佛冈花岗岩不是A型花岗岩而是高分异的I型花岗岩。区域上与成矿相关的流体和花岗质岩浆的相互作用和分离结晶作用,使得华南南岭地区的花岗岩地球化学特征复杂,所以其成因类型也变的难以确定。  相似文献   

19.
Late Proterozoic rocks of Tanol Formation in the Lesser Himalayas of Neelum Valley area are largely green schist to amphibolite facies rocks intruded by early Cambrian Jura granite gneiss and Jura granite representing Pan-African orogeny event in the area. These rocks are further intruded by pegmatites of acidic composition, aplites, and dolerite dykes. Based on field observations, texture, and petrographic character, three different categories of granite gneiss (i.e., highly porphyritic, coarse-grained two micas granite gneiss, medium-grained two micas granite gneiss, and leucocratic tourmaline-bearing muscovite granite gneiss), and granites (i.e., highly porphyritic coarse-grained two micas granite, medium-grained two micas granite, and leucocratic tourmaline-bearing coarse-grained muscovite granite) were classified. Thin section studies show that granite gneiss and granite are formed due to fractional crystallization, as revealed by zoning in plagioclase. The Al saturation index indicates that granite gneiss and granite are strongly peraluminous and S-type. Geochemical analysis shows that all granite gneisses are magnesian except one which is ferroan whereas all granites are ferroan except one which is magnesian. The CaO/Na2O ratio (>0.3) indicates that granitic melt of Jura granite gneiss and granite is pelite-psammite derived peraluminous granitic melt formed due to partial melting of Tanol Formation. The rare earth element (REE) patterns of the Jura granite and Jura granite gneiss indicate that granitic magma of Jura granite and Jura granite gneiss is formed due to partial melting of rocks that are similar in composition to that of upper continental crust.  相似文献   

20.
Summary New oxygen isotope data for metaluminous granites from the basement-dominated part of the Damara orogen (Namibia) range from 9.1 to 11.9‰. These data, together with previously published Sr, Nd and Pb isotope data indicate that these granites and associated peraluminous granites originated from felsic meta-igneous basement sources. New and unusually low oxygen isotope data for metaluminous granodiorites extend now the range of δ18O values from ca. 12 to 6‰ for this rock type. These low oxygen isotope values approach the values observed in mafic quartz diorites for which a model of derivation from depleted mafic lower crust has been established. In view of the higher Pb isotope ratios but lower oxygen isotope values of the granodiorites relative to the mafic quartz diorites, it is concluded that the granodiorites represent partial melts of an undepleted but strongly altered mafic lower crust. Most of the peraluminous and metaluminous granites and the metaluminous granodiorites have identical U–Pb monazite, allanite and zircon ages of ca. 510–500 Ma implying partial melting of distinct basement rocks of Archaean to Proterozoic age at the peak of regional high-grade metamorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号