首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
将决策树算法引入到遥感影像分类中,以提高分类的精度。首先对影像进行预处理,然后利用C5.0算法在分析地物光谱特征、纹理特征、归一化植被指数的基础上,自动提取分类规则,构建决策树,实现地物的自动分类。为验证该算法的有效性,选取西藏某地区TM影像作为实验数据,与监督分类的精度进行对比,实验结果表明,决策树分类方法能取得较好的分类效果。  相似文献   

2.
为提高遥感影像分类精度,本文提出基于混沌遗传算法(Chaos Genetic Algorithm)的遥感影像分类方法.首先应用混沌遗传算法对样本进行自学习得到全局最优的聚类中心,然后通过得到的聚类中心对整幅影像进行分类.该方法利用混沌变量的遍历性,进行粗粒搜索,优化遗传算法的初始种群,从而提高收敛速度;对经过选择算子、...  相似文献   

3.
近年来,遥感影像在数据挖掘中的应用越来越广泛.本文结合一个简单的实例将Apriori算法应用于遥感影像数据挖掘中,为相关的决策提供参考.  相似文献   

4.
提出了一种新的基于布谷鸟算法的智能式遥感分类方法。采用布谷鸟智能优化算法,自动搜索遥感影像各波段的最优阈值分割点,并定义各波段最优阈值分割点和影像分类目标类别的连线为布谷鸟的最佳解,构造以If-Then形式表达的遥感分类规则。将所提的基于布谷鸟算法的影像分类方法应用于ALOS影像分类中,并与蜂群智能遥感分类方法和See5.0决策树方法进行了对比分析。结果表明,布谷鸟智能遥感分类的总体精度和Kappa系数均比蜂群智能遥感分类和See5.0决策树方法更高,该智能遥感分类方法具有更好的分类效果。  相似文献   

5.
目前的遥感影像分类研究中,决策树的生成完全依赖于现有的数据挖掘软件,缺少对决策树算法的深入研究和改进。本文以遥感影像分类为背景,采用BoostTree算法作为模型,通过算法改进构建了一种新的复合决策树算法———AdaTree,并以该算法为基础,设计实现了决策树遥感影像分类系统。以AdaTree算法作为分类器,分别对Landsat7ETM+影像和WordView2影像进行了基于像元和面向对象的分类实验,并与BoostTree和SVM算法进行了比较。实验结果表明,AdaTree算法在分类精度上要优于BoostTree和SVM算法,平均Kappa系数分别达到0.905 2和0.939 8。  相似文献   

6.
人工神经网络在多源遥感影像分类中的应用   总被引:19,自引:1,他引:19  
在研究人工神经网络理论的基础上,应用动量法和学习率自适应调整的策略,改变BP神经网络的主要缺点,提出对同一地区空间配准的Landsat TM3,TM4,TM5影像和航空SAR影像,一方面采用该种网络对两类影像分别进行分类,将其分类结果按提出的融合规则进行分类融合得到最终分类结果,另一方面采用该网络对两类影像进行融合分类,得到相应分类结果,比较这两者的结果表明,基于改进的BP神经网络用于土地利用分类  相似文献   

7.
基于SFIM算法的融合影像分类研究   总被引:2,自引:1,他引:2  
以福州市城乡结合部的Landsat7 ETM+影像为例,就该融合算法的自动分类精度作进一步研究,并藉此对该算法作全面评价。研究结果表明,SFIM融合影像的分类精度高于原始未融合影像的分类精度,但选择不同尺寸的均值滤波器会影响融合影像的分类精度。试验表明,太大尺寸的滤波器虽然能提高高分辨率影像的信息融入度,但会降低融合影像的分类精度和光谱的保真度。  相似文献   

8.
本文主要研究探讨遥感影像分类的监督分类法原理、技术、步骤及精度等问题。通过采用最大似然分类法对各种融合影像进行监督分类,比对结果,阐述最大似然分类法的特点。  相似文献   

9.
人工蜂群算法优化的SVM遥感影像分类   总被引:2,自引:0,他引:2  
李楠  朱秀芳  潘耀忠  詹培 《遥感学报》2018,22(4):559-569
SVM分类器的参数设定对分类精度有着显著的影响,针对现有人工智能算法优化参数易陷入局部最优的现状,提出了一种基于人工蜂群算法改进SVM参数的遥感分类方法(ABC-SVM)。该方法模仿蜜蜂采蜜的行为,以训练样本的交叉验证精度代表蜜源的丰富程度,通过蜂群的分工协作搜索出最优蜜源(即SVM分类器最优参数),最终利用参数优化后的SVM分类器实现遥感影像的分类。本文先后比较了3种人工智能算法(包括人工蜂群算法优化的SVM(ABC-SVM)、遗传算法GA(Genetic Algorithm)优化的SVM(GA-SVM)、粒子群算法PSO(Practical Swarm Optimization)优化的SVM(PSO-SVM))在UCI标准数据集上的分类精度和效率,以及3种人工智能算法优化的SVM算法与未经优化参数的SVM算法在遥感影像上分类的差异。结果显示:(1)在利用UCI数据集测试3种人工智能算法优化的SVM算法的结果中,ABC-SVM显示出更高的分类精度、更高的适应度和更快的收敛速度;(2)在利用遥感影像验证4种分类算法精度的结果中,人工智能算法优化后的SVM比未经参数优化的SVM算法的分类精度更高;其中,ABC-SVM分类精度最高,分别比遗传算法、粒子群算法的结果高1.67%、1.50%。  相似文献   

10.
在分析和研究快速细化算法和OPTA细化算法基础上,针对快速细化算法细化不彻底和OPTA算法模板设计的缺点提出了对OPTA细化算法的改进,设计了新的细化算法模板。经过实验证明改进的OPTA细化算法能够满足细化的基本要求,既保证了细化结果线条的单像素宽,又保持了原有图像线条的连通性,同时线条细节特征没有丢失,使细化结果得到了较大改善。  相似文献   

11.
基于形式概念分析的遥感影像分类   总被引:1,自引:0,他引:1  
毛典辉 《遥感学报》2010,14(1):97-112
针对目前遥感影像分类方法中存在分类知识难以获取的不足,尝试引入形式概念分析的数据挖掘理论,并基于族集最小覆盖理论实现概念内涵的缩减,从而保证分类规则的简洁与无冗余性。研究选取湖北省房县作为试验区,实现了该理论在研究区中土地利用类型分类规则的挖掘应用。基于挖掘出的分类规则构建了启发式分类器,实验结果表明形式概念分析理论挖掘出的分类规则可信度较高,基于挖掘出的分类规则构建的分类器相对于监督分类方法、决策树C4.5算法在分类精度上有一定优势,从而证明了它对遥感影像分类提供一种的新方法。  相似文献   

12.
人工免疫网络是受免疫网络理论的启发建立的用于数据处理的一种人工免疫系统。同时免疫系统是进化的,通过不断调节系统内细胞的数量和种类适应外界环境。提出的进化人工免疫网络借鉴免疫网络和进化的思想,是用于遥感影像分类的监督算法。算法通过一个学习过程,得到能够表示训练数据特征的网络细胞,然后利用这些网络细胞进行分类。实验表明进化人工免疫网络是遥感影像分类的有效工具。  相似文献   

13.
采用基于云理论的遥感影像分类方法,该理论兼容模糊性和随机性,通过逆向云发生器生成云模型,进而得出云的数字特征隶属函数,使用X条件云发生器计算隶属度,最后用极大判别法实现分类。通过与传统方法的实验对比分析,基于云理论的遥感影像分类方法有效地改善分类中的不确定性问题,提高分类准确度。  相似文献   

14.
张强  周秋生 《测绘工程》2006,15(5):42-46
结合遥感影像的特点,提出一种模糊逻辑系统和神经网络中的BP算法相结合的模糊神经网络,利用其进行整个遥感图像的分类,并和典型的BP神经网络进行对比,发现其优点以及存在的问题。  相似文献   

15.
张磊  邵振峰 《测绘科学》2014,39(11):114-117,66
文章提出了一种结合改进的最佳指数法(OIF)和支持向量机(SVM)进行高光谱遥感影像分类新方法.利用本文提出的稳定系数进行波段初选择,根据相关系数选择波段组合生成新影像,并对新影像进行OIF计算,得到OIF值最大的波段组合为最佳波段组合;构建SVM分类器,对最佳波段组合分类;最后将分类结果与其他监督分类方法比较,并在相同核函数下与PCA和SVM结合的方法进行精度比较分析.实验结果表明,本文方法能够有效提取最佳波段组合,在SVM算法下获得较高分类精度.  相似文献   

16.
Classification is always the key point in the field of remote sensing. Fuzzy c-Means is a traditional clustering algorithm that has been widely used in fuzzy clustering. However, this algorithm usually has some weaknesses, such as the problems of falling into a local minimum, and it needs much time to accomplish the classification for a large number of data. In order to overcome these shortcomings and increase the classification accuracy, Gustafson-Kessel (GK) and Gath-Geva (GG) algorithms are proposed to improve the traditional FCM algorithm which adopts Euclidean distance norm in this paper. The experimental result shows that these two methods are able to detect clusters of varying shapes, sizes and densities which FCM cannot do. Moreover, they can improve the classification accuracy of remote sensing images.  相似文献   

17.
随机森林是一种新兴的、高度灵活的机器学习算法,在预测和分类方面有着良好的稳定性,且算法性能要优于许多单预测器。鉴于此,本文提出了随机森林的遥感影像变化检测算法,利用熵率法对遥感影像进行超像素分割,获取最优分割结果;构建了基于随机森林的遥感影像变化检测模型,以所提取的Gabor特征和光谱特征作为模型输入进行训练和预测,并将有决策树的投票作为最终的变化检测结果。试验结果表明,本文所构建的随机森林变化检测模型在漏检率和虚检率上明显低于其他算法,且总体正确率高,在算法时间上也明显优于其他算法。  相似文献   

18.
空间邻接支持下的遥感影像分类   总被引:2,自引:0,他引:2  
传统光谱分类法的局限性促使了遥感“图谱耦合”认知理论的发展, 使其更加注重了空间信息的应用。 然而, 已有的分类方法虽也融入了空间形态、空间关系的应用, 在精度上有一定的提高, 但在空间规律定量描述、 地物实际分布边界跟踪等方面仍存在不足。本文发展了一种空间邻接支持下的遥感影像分类方法: 通过基准地物的 精确提取进而搜索与其邻接的目标地物, 对邻接范围内的地类混淆以及非邻接范围内的目标类误分一并进行修正, 并以近海地物分类为例进行试验, 获得了更为精确、合理的分类结果, 也为后续逐步精确地提取各地物提供了  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号