首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A study is made of the free convection in hydromagnetic flows through a porous medium of a heat generating fluid past an infinite vertical porous plate. A strong magnetic field is imposed in a direction which is perpendicular to the free stream and makes an alge to the vertical direction. The governing equations for the hydromagnetic fluid flow and the heat transfer are solved analytically. The influence of Hall currents, the permeabilityK and the inclination upon the velocity field are shown in figures.  相似文献   

2.
The effects of heat and mass transfer on the flow field of a laminar boundary layer is considered. The flow is that of an incompressible viscous fluid past an impulsively started permeable vertical limiting surface with constant heat flux. The solution of the problem was obtained numerically, using an implicit finite difference scheme. The solution is given in a number of diagrams, which depict the influence ofG on velocity,P on temperature and Sc on concentration. The influence ofG on skin friction is also given.  相似文献   

3.
Tilted Bianchi Type I cosmological model for perfect fluid distribution in presence of magnetic field, is investigated. To get a determinate solution, it has been assumed that the universe is filled with stiff perfect fluid distribution together with A=(BC) n where A,B,C are metric potentials and n is a constant. The behaviour of the model in presence and absence of magnetic field is discussed. The various physical and geometrical aspects of the model, is also discussed. It has been shown that tilted nature of the Bianchi Type I model is preserved due to magnetic field. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
A viscous fluid cosmological model in presence of magnetic field and zero-mass scalar fields is developed. The non-negativity condition of viscous fluid pressure prescribes a certain minimum value oft vis-a-vis of the scale factorQ(t) and at this epoch the model is found to be singularity free.  相似文献   

5.
In this work we present the two-dimensional free convection flow of an incompressible viscous fluid past an infinite vertical limiting surface (porous wall) for the Stokes's problem when the fluid is subjected to a constant suction velocity. The flow is normal to the porous wall and the free stream oscillates about a mean value. As the mean steady flow has been presented in Part I, only the solutions for the transient velocity profiles, transient temperature profiles, the amplitude and the phase of the skin friction and the rate of heat transfer are presented in this work. As in the case of mean steady flow, the influence of the Grashof numberG and Eckert numberE on the unsteady flow field is discussed for air (P=0.71) and water (P=7) and for the cases of externally heating and cooling the porous limiting surface by free convection currents.  相似文献   

6.
We examine the behaviour of penetrative turbulent compressible convection under the influence of rotation by means of three dimensional numerical simulations. We estimate the extent of penetration below a stellar-type rotating convection zone in an f-plane configuration. Several models have been computed with a stable-unstable-stable configuration by varying the rotation rate (Ω), the inclination of the rotation vector and the stability of the lower stable layer. The spatial and temporal average of kinetic energy flux (Fk) is computed for several turnover times after the fluid has thermally relaxed and is used to estimate the amount of penetration below the convectively unstable layer. Our numerical experiments show that with the increase in rotational velocity, the downward penetration decreases. A similar behaviour is observed when the stability of the lower stable layer is increased in a rotating configuration. Furthermore, the relative stability parameter S shows an S −1/4 dependence on the penetration distance implying the existence of a thermal adjustment region in the lower stable layer rather than a nearly adiabatic penetration region.  相似文献   

7.
Field equations in the presence of a perfect fluid distribution are obtained in a scalar-tensor theory of gravitation proposed by Saez and Ballester (Phys. Lett. 113, 1985, 467) with the aid of Einstein–Rosen cylindrically symmetric metric. A static vacuum model and a non-static stiff fluid model are presented. The physical and geometrical properties of the stiff fluid model are studied.  相似文献   

8.
Unsteady hydromagnetic boundary layer flow of a viscous incompressible and electrically conducting fluid past an infinite vertical non-conducting porous limiting surface in presence of a transverse magnetic field, is considered when the limiting surface is moving impulsively in its own plane and is subjected to a constant suction. The free stream oscillates in time about a constant mean value and the magnetic Reynolds number is taken to be small enough so that the induced magnetic field is negligible. As the mean steady flow has been presented in Part I, only the solutions for the transient velocity profiles, transient temperature profiles, the amplitude and the phase of the skin friction and the rate of the heat transfer are presented in this work. The influence of the various parameters entering into the problem, especially of the magnetic parameterM, is extensively discussed. A comparative study with hydrodynamic case (M=0) is also made.  相似文献   

9.
10.
In the present article, we have obtained a class of charged superdense star models, starting with a static spherically symmetric metric in curvature coordinates by considering Durgapal (J. Phys. A 15:2637, 1982) type metric i.e. g 44=B(1+Cr 2) n , where n being any positive integer. It is observed that the maximum mass of the charged fluid models is monotonically increasing with the increasing values of n≤4. For n≥4, the maximum mass of the charged fluid models is throughout monotonically decreasing and over all maximum mass is attained at n=4. The present metric tends to another metric which describes the charged analogue of Kuchowicz neutral solution as n→∞. Consequently the lower limit of maximum mass of the charged fluid models could be determined and found to be 5.1165 solar mass with corresponding radius 18.0743 Km. While the upper limit of maximum mass of the model of this category is already known to be 5.7001 solar mass with corresponding radius 17.1003 Km for n=4. The solutions so obtained are well behaved.  相似文献   

11.
Bianchi Type I magnetized Cosmological model for perfect fluid distribution is investigated. The magnetic field is due to an electric current produced along x-axis. The distribution consists of an electrically neutral perfect fluid with an infinite electrical conductivity. To get a determinate solution, a supplementary conditionA = BC between metric potentials is used. The behaviour of the model in presence and absence of magnetic field is also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
A well known theorem of relativistic hydrodynamics states that the streamlines of an isentropic perfect fluid are the future-pointing timelike (FPT) curves extremizing the integral J = ∫ S1 S2 fds, where f is the so-called index function and s the proper time on the world line of the fluid particle. The integral is taken over all possible FPT curves with regular representations xi = xi (s) joining the fixed end events E1, E2. The purpose of this note is to show that the streamlines of an adiabatic perfect fluid can likewise be regarded as extremizing curves of the functional J provided the class of admissible curves consists of those FPT curves satisfying the side condition uiiS = 0, ui unit 4-velocity and S the specific proper entropy of the fluid, with the first end point fixed and the second being the end point variable. __________ Published in Astrofizika, Vol. 48, No. 4, pp. 641–647 (October–December, 2005).  相似文献   

13.
Cosmology with the gravitational and cosmological constants generalized as coupling scalars in Einsteins theory is considered. A general method of solving the field equations is given. Exact solution for Zeldovich fluid satisfying G=G 0(R/R 0) n is given.  相似文献   

14.
An analytical study is performed to examine the effects of temperature-dependent heat source on free-convective flow of non-Newtonian fluid (Walters's liquidB). The expression for the velocity field has been obtained by the Laplace transform technique. The influence of the various parameter entering into the problem is extensively discussed.  相似文献   

15.
We consider a collapsing sphere and discuss its evolution under the vanishing expansion scalar in the framework of f(R) gravity. The fluid is assumed to be locally anisotropic which evolves adiabatically. To study the dynamics of the collapsing fluid, Newtonian and post Newtonian regimes are taken into account. The field equations are investigated for a well-known f(R) model of the form R+δR 2 admitting Schwarzschild solution. The perturbation scheme is used on the dynamical equations to explore the instability conditions of expansionfree fluid evolution. We conclude that instability conditions depend upon pressure anisotropy, energy density and some constraints arising from this theory.  相似文献   

16.
A Bianchi type-III string cosmological model with bulk viscous fluid for massive string is investigated. To get a determinate solution, a supplementary condition B=C n, between metric potentials, is used whereB and C are function of time alone. The behaviour of the model in presence and absence of bulk viscosity, is discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Some Bianchi Type IX string cosmological models with bulk viscous fluid for massive string is investigated. To get a determinate solution, a supplementary condition a=b n, between metric potentials, is used wherea and b are function of time alone. A particular solution for n=0 is also discussed. The behaviour of the model in presence and absence of bulk viscosity, is discussed. The physical and implications of the model is also discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
A sixth-order accurate scheme is presented for the solution of ODE systems supplemented by two-point boundary conditions. The proposed integration scheme is a linear multi-point method of sixth-order accuracy successfully used in fluid dynamics and implemented for the first time in astrodynamics applications. A discretization molecule made up of just four grid points attains a O(h 6) accuracy which is beyond the first Dahlquist’s stability barrier. Astrodynamics applications concern the computation of libration point halo orbits, in the restricted three- and four-body models, and the design of an optimal control strategy for a low thrust libration point mission.  相似文献   

19.
An analytical study is performed to examine the laminar flow of an electrically-conducting elasto-viscous fluid (Walters's liquidB) past an infinite porous flat plate to a step function change in suction velocity in the presence of a transverse magnetic field. The influence of the various parameters, entering in the problem, on the velocity field and shearing stress is extensively discussed.  相似文献   

20.
We consider one-soliton perturbations of a flat Friedmann-Robertson-Walker (FRW) cosmological model, with an ideal fluid with pressure equal to the energy density (stiff fluid), in the case where the “pole trajectory” parameter is negative, introducing thereby singularities along certain null hypersurfaces. Starting with a metric that approaches asymptotically the FR W background, we show that it is possible to construct an extension through these hypersurfaces such that the energy momentum tensor Tab is finite and satisfies the energy conditions. The extension is only C1, providing a sort of “shock front” with continuity in Tab, that has an associated phase transition from null dust to stiff fluid, the transition being of the form described by CHANDRASEKHAR and XANTHOPOULOS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号