首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 904 毫秒
1.
Raymond Siever 《Icarus》1974,22(3):312-324
Histories of the terrestrial planets are traceable to combinations of to five large-scale postaccretion processes: planetary differentiation, crustal differentiation, outgassing, plate tectonics, and recycling. All have operated on Earth to make a planet that was early differentiated into core, mantle, and crust and at very nearly the same time outgassed to form a differentiated crust, atmosphere and oceans. This gave rise to plate tectonics, recycling and thus two-way communication of the surface crust-atmosphere-ocean system with lower crust and upper mantle. Recycling of the Martian surface is probably restricted to limited chemical weathering of thin alteration surfaces of primary minerals because of the extreme slowness of diffusion controlled alteration where surfaces are not stripped by solution. There is evidence for neither subsidence of sedimentary basins nor subduction zones; thus internal recycling and two-way surface-interior communication is improbable. All sedimentary particles produced by mechanical erosion on Mars through its history are still at the surface or shallowly buried by later sediment. Any atmospheric components reacted with weathering crust are removed from the atmosphere. These and exospheric escape processes must have early reduced an original denser atmosphere to its present pressure after an early episode of planetary differentiation coupled to crustal differentiation and out-gassing. The early history of Mars may have been something like that of Earth until weathering and gas escape drew down its atmosphere.  相似文献   

2.
Origin of the atmospheres of the terrestrial planets   总被引:1,自引:0,他引:1  
A.G.W. Cameron 《Icarus》1983,56(2):195-201
The monotonic decrease in the atmospheric abundance of 36Ar per gram of planet in the sequence, Venus, Earth, and Mars has been assumed to reflect some conditions in the primitive solar nebula at the time of formation of the planetary atmospheres, having to do either with the composition of the nebula itself or the composition of the trapped gases in small solid bodies in the nebula. Behind such hypotheses lies the assumption that planetary atmospheres steadily gain components. However, not only can gases enter atmospheres; they may also be lost from atmospheres both by adsorption into the planetary interior and by loss into space as a result of collisions with minor and major planetesimals. In this paper a necessarily qualitative discussion is given of the problem of collisions with minor planetesimals, a process called atmospheric cratering or atmospheric erosion, and a discussion is given of atmospheric loss accompanying collision of a planet with a major planetesimal, such as may have produced the Earth's Moon.  相似文献   

3.
Classified as a terrestrial planet, Venus, Mars, and Earth are similar in several aspects such as bulk composition and density. Their atmospheres on the other hand have significant differences. Venus has the densest atmosphere, composed of CO2 mainly, with atmospheric pressure at the planet's surface 92 times that of the Earth, while Mars has the thinnest atmosphere, composed also essentially of CO2, with only several millibars of atmospheric surface pressure. In the past, both Mars and Venus could have possessed Earth-like climate permitting the presence of surface liquid water reservoirs. Impacts by asteroids and comets could have played a significant role in the evolution of the early atmospheres of the Earth, Mars, and Venus, not only by causing atmospheric erosion but also by delivering material and volatiles to the planets. Here we investigate the atmospheric loss and the delivery of volatiles for the three terrestrial planets using a parameterized model that takes into account the impact simulation results and the flux of impactors given in the literature. We show that the dimensions of the planets, the initial atmospheric surface pressures and the volatiles contents of the impactors are of high importance for the impact delivery and erosion, and that they might be responsible for the differences in the atmospheric evolution of Mars, Earth and Venus.  相似文献   

4.
Consequences of a heavy bombardment for the atmospheres of Earth and Mars are investigated with a stochastic model. The main result is the dominance of the accumulation. The atmospheric pressure is strongly increasing both for Earth and Mars in the course of an enhanced bombardment. The effect of atmospheric erosion is found to be minor, regarding escape during meteorite entry, in the expanding vapor plume, and ejection due to free-surface motion. The initial atmospheric surface pressure if comparable to the modern value turns out as a less important additive constant of the final pressure. Impactor retention and atmospheric erosion are parametrized in terms of scaling laws, compatible with recent numerical simulations. The dependence on impactor size, atmospheric and planetary parameters is analyzed among alternative models and numerical results. The stochastic model is fed with the net replenishment originating from impactor material and the loss of preexisting atmospheric gas. Major input parameters are the total cumulative impactor mass and the relative mass of atmophile molecules in comets and asteroids. Input size distributions of the impactor ensemble correspond to presently observed main belt asteroids and KBOs. Velocity distributions are taken from dynamical simulations for the Nice model. Depending on the composition of large cometary impactors, the Earth could acquire a more massive atmosphere, a few bars in terms of surface pressure, mostly as CO and CO2. For Mars accumulation of 1–4 bars of CO and CO2 requires an asteroidal ‘late veneer’ of the order of 1024 g containing 2% atmophiles.  相似文献   

5.
《Icarus》1986,68(1):87-98
The impact of a large extraterrestrial body onto a planet deposits considerable energy in the atmosphere. If the radius of the impactor is much larger than an atmospheric scale height and its velocity much larger than the planetary escape velocity, some of the planetary atmosphere may be driven off into space. The process is analyzed theoretically in this paper. The amount of gas that escapes is equal to the amount of gas intercepted by the impacting body multiplied by a factor not very different from unity. Escape occurs only if the velocity of the impacting body exceeds the planetary escape velocity. At large impact velocities the enhancement factor, which is the factor multiplying the amount of atmosphere intercepted by the impacting body, approaches a constant value approximately equal to 1012/Ve2, where Ve is the escape velocity (in cm/sec). The enhancement factor is independent of atmospheric mass or surface pressure. Ablation of the impacting body and the planetary surface adds to the mass of gas that must be accelerated into space if escape is to occur. As a result, impact erosion of the atmosphere does not occur from a planet with an escape velocity in excess of 10 km/sec.  相似文献   

6.
Classical methods to analyze the surface composition of atmosphereless planetary objects from an orbiter are IR and gamma ray spectroscopy and neutron backscatter measurements. The idea to analyze surface properties with an in-situ instrument has been proposed by Johnson et al. (1998). There, it was suggested to analyze Europa's thin atmosphere with an ion and neutral gas spectrometer. Since the atmospheric components are released by sputtering of the moon's surface, they provide a link to surface composition. Here we present an improved, complementary method to analyze rocky or icy dust particles as samples of planetary objects from which they were ejected. Such particles, generated by the ambient meteoroid bombardment that erodes the surface, are naturally present on all atmosphereless moons and planets. The planetary bodies are enshrouded in clouds of ballistic dust particles, which are characteristic samples of their surfaces. In situ mass spectroscopic analysis of these dust particles impacting onto a detector of an orbiting spacecraft reveals their composition. Recent instrumental developments and tests allow the chemical characterization of ice and dust particles encountered at speeds as low as 1 km/s and an accurate reconstruction of their trajectories. Depending on the sampling altitude, a dust trajectory sensor can trace back the origin of each analyzed grain with about 10 km accuracy at the surface. Since the detection rates are of the order of thousand per orbit, a spatially resolved mapping of the surface composition can be achieved. Certain bodies (e.g., Europa) with particularly dense dust clouds, could provide impact statistics that allow for compositional mapping even on single flybys. Dust impact velocities are in general sufficiently high at orbiters about planetary objects with a radius >1000 km and with only a thin or no atmosphere. In this work we focus on the scientific benefit of a dust spectrometer on a spacecraft orbiting Earth's Moon as well as Jupiter's Galilean satellites. This ‘dust spectrometer' approach provides key chemical and isotopic constraints for varying provinces or geological formations on the surfaces, leading to better understanding of the body's geological evolution.  相似文献   

7.
It is generally supposed that the atmospheres of the terrestrial planets were formed by secondary degassing processes. We propose, instead, that they are of primary origin, forming as an immediate and necessary consequence of the final stages of planetary accretion. Once the planetary embryo reached a critical size, the impacting material began to vaporize. The atmosphere, so created, then decelerated other impacting material, thus limiting the rate of atmospheric growth. We show that, given reasonable assumptions concerning the chemical composition of the impacting material, an acceptable model for the early atmosphere of the Earth, and the present atmospheres of Venus and Mars results.A discussion of the noble gas data for the terrestrial atmosphere indicates that these can be readily reconciled with an impact origin.  相似文献   

8.
Earth and Titan are two planetary bodies formed far from each other. Nevertheless the chemical composition of their atmospheres exhibits common indications of being produced by the accretion, plus ulterior in-situ processing of cometary materials. This is remarkable because while the Earth formed in the inner part of the disk, presumably from the accretion of rocky planetesimals depleted in oxygen and exhibiting a chemical similitude with enstatite chondrites, Titan formed within Saturn's sub-nebula from oxygen- and volatile-rich bodies, called cometesimals. From a cosmochemical and astrobiological perspective, the study of the H, C, N, and O isotopes on Earth and Titan could be the key to decipher the processes occurred in the early stages of formation of both planetary bodies. The main goal of this paper is to quantify the presumable ways of chemical evolution of both planetary bodies, in particular the abundance of CO and N2 in their early atmospheres. In order to do that the primeval atmospheres and evolution of Titan and Earth have been analyzed from a thermodynamic point of view. The most relevant chemical reactions involving these species and presumably important at their early stages are discussed. Then, we have interpreted the results of this study in light of the results obtained by the Cassini–Huygens mission on these species and their isotopes. Given that H, C, N, and O were preferentially depleted from inner disk materials that formed our planet, the observed similitude of their isotopic fractionation, and subsequent close evolution of Earth's and Titan's atmospheres points towards a cometary origin of Earth atmosphere. Consequently, our scenario also supports the key role of late veneers (comets and water-rich carbonaceous asteroids) enriching the volatile content of the Earth at the time of the late heavy bombardment of terrestrial planets.  相似文献   

9.
A theoretical model of the evolution of topographic features on airless bodies is based on the erosion caused by the impact of small meteorites and the deposition of material ejected from nearby impacts. Three differing conditions are postulated: (i) the rate of erosion equals the rate of sedimentation, as may be expected on large bodies like the Earth's moon and Mercury, (ii) the rate of erosion exceeds the rate of sedimentation, as may be expected in smaller bodies like the asteroids, where portions of the ejecta may reach escape velocity, and (iii) the rate of sedimentation exceeds the rate of erosion, as may be expected on bodies during planetary growth.Although quantitative conclusions cannot yet be reached, qualitative relationships appear to exist, capable of elucidating the mass balance of airless planetary bodies. Under conditions of erosion equalling sedimentation, a crater tends to evolve into a rim-less bowl, the center of which is below the level of the surrounding plain. Under conditions of high erosion, the tendency for a crater is to evolve into a circular low hill around a bowl, the center of which is at the same level as the surrounding plain.  相似文献   

10.
Collisions of comets with planetary bodies are capable of impressing patterns of magnetization onto them that match those observed for the Moon and possibly for Mercury. The ambient solar wind magnetic field is briefly but strongly enhanced as the large partially ionized cometary atmosphere is compressed against the planetary surface. Just at the time of peak field enhancement, the solid part of the comet collides with the surface and the compressed fields are permanently imprinted by shock magnetization.  相似文献   

11.
We have considered the new process of atmospheric losses - “sputtering” under bombardment by interplanetary dust. It is demonstrated that “sputtering” due to collisions with the interplanetary dust is an effective way of atmospheric gas loss (10–4–10–3 of the dust particles' accreting mass) and that it changes the composition of the atmospheric gases. In calculations we have taken that the dust particles collide elastically with the atoms and molecules of the atmosphere. Estimation of the effects of inelastic collisions was also considered. As a result of these collisions a part of the atmospheric atoms and molecules will have “upward” velocity and enough energy to escape. It was considered that escaping atoms can collide with the atoms of the “main” gas of the upper atmosphere. The atmospheric gas composition is assumed to be just as in the modern Martian atmosphere - the “main” gases in the upper atmosphere were taken to be O and CO2. In our computations we pay particular attention to the abundance of noble gases in planetary atmospheres since these gases are very important for theories of atmospheric origin. We computed that under “sputtering” by the interplanetary dust, atmospheres were enriched by the “heavy” elements and isotopes in the wide range of the upper atmospheric parameters O/CO2, T/g (O/CO2– on the level of homosphere;T is temperature of the exosphere,g is gravitational acceleration). However the loss efficiency for “heavy” gases is relatively high compared to other known gas loss processes. In the case of noble gases for the specific parameters of the upper atmosphere (small T/g ratio; high O/CO2 on the level of homosphere) we have got the unique result: despite the diffusion separation in the upper atmosphere the loss efficiency of Xe > Kr > Ar. The effect of “sputtering” of the planetary atmospheres was strongest during the early stages of the planetary evolution - when the rate of the dust accretion was intrinsically higher than now because of collisions of planetesimals. In light of the new escape process, the main peculiarities of the noble gases abundance in the planetary atmospheres could be explained. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
During the previous years spacecraft observations of so-called Energetic Neutral Atoms (ENAs) have become an important remote-sensing technique in planetary science for analyzing the solar wind plasma flow around the upper atmospheric environments of Solar System bodies. ENAs are produced whenever solar- or stellar wind protons interact via charge exchange with a neutral particle from a planetary atmosphere so that their signals constrain both, ion distributions and neutral gas densities. The observation of ENAs which have been generated due to charge exchange with stellar wind plasma have been used for the indirect mass loss and stellar wind property estimation of Sun-like stars by observing the interaction regions carved out by the collisions between stellar winds and the interstellar medium. In this work we review ENA-observations and data interpretations at Solar System planets and recent hydrogen-cloud observations in UV Lyman-α absorption around hydrogen-rich extra-solar gas giants. We discuss the production of stellar wind related hydrogen ENA-clouds around close-in exoplanets and show how a detailed analysis of attenuation spectra obtained for transiting hydrogen-rich close-in gas giants can be used for the study of the upper atmosphere structure, the planet’s magnetosphere and to obtain information on stellar wind properties. Finally, we discuss how future hydrogen cloud observations around exoplanets by space observatories like the Russia-led World Space Observatory-UV (WSO-UV) together with ESAs planned PLATO mission can be used for the reconstruction of the solar wind history or the test of magnetosphere evolution hypotheses.  相似文献   

13.
The competition between impact erosion and impact supply of volatiles to planetary atmospheres can determine whether a planet or satellite accumulates an atmosphere. In the absence of other processes (e.g., outgassing), we find either that a planetary atmosphere should be thick, or that there should be no atmosphere at all. The boundary between the two extreme cases is set by the mass and velocity distributions and intrinsic volatile content of the impactors. We apply our model specifically to Titan, Callisto, and Ganymede. The impacting population is identified with comets, either in the form of stray Uranus-Neptune planetesimals or as dislodged Kuiper belt comets. Systematically lower impact velocities on Titan allow it to retain a thick atmosphere, while Callisto and Ganymede get nothing. Titan's atmosphere may therefore be an expression of a late-accreting, volatile-rich veneer. An impact origin for Titan's atmosphere naturally accounts for the high D/H ratio it shares with Earth, the carbonaceous meteorites, and Halley. It also accounts for the general similarity of Titan's atmosphere to those of Triton and Pluto, which is otherwise puzzling in view of the radically different histories and bulk compositions of these objects.  相似文献   

14.
Radio occultation studies of the structure of planetary atmospheres have generally involved relatively shallow penetration of the spacecraft behind the limb of the planet in the plane of the sky. Current radio link sensitivities allow detection of the radio signals at all occultation depths, whenever the planet-spacecraft distance is sufficiently large for the refraction to occur at atmospheric heights where microwave absorption is not too large. Voyager 1 at Jupiter and Voyager 2 at Saturn will pass almost directly behind the planets as viewed from the Earth. Thus they will pass through the caustics that corresponds to the focal line of a spherical planet, expanded by oblateness into a surface approximating a four-cusp cylinder. In the plane of the sky, the projection of this surface approximates the evolute of the planet's limb. As the spacecraft passes behind the planet with its antenna tracking the occulting limb, the strength of the radio signals received on Earth will at first decrease due to defocusing in the atmosphere, but then increase as the evolute is approached, because of the focusing caused by limb curvature. Inside the evolute there are four simultaneous signal paths over four limb positions. If we neglect absorption, focused signals for an instant could become orders of magnitude stronger than for the unocculted spacecraft. Measurements of the frequency and intensity of deep occultation signals, and of the timing and character of these “evolute flashes”, could provide information on atmospheric absorption, turbulence, and structure, and on details of the shape of the atmosphere at the focusing limbs as affected, for example, by planetary gravitational moments, rotation, and zonal winds. Such observations will be attempted with Voyager and potentially could be very fruitful in the Pioneer Venus and Galileo (Jupiter) orbiting missions.  相似文献   

15.
While atmospheric pressure can be considered a major multiple impact mechanism on Venus, probable mechanisms for multiple impacts on other solid planetary bodies cannot be isolated with certainty.  相似文献   

16.
Noble gas 40Ar may be used as a tracer of the past evolution of volatiles in Mars’ crust, mantle and atmosphere. 40Ar is formed by the radioactive decay of 40K in the mantle and in the crust and is released from the mantle to the atmosphere due to volcanism and from the crust by erosion such as eolian and hydrothermal erosion. Furthermore, 40Ar can escape from the atmosphere into space via atmospheric escape mechanisms. The evolution of the atmospheric abundance of 40Ar thus depends on these three processes whose efficiencies vary with time.In the present study we reconsider atmospheric escape mechanism efficiencies and describe various possible scenarios of the evolution of 40Ar with a model describing the three main reservoirs of 40Ar, the mantle, crust and atmosphere. First, we show that atmospheric escape, which is stronger in the early evolution, does not significantly influence the present abundance of the atmospheric 40Ar. In the early evolution the atmospheric concentration of 40Ar is very low as the outgassing of 40Ar from the mantle occurs relatively late in the martian evolution. Thus, the atmospheric 40Ar concentration is essentially a tracer of Mars’ outgassing history and not of the escape processes. Second, using the results of the most recent published crustal formation models, the calculated present 40Ar atmospheric abundance is smaller than its observed value. This discrepancy may be explained by a significant 40Ar supply from the crust by erosion (16–30% of the 40Ar content of the upper first 10 km of crust). The knowledge of the fraction of crustal 40Ar outgassed to the atmosphere is an important constraint for any future global modelling of past Mars’ hydrothermal activity aiming at better characterizing the role of subsurface aqueous alteration processes in Mars climate evolution. One of the main sources of the uncertainty of these results is the present uncertainty in the measured atmospheric 40Ar value (±20%). More precise measurements of 40Ar and 36Ar in the martian atmosphere are therefore required to better constrain the model.  相似文献   

17.
A theoretical reconstruction of the history of Martian volatiles indicates that Mars probably possessed a substantial reducing atmosphere at the outset of its history and that its present tenous and more oxidized atmosphere is the result of extensive chemical evolution. As a consequence, it is probable that Martian atmospheric chemical conditions, now hostile with respect to abiotic organic synthesis in the gas phase, were initially favorable. Evidence indicating the chronology and degradational history of Martian surface features, surface mineralogy, bulk volatile content, internal mass distribution, and thermal history suggests that Mars catastrophically developed a substantial reducing atmosphere as the result of rapid accretion. This atmosphere probably persisted—despite the direct and indirect effects of hydrogen escape—for a geologically short time interval during, and immediately following, Martian accretion. That was the only portion of Martian history when the atmospheric environment could have been chemically suited for organic synthesis in the gas phase. Subsequent gradual degrassing of the Martian interior throughout Martian history could not sustain a reducing atmosphere due to the low intensity of planet-wide orogenic activity and the short atmospheric mean residence time of hydrogen on Mars. During the post-accretion history of Mars, the combined effects of planetary hydrogen escape, solar-wind sweeping, and reincorporation of volatiles into the Martian surface produced and maintained the present atmosphere.  相似文献   

18.
We have studied the interaction of fast solar wind hydrogen atoms with the martian atmosphere by a three-dimensional Monte Carlo simulation. These energetic neutral hydrogen atoms, H-ENAs, are formed upstream of the martian bow shock. Both H-ENAs scattered and non-scattered from the martian atmosphere/exosphere were studied. The colliding H-ENAs were found to scatter both to the dayside and nightside. On the dayside they contribute to the so-called H-ENA albedo. On the nightside the heated and scattered hydrogen atoms were found also in the martian wake. The density, the energy distribution function and the direction of the velocity of H-ENAs on the nightside are presented. The present study describes a novel “ENA sounding” technique in which energetic neutral atoms are used to derive information of the properties of planetary exosphere and atmosphere in a similar manner as the solar wind photons are used to derive atmospheric densities by measuring the scattered UV light. A detailed study of the direction and energy of the scattered and non-scattered H-ENAs suggest that the ENA sounding is a method to study the interaction between the planetary atmosphere and the solar wind and to monitor the density, and likely also the magnetization, of the planetary upper atmosphere. Already present-day ENA instrument should be capable to detect the analyzed particle fluxes.  相似文献   

19.
The hot planetary and satellite coronas are populated by the suprathermal particles produced in the transition region between the collision-dominated and free-molecule atmospheric layers under the external effects of electromagnetic and corpuscular solar radiation and magnetospheric plasma. We construct a numerical stochastic model to investigate both the local formation and kinetics of suprathermal particles and their transport to exospheric heights from underlying atmospheric layers. In contrast to other commonly used approaches, the suggested numerical model is suitable for studying the flows of atmospheric gas weakly and strongly perturbed by suprathermal particles, i.e., for studying the formation of hot planetary and satellite coronas proper. Highly efficient Monte-Carlo algorithms with weighted particles underlie the numerical implementation of the model. This numerical model is used to investigate the following: (i) the hot oxygen corona of Europa, a Jovian satellite, which is an example of a highly nonequilibrium near-surface atmosphere; and (ii) the nonthermal losses of nitrogen from Titan, a Saturnian satellite, when suprathermal atoms and molecules of nitrogen are only a small admixture to the surrounding thermal molecular nitrogen—the main atmospheric component of Titan.  相似文献   

20.
Numerical simulations are performed to understand the early thermal evolution and planetary scale differentiation of icy bodies with the radii in the range of 100–2500 km. These icy bodies include trans‐Neptunian objects, minor icy planets (e.g., Ceres, Pluto); the icy satellites of Jupiter, Saturn, Uranus, and Neptune; and probably the icy‐rocky cores of these planets. The decay energy of the radionuclides, 26Al, 60Fe, 40K, 235U, 238U, and 232Th, along with the impact‐induced heating during the accretion of icy bodies were taken into account to thermally evolve these planetary bodies. The simulations were performed for a wide range of initial ice and rock (dust) mass fractions of the icy bodies. Three distinct accretion scenarios were used. The sinking of the rock mass fraction in primitive water oceans produced by the substantial melting of ice could lead to planetary scale differentiation with the formation of a rocky core that is surrounded by a water ocean and an icy crust within the initial tens of millions of years of the solar system in case the planetary bodies accreted prior to the substantial decay of 26Al. However, over the course of billions of years, the heat produced due to 40K, 235U, 238U, and 232Th could have raised the temperature of the interiors of the icy bodies to the melting point of iron and silicates, thereby leading to the formation of an iron core. Our simulations indicate the presence of an iron core even at the center of icy bodies with radii ≥500 km for different ice mass fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号