首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transformation of the energy of an accelerating, expanding universe into internal energy of cosmic objects is discussed. The well known fact that Hubble expansion is observed on scale lengths two or more orders of magnitude smaller than the “cells of homogeneity” is taken into account, along with observational data indicating that this expansion also takes place on the scale of the solar system. Changes in the potential energy of individual model objects are examined on this basis and it is shown that the potential energy increases, thereby threatening the continued existence of these objects. An expression is obtained for the mass which can attain the escape energy within a given energy accumulation time. Some estimates are made for the assumed masses of galactic clusters. Over a period of 107 years a protocluster can accumulate enough energy for ejection of a clump of matter with a mass equal to that of our galaxy.  相似文献   

2.
3.
In the present work we analyze the g-essence model for the particular Lagrangian: . The g-essence models were proposed recently as an alternative and a generalization of the scalar k-essence models. We have presented the three types of the solutions for the g-essence model. We reconstructed the corresponding potentials and the dynamics of the scalar and fermionic fields according the evolution of the scale factor. The results show that the g-essence model predicts that our universe can be in both of the decelerated and accelerated expansion phases. In late time limit, we show that there is a family of exact solutions in which the free parameter may be remains in the range of m>−1. Further we discuss the existence of the de Sitter solutions in such a model.  相似文献   

4.
In this paper we consider a locally-rotationally-symmetric (LRS) Bianchi type-V perfect fluid model with variable cosmological ‘constant’ representing the energy density of vacuum. The field equations are solved with and without heat conduction by using a variation law for the mean Hubble parameter, which is related to the average scale factor of the metric and yields a constant value of the deceleration parameter. A constant value of deceleration parameter generates power-law form of average scale factor which is used to find the exact solutions with and without heat conduction with decaying vacuum density. The solutions presented here satisfy all the necessary conditions for the physically acceptability. The thermodynamical relations in decaying vacuum fluid model are also studied in detail.  相似文献   

5.
Marginal likelihoods for the cosmic expansion rates are evaluated using the ‘Constitution’ data of 397 supernovas, thereby updating the results in some previous works. Even when beginning with a very strong prior probability that favors an accelerated expansion, we obtain a marginal likelihood for the deceleration parameter q 0 peaked around zero in the spatially flat case. It is also found that the new data significantly constrains the cosmographic expansion rates, when compared to the previous analyses. These results may strongly depend on the Gaussian prior probability distribution chosen for the Hubble parameter represented by h, with h=0.68±0.06. This and similar priors for other expansion rates were deduced from previous data. Here again we perform the Bayesian model-independent analysis in which the scale factor is expanded into a Taylor series in time about the present epoch. Unlike such Taylor expansions in terms of redshift, this approach has no convergence problem.  相似文献   

6.
In this paper, we solve the Einstein’s field equations for the space-time described by a special plane symmetric metric with dark energy, and the exact solutions which offer an alternative and complementary approach to study cosmological models are obtained. The dark energy is given by either the quintessence or the modified Chaplygin gas. We show the models are isotropic and analyze the expansion scalar and the deceleration parameter of the models.  相似文献   

7.
The properties of locally rotationally symmetric Bianchi type-II perfect fluid space-times are analyzed in Barber’s second self-creation theory by using a special law of variation for Hubble’s parameter that yields a constant value of deceleration parameter. By assuming the equation of state p=γ ρ, many new solutions are obtained for different era—Zel’dovich, radiation, vacuum and vacuum energy dominated. The solutions with power-law and exponential expansion are discussed. A detailed study of geometrical and physical parameters is carried out. The nature of singularity is also clarified in each case.  相似文献   

8.
Some features of the Bianchi type-I universes in the presence of a fluid that wields an anisotropic equation of state (EoS) parameter are discussed in the context of general relativity. The models that exhibit de Sitter volumetric expansion due to the constant effective energy density (the sum of the energy density of the fluid and the anisotropy energy density) are of particular interest. We also introduce two locally rotationally symmetric models, which exhibit de Sitter volumetric expansion in the presence of a hypothetical fluid that has been obtained by minimally altering the conventional vacuum energy. In the first model, the directional EoS parameter on the x axis is assumed to be −1, while the ones on the other axes and the energy density of the fluid are allowed to be functions of time. In the second model, the energy density of the fluid is assumed to be constant, while the directional EoS parameters are allowed to be functions of time.  相似文献   

9.
A model of compact object coupled to inhomogeneous anisotropic dark energy is studied. It is assumed a variable dark energy that suffers a phase transition at a critical density. The anisotropic Λ-Tolman-Oppenheimer-Volkoff equations are integrated to know the structure of these objects. The anisotropy is concentrated on a thin shell where the phase transition takes place, while the rest of the star remains isotropic. The family of solutions obtained depends on the coupling parameter between the dark energy and the fermionic matter. The solutions share several features in common with the gravastar model. There is a critical coupling parameter that gives non-singular black hole solutions. The mass-radius relations are studied as well as the internal structure of the compact objects. The hydrodynamic stability of the models is analyzed using a standard test from the mass-radius relation. For each permissible value of the coupling parameter there is a maximum mass, so the existence of black holes is unavoidable within this model.  相似文献   

10.
Cosmic energy equation represents the law of conservation of energy in the region expanding with time as the universe expands. It gives the evolution of kinetic and correlation potential energy with time in a cluster expanding as the universe expands. To understand the clustering of galaxies under the influence of gravitational force, cosmic energy equation is of great help. We use cosmic energy equation for extended structures (galaxies with halos) to analyse the gravitational galaxy clustering in different ways. We try to understand the influence of expansion on the clustering by deriving the relation between correlation parameter b V and scale factor R. We also derive the relation between the peculiar kinetic energy K and correlation parameter to know that when peculiar kinetic energy dominates over the kinetic energy of galaxies due to expansion. Besides, the evolution of specific heat and energy provides the information regarding the different states of clustering.  相似文献   

11.
The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified “dark energy”, or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (∼5×1015M ) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this “dark repulsor” can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial “explosion” and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.  相似文献   

12.
In this work, we have considered the spatially homogeneous and anisotropic Bianchi type-II universe filled with two interacting fluids; dark matter and holographic dark energy components. Assuming the proportionality relation between one of the components of shear scalar and expansion scalar which yields time dependent deceleration parameter, an exact solution to Einstein’s field equations in Bianchi type-II line element is obtained. We have investigated geometric and kinematics properties of the model and the behaviour of the holographic dark energy. It is observed that the mean anisotropic parameter is uniform through the whole evolution of the universe and the coincidence parameter increases with increasing time. The solutions are also found to be in good agreement with the results of recent observations. We have applied the statefinder diagnostics method to study the behaviour of different stages of the universe and to differentiate the proposed dark energy model from the ΛCDM model. We have also established a correspondence between the holographic dark energy model and the tachyon scalar field dark energy model. We have reconstructed the potential and the dynamics of the tachyon scalar field, which describes accelerated expansion of the universe.  相似文献   

13.
In this paper we have studied the anisotropic and homogeneous Bianchi type-I universe filled with interacting Dark matter and Holographic dark energy. Here we discussed two models, in first model the solutions of the field equations are obtained for constant value of deceleration parameter where as in the second model the solutions of the field equations are obtained for special form of deceleration parameter. It is shown that for suitable choice of interaction between dark matter and holographic dark energy there is no coincidence problem (unlike ΛCDM). Also, in all the resulting models the anisotropy of expansion dies out very quickly and attains isotropy after some finite time. The Statefinder diagnostic is applied to both the models in order to distinguish between our dark energy models with other existing dark energy models. The physical and geometrical aspects of the models are also discussed.  相似文献   

14.
A five dimensional Kaluza-Klein dark energy model with variable EoS parameter is investigated in the scale co-variant theory of gravitation proposed by Canuto et al. (in Phys. Rev. 39:429, 1977) in a five dimensional Kaluza-Klein space-time in the presence of perfect fluid source. Using the special law of variation for Hubble’s parameter proposed by Berman (in Nuovo Cimento B 74:183, 1983), we have obtained a determinate solution which represents a dark energy cosmological model in the theory. We have also used the result that the scalar expansion is proportional to shear scalar of the space-time. It is observed that the EoS parameter, skewness parameter in the model turn out to be functions of cosmic time. Some physical and Kinematical properties of the model are also discussed.  相似文献   

15.
In this paper, we investigate Bianchi type-VI cosmological model for the universe filled with dark energy and viscous fluid in the presence of cosmological constant. Also, we show accelerating expansion of the universe by drawing volume scale, pressure and energy density versus cosmic time. In order to solve the Einstein’s field equations, we assume the expansion scalar is proportional to a component of the shear tensor. Therefore, we obtain the directional scale factors and show the EOS parameter crosses over phantom divided-line.  相似文献   

16.
We generalize the holographic dark energy model described in Hubble length IR cutoff by assuming a slowly time varying function for holographic parameter c 2. We calculate the evolution of EoS parameter and the deceleration parameter as well as the evolution of dark energy density parameter of the model in flat FRW universe. We show that in this model the phantom line is crossed from quintessence regime to phantom regime which is in agreement with observation. The evolution of deceleration parameter of the model indicates the transition from decelerated to accelerated expansion consistently with observation. Eventually, we show that the holographic dark energy model with Hubble horizon IR cutoff can interpret the pressureless dark matter era at the early time and dark energy dominated phase later. The singularity of the model is also calculated.  相似文献   

17.
A special law of variation for Hubble’s parameter is presented in a spatially homogeneous and anisotropic Bianchi type-I space-time that yields a constant value of deceleration parameter. Using the law of variation for Hubble’s parameter, exact solutions of Einstein’s field equations are obtained for Bianchi-I space-time filled with perfect fluid in two different cases where the universe exhibits power-law and exponential expansion. It is found that the solutions are consistent with the recent observations of type Ia supernovae. A detailed study of physical and kinematical properties of the models is carried out.  相似文献   

18.
We study a gravitational model in which scale transformations play the key role in obtaining dynamical G and Λ. We take a non-scale invariant gravitational action with a cosmological constant and a gravitational coupling constant. Then, by a scale transformation, through a dilaton field, we obtain a new action containing cosmological and gravitational coupling terms which are dynamically dependent on the dilaton field with Higgs type potential. The vacuum expectation value of this dilaton field, through spontaneous symmetry breaking on the basis of anthropic principle, determines the time variations of G and Λ. The relevance of these time variations to the current acceleration of the universe, coincidence problem, Mach’s cosmological coincidence and those problems of standard cosmology addressed by inflationary models, are discussed. The current acceleration of the universe is shown to be a result of phase transition from radiation toward matter dominated eras. No real coincidence problem between matter and vacuum energy densities exists in this model and this apparent coincidence together with Mach’s cosmological coincidence are shown to be simple consequences of a new kind of scale factor dependence of the energy momentum density as ρa −4. This model also provides the possibility for a super fast expansion of the scale factor at very early universe by introducing exotic type matter like cosmic strings.  相似文献   

19.
A new class of dark energy models in a Locally Rotationally Symmetric Bianchi type-II (LRS B-II) space-time with variable equation of state (EoS) parameter and constant deceleration parameter have been investigated in the present paper. The Einstein’s field equations have been solved by applying a variation law for generalized Hubble’s parameter given by Berman: Nuovo Cimento 74:182 (1983) which generates two types of solutions for the average scale factor, one is of power-law type and other is of the exponential-law form. Using these two forms, Einstein’s field equations are solved separately that correspond to expanding singular and non-singular models of the universe respectively. The dark energy EoS parameter ω is found to be time dependent and its existing range for both models is in good agreement with the three recent observations of (i) SNe Ia data (Knop et al.: Astrophys. J. 598:102 (2003)), (ii) SNe Ia data collaborated with CMBR anisotropy and galaxy clustering statistics (Tegmark et al.: Astrophys. J. 606:702 (2004)) and latest (iii) a combination of cosmological datasets coming from CMB anisotropies, luminosity distances of high redshift type Ia supernovae and galaxy clustering (Hinshaw et al.: Astrophys. J. Suppl. 180:225 (2009); Komatsu et al. Astrophys. J. Suppl. 180:330 (2009)). The cosmological constant Λ is found to be a positive decreasing function of time and it approaches a small positive value at late time (i.e. the present epoch) which is corroborated by results from recent supernovae Ia observations. The physical and geometric behaviour of the universe have also been discussed in detail.  相似文献   

20.
We examine the behaviour of accretion flow around a rotating black hole in presence of cooling. We obtain global flow solutions for various accretion parameters that govern the accreting flow. We show that standing isothermal shock wave may develop in such an advective accretion flow in presence of cooling. This shocked solution has observational consequences as it successfully provides the possible explanations of energy spectra as well as generation of outflows/jets of various galactic and extra-galactic black hole candidates. We study the properties of isothermal shock wave and find that it strongly depends on the cooling efficiency. We identify the region in the parameter space spanned by the specific energy and specific angular momentum of the flow for standing isothermal shock as a function of cooling efficiencies and find that parameter space gradually shrinks with the increase of cooling rates. Our results imply that accretion flow ceases to contain isothermal shocks when cooling is beyond its critical value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号