首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
It is known that the fundamental spheroidal mode 0S2 of the Earth free oscillation with a period of about 54 min forces atmospheric oscillations. We present a certain phase relationship for components of the 0S2 multiplet, which is based on synchronous collocated microbarograph and seismograph observations. This relationship is both the first observational manifestation of the Pekeris mode of global atmospheric oscillations with the 54 min period and a further proof of the Earths 0S2 mode penetrating into the atmosphere. We show that the linear non-dissipative model of steady forced oscillations in isothermal atmosphere at rest does not describe the penetration of the 0S2 mode into the atmosphere adequately.  相似文献   

2.
Forced and free oscillations of water level were recorded in the YuZ-5 well, Kamchatka due to the passage of seismic waves from the Sumatra-Andaman earthquake of December 26, 2004, M w = 9.3, hypocentral distance 8250 km. The greatest amplitude of water level oscillations, at least 5 cm, was observed during the onset of seismic surface waves with a typical period of 20–50 s. The total duration of the forced and free water level oscillations was about ten hours. The available theoretical models that describe oscillations of water level in a well due to seismic waves and rapid injection of water were used to estimate the transmissivity of the aquifer. The values obtained exceed by at least two orders of magnitude the transmissivity derived from pumping test measurements. A hypothesis was proposed to explain the temporary increase in aquifer transmissivity during the passage of seismic waves by invoking disturbances in the structure of the crack-pore space and a sharp increase in aquifer rock permeability.  相似文献   

3.
The records from wideband seismic stations are analyzed for studying the oscillations of the Earth that emerged after the earthquakes in Sumatra on December 26, 2004 (M = 9.2), Chile on February 27, 2010 (M = 8.8), and after the Tohoku megaearthquake on March 11, 2011 (M = 9.0). Attention is focused on the band with a period of 20.46 min, which includes the free radial mode 0S0. It is established that the emergence of oscillations in the frequency interval corresponding to the free oscillations of the Earth is delayed by a lag, which increases with increasing period. Pulsations of the 20.46-min band, which appear in the interval from 5 to 7 days after the earthquake and have a period of 127–129 min, are revealed. The patterns of the amplitude attenuation of the 20.46-min band are different at stations located in zones with different tectonic activity. These features manifest themselves in the search through different stations and through different earthquakes.  相似文献   

4.
Summary Lunar barometric tidal determinations (L 2) have been made by the Chapman-Miller method for Zürich (493 m) and Säntis (2000 m) based on 49 years' data. The seasonal variations ofL 2 are much larger at Zürich than on the Säntis summit. However, a comparison with the five other pairs of stations for which tidal determinations at different altitudes, but short horizontal distances, are available do not indicate that this result is as an altitude effect, nor do they show any other systematic differences betweenL 2 at the lower and the higher station. The solar tidal determinations agree well with those made byEggenberger (1944) and fit in with those obtained for other stations. From the difference between the pressure oscillations at Zürich and on Säntis the corresponding meantemperature oscillations of the air column between the two stations has been computed.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

5.
This paper reports an investigation on the periodic variation of pollutant levels at a typical traffic intersection of Hong Kong. Carbon monoxide, carbon dioxide and particulate matters (PM x ) were measured respectively and the measured data show periodic variations with the traffic signal intervals. The power spectral density (PSD) approach was used to inspect the trends and periodic oscillations of measured pollutants. Singular spectrum analysis was applied to decompose the measured data into statistically significant non-linear trends and oscillations in the process. From the results, most of the trends tend to increase due to the upcoming rush hour during the experiment. In addition, all the oscillations changed regularly with a period of 136?s, which is coincident with the traffic signal period and the frequency calculated by using PSD. The trends, together with the oscillations, collectively explain the most percentage of the variability of the data in the time series and provide the principal components of the data in understanding the periodic variation of the pollutant concentration. It can be deduced that vehicle emission is the major contributor to the air pollution in downtown area and pedestrians should be more alerted when crossing the busy traffic intersections.  相似文献   

6.
The so-called hour-mark effect, which reflects a response of the lithosphere to anthropogenic forcing, was initially detected when processing the earthquake catalogues by the method of synchronous detection. When attempting to reveal this effect by spectral analysis, we encountered an interesting feature of global seismicity. Namely, the spectrum of seismic activity indeed contains a peak at a frequency of 0.277 mHz, and this peak has a clearly anthropogenic origin (the hour-mark effect). At the same time, the spectrum also contains a stronger peak at a frequency of 0.309 mHz, which corresponds to a period of 54 min. We have independently detected this period in the aftershock sequences in the epicentral zones of large earthquakes and in the variations of seismicity in the antipodal zones. The 54-min periodicity coincides with the fundamental mode 0 S 2 of the free oscillations of the Earth. It is suggested that oscillations of the Earth as a whole result in a weak but detectable modulation of seismic activity.  相似文献   

7.
The work is devoted to the study of the oscillation properties of the magnetic and velocity fields of sunspots with typical periods of up to about 104 min. These oscillations were revealed at the beginning of the 1980s (Gopasyuk, 1981) but remain understudied. Using SOHO MDI data and a technique that allows for measurements of magnetic field H and the heliographic coordinates of sunspots φ and λ with higher accuracy than direct measurements of individual pixels, we have studied 72 sunspots observed on the Sun’s visible hemisphere during no less than 9–11 days (±60–70° from the central meridian) with a time resolution of 1 min. Estimates of random errors of a measurement give σ H ≈ 60 Gs, σφ ≈ 0.055°, and σλ ≈ 0.050°. It is found that the main periods of the maximum superlong-period oscillations of sunspots are equal to eight days, according to earlier ground-based measurements. Space observations allow the effect of the Earth’s atmosphere to be totally eliminated; therefore, on the basis of recent data, one can conclude that long-period oscillations of sunspot parameters are a real Sun phenomenon.  相似文献   

8.
Since October 2001, four soil CO2 flux stations were installed in the island of São Miguel (Azores archipelago), at Fogo and Furnas quiescent central volcanoes. These stations perform measurements by the accumulation chamber method and, as the gas flux may be influenced by external variables, the stations are equipped with several meteorological sensors. Multivariate regression analysis applied to the large datasets obtained allowed observing that the meteorological variables may influence the soil CO2 flux oscillations from 18% to 50.5% at the different monitoring sites. Additionally, it was observed that meteorological variables (mainly soil water content, barometric pressure, wind speed and rainfall) play a different role in the control of the gas flux, depending on the selected monitoring site and may cause significant short-term (spike-like) fluctuations. These divergences may be potentially explained by the porosity and hydraulic conductivity of the soils, topographic effects, drainage area and different exposure of the monitoring sites to the weather conditions. Seasonal effects are responsible for long-term oscillations on the gas flux.  相似文献   

9.
Solar variability is controlled by the internal dynamo which is a non-linear system. We develop a physical–statistical method for forecasting solar activity that takes into account the non-linear character of the solar dynamo. The method is based on the generally accepted mechanisms of the dynamo and on recently found systematic properties of the long-term solar variability. The amplitude modulation of the Schwabe cycle in dynamo's magnetic field components can be decomposed in an invariant transition level and three types of oscillations around it. The regularities that we observe in the behaviour of these oscillations during the last millennium enable us to forecast solar activity. We find that the system is presently undergoing a transition from the recent Grand Maximum to another regime. This transition started in 2000 and it is expected to end around the maximum of cycle 24, foreseen for 2014, with a maximum sunspot number Rmax=68±17. At that time a period of lower solar activity will start. That period will be one of regular oscillations, as occurred between 1730 and 1923. The first of these oscillations may even turn out to be as strongly negative as around 1810, in which case a short Grand Minimum similar to the Dalton one might develop. This moderate-to-low-activity episode is expected to last for at least one Gleissberg cycle (60–100 years).  相似文献   

10.
Ambiguity in the inverse problem of retrieval of the mechanical parameters of the Earth’s shell and core from the set of data on the velocities V p and V S , of longitudinal and transverse seismic body waves, the frequencies f i and quality factors Q i , of free oscillations, and the amplitudes and phases of forced nutation is considered. The numerical experiments show that the inverse problem of simultaneous retrieval of the density profile ρ in the mantle-liquid core system and the mechanical quality factor Q μ of the mantle (if the total mass M and the total mean moment of inertia I of the Earth, and V p and V S are constant at all depths) has most unstable solutions. An example of depth distributions of ρ and Q μ which are alternative to the well-known PREM model is given. In these distributions, the values of M and I and the velocities V p and V S at all depths for the period of oscillations T = 1 s exactly coincide with their counterparts yielded by PREM model (T = 1 s); however, the maximum deviations of the ρ and Q μ profiles from those in the PREM model are about 3% and 40%, respectively; the mass and the moment of inertia of the liquid core are smaller than those for the PREM model by 0.75% and 0.63%, respectively. In this model, the root mean square (rms) deviations of all the measured values of f i and Q i from their values predicted by theory are half to third the corresponding values in the PREM model; the values of Δ for natural frequencies of the fundamental tone and overtones of radial oscillations, the fundamental tones of torsional oscillations, and the fundamental tones of spheroidal oscillations, which are measured with the highest relative accuracy, are smaller by a factor of 30, 6.6, and 2 than those in the PREM model, respectively. Such a large ambiguity in the solution of the inverse problem indicates that the current models of the depth distribution of density have relatively low accuracy, and the models of the depth distribution of the mechanical Q in the mantle are extremely unreliable. It is shown that the ambiguity in the models of depth distribution of density considerably decreases after the new data on the amplitudes and phases of the forced nutation of the Earth are taken into account. Using the same data, one may also refine by several times the recent estimates of the creep function for the lower mantle within a wide interval of periods ranging from a second to a day.  相似文献   

11.
We experimentally characterize magnetic field fluctuations in a strongly turbulent flow of liquid sodium in the presence of a large externally applied field. We reach high interaction parameter (up to N=17) for moderate magnetic Reynolds number (up to Rem=18), a previously unexplored parameter range for liquid metal flows. As the interaction parameter (i.e. the ratio of Lorentz to inertial forces) is increased, the system passes through distinct regimes, which we classify. We find that for certain ranges of the applied magnetic field, particularly at high values, the induced magnetic field exhibits large, coherent oscillations. Spatial structure in these induced field oscillations suggests the formation of non-axisymmetric vortices that precess at a fraction of the impeller rotation rate. We also investigate the effect of rough versus smooth boundaries and relate these results to topographic core–mantle coupling in the Earth.  相似文献   

12.
The parameters of meridional thermospheric wind oscillations during the propagation of largescale traveling ionospheric disturbances, obtained based on the nighttime observations in the ionospheric F region performed at the Institute of the Ionosphere (Almaty, 76°55′ E, 43°15′ N) in 2000–2007 using a digital ionosonde, have been analyzed. The processing of ionospheric sounding data made it possible to obtain electron density time variations N(t) at fixed altitudes and variations in the altitudes of the F region maximum (h m F) and bottom (h bot F). During the indicated period, 1166 observation sessions were performed, and 581 sessions were characterized by wave activity. Sessions with a relative amplitude of N(t) variations larger than 25% were selected for analysis. The total number of such sessions was 63. The expression for calculating the meridional wind oscillation amplitudes was obtained based on the measured amplitudes of h bot F oscillations. It was indicated that increased amplitudes of thermospheric wind oscillations are obtained when this expression for h m F is used. The diffusion term, which causes increased h m F oscillation amplitudes as compared to the h bot F oscillation amplitudes, was estimated using the regression expression.  相似文献   

13.

The results of a periodogramanalysis of the variations in the ionospheric parameters, measured using the vertical radio sounding method at midlatitude Irkutsk observatory (Eastern Siberia), are presented. The 1984–1986 period of observations was used. It has been indicated that the statistically significant oscillations with periods typical of planetary waves are present in the variations in f 0Es, f bEs, h′Es, f min, f 0F2, and h′F.

  相似文献   

14.
The amplitudes of the Earth's free oscillations have a close relationship to earthquake focal mechanisms. Focal mechanisms of large earthquakes can be well analyzed and constrained with observations of long period free oscillations. Although the 2013 Lushan earthquake was only moderately sized, observable spherical normal modes were excited and clearly observed by a superconductive gravimeter and a broadband seismometer. We compare observed free oscillations with synthetic normal modes corresponding to four different focal mechanisms for the Lushan earthquake. The results show that source parameters can be analyzed and constrained by spherical normal modes in a 2.3–5 mHz frequency band. The scalar seismic moment M0 has a major influence on the amplitudes of free oscillations; additionally, the strike, dip, rake and depth of the hypocenter have minor influences. We found that the synthetic modes corresponding to the focal mechanism determined by the Global Centroid Moment Tensor show agreement to the observed modes, suggesting that earthquake magnitudes predicted in this way can readily reflect the total energy released by the earthquake. The scalar seismic moment obtained by far-field body wave inversion is significantly underestimated. Focal mechanism solutions can be improved by joint inversion of far- and near-field data.  相似文献   

15.
Summary The spectra of nearly 100 samples of Bpc3 pulsations were computed in the X and Y components of data from the Budkov Observatory. These spectra were used to study the daily variations of the fundamental characteristics of the pulsations, the frequency f 0 and amplitude A 0 of the main spectral peaks. The daily variation of the ellipticity of the polarization ellipses of oscillations in frequency f 0 was also studied in the XY-plane.Part of these results was reported at the XVth General Assembly of the IUGG, Moscow, August 1971.  相似文献   

16.
The results of a periodogramanalysis of the variations in the ionospheric parameters, measured using the vertical radio sounding method at midlatitude Irkutsk observatory (Eastern Siberia), are presented. The 1984–1986 period of observations was used. It has been indicated that the statistically significant oscillations with periods typical of planetary waves are present in the variations in f 0Es, f bEs, h′Es, f min, f 0F2, and h′F.  相似文献   

17.
The transient planetary waves in the atmosphere and ionosphere seem to occur in the form of bursts of a couple of waves with limited persistence. To study persistence of planetary wave events in the lower ionosphere, data from two radio paths from Central Europe are used, Luxembourg – Panská Ves (f = 6.09 MHz, f eq = 2.1-2.2 MHz) and Deutschlandfunk – Panská Ves (f = 1539 kHz, f eq = 650-700 kHz). The absorption along the former radio paths is formed very predominantly at altitudes of about 90-100 km, whereas the latter absorption is formed mostly at altitudes of about 85-90 km. The persistence of planetary wave type oscillations is studied in three period bands centred at 5, 10 and 16 days. Waves with period T near 5 days reveal a typical persistence of wave events around 5 cycles. Waves with T = 10 days are less persistent with a typical persistence of 3-4 cycles. The typical persistence of waves T = 16 days is no more than 3 cycles. In terms of number of cycles, the persistence of oscillations evidently decreases with increasing period. On the other hand, in terms of number of days, the persistence seems rather to increase with increasing period.  相似文献   

18.
The atmospheric influence on the Earths, rotation can be described by the effective atmospheric angular momentum (EAAM) functions. In this study we focus on the analysis of short period variations of the equatorial components of the zonal EAAM excitation functions 1 and 2 and their influence on similar variations of polar motion. The global objective analysis data of the Japanese Meteorological Agency for the period 1986–1992 were used to compute the EAAM excitation functions in different latitude belts. Time- and latitude-variable amplitude spectra of variations of these functions with periods shorter than 150 days, containing pressure, pressure with the inverted barometric correction, and wind terms were computed. The spectra show distinct latitude and time variations of the prograde and retrograde oscillations which reach their maxima mainly in mid-latitudes. Prograde and retrograde oscillations with periods of about 40–60 days and about 110–120 days are seen in the spectra of pressure terms of the equatorial components of the zonal EAAM excitation functions. Additionally, correlation coefficients and cross-spectra between variations of the geodetic polar motion and equatorial components of the zonal EAAM excitation functions were computed to identify the latitude belts of the globe over which atmospheric circulation changes are correlated mostly with short period variations of the polar motion excitation functions. The correlation coefficients vary in time and latitude and reach maximum values in the northern latitudes from 50°N to 60°N. In the cross-spectra between the polar motion excitation functions and pressure terms of the zonal EAAM excitation functions there are peaks of common prograde oscillations with the periods around 20, 30, 40–50, 60 and 80–150 days and of common retrograde oscillations around 20, 30, 40 and 50–70 days.Paper presented at the IERS Workshop in Paris, March 1994  相似文献   

19.
Short periodic oscillations with the periods from 10 up to 110 days of the hemispheric components of effective atmospheric angular momentum (EAAM) excitation function and their correlation with polar motion excitation function have been analyzed. The EAAM data of the Japan Meteorological Agency (JMA) computed for the two hemispheres and the very long baseline interferometry (VLBI) polar motion NGS 92 R01 data (NGS 1992), determined by the National Geodetic Survey were applied. The distinct oscillations with periods of about 28, 35–55 and 60–80 days were detected in the y-component of both polar motion excitation function and northern EAAM excitation functions containing wind and pressure, with and without inverted barometric correction terms. The y-component of the polar motion excitation function is significanly correlated (correlation coefficient equal to 0.55-0.75) with the y-components of the northern EAAM excitation functions mentioned above, which are mostly induced by the atmospheric circulation over lands. No meaningful correlation between polar motion excitation function and the southern EAAM excitation functions was found. The x-components of the EAAM and polar motion excitation functions are not significantly correlated. The strong short periodic variation of the length of day (LOD) and y in the early 1988 seems to be caused by the above-mentioned 35–55 days oscillations of the northern hemisphere atmosphere. This variation can be related to the rapid passing from the El Niño to the La Niña phenomenon or from the minimum to the maximum in the Southern Oscillation Index in 1987-1989.  相似文献   

20.
During the MLTCS (Mesosphere-Lower Thermosphere Coupling Study) campaign the EISCAT UHF radar was continuously operated over 7 days (30 July-5 August 1992) in the CP-1 mode. The long time series obtained of the fundamental ionospheric parameters field-aligned ion velocity (Vi), ion and electron temperature (T and Te), and electron density (Ne) are useful in investigating tidal variations in the E- and F-region since the geomagnetic activity was particularly low during the time of measurement. Maximum entropy spectra of the parameters were calculated for the relatively quiet interval from 1 August to 4 August 1992 and indicated dominant variations with harmonics of 24 hours. In the electron density spectrum especially, harmonics up to the sixth order (4-h period) are clearly visible. The phase and amplitude height profiles (100-450 km) of the diurnal, semidiurnal, and terdiurnal variations were determined by Fourier transform for a 24-h data set beginning at 12:00 UT on 3 August 1992 when the contaminating influences of electric fields were negligible. The tidal variations of the ion temperatures are compared with the corresponding variations of the neutral temperature predicted by the MSISE-90 model. A remarkable result is the dominance of terdiurnal temperature oscillations at E-region heights on 3–4 August 1992, while the measured diurnal and semidiurnal variations were negligible. The finding was confirmed by the analysis of further EISCAT data (2-3 August 1989, 2–3 July 1990, 31 March- 1 April 1992) which also showed a dominant terdiurnal temperature tide in the E-region. This is different from numerous observations of tides in the E-region at mid-latitudes where the diurnal and especially the semidiurnal temperature oscillations were dominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号