首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Palaeomagnetic data for the Cretaceous Pirgua Subgroup from 14 different time units of basalts and red beds exposed in the north-western part of Argentina (25° 45' S 65° 50' W) are given.
After cleaning all the units show normally polarized magnetic remanence and yield a palaeomagnetic pole at 222° E 85° S ( d Φ= 7°, d χ= 10°).
The palaeomagnetic poles for the Pirgua Subgroup (Early to Late Cretaceous, 114–77 Myr), for the Vulcanitas Cerro Rumipalla Formation (Early Cretaceous,<118 Myr, Valencio & Vilas) and for the Poços de Caldas Alkaline Complex (Late Cretaceous, 75 Myr, Opdyke & McDonald) form a 'time-group' reflecting a quasi-static interval (mean pole position, 220° E 85° S, α95= 6°) and define a westward polar wander in Early Cretaceous time for South America.
Comparison of the positions of the Cretaceous palaeomagnetic poles for South America with those for Africa suggests that the separation of South America and Africa occurred in late Early Cretaceous time, after the effusion of the Serra Geral basalts.
The K-Ar ages of basalts of the Pirgua Subgroup (114 ± 5; 98 ± 1 and 77 ± 1 Myr) fix points of reference for three periods of normal polarity within the Cretaceous palaeomagnetic polarity column.  相似文献   

2.
Summary. Palaeomagnetic and isotopic results from the Kaoko lavas, Hoachanas basalts and dolerite sills of South-West Africa indicate that the Upper Triassic-Lower Jurassic Stormberg flows of South Africa may have extended into SW-Africa and that younger igneous events of Lower Cretaceous age were simultaneous with the Serra Geral volcanism in Brazil. Five analyses on three samples of the Keetmanshoop sills gave K-Ar ages between 178 ± 4 and 199 ± 4 Ma, four analyses of two samples of the Hoachanas basalts gave ages between 161 ± 3 and 173 ± 2 Ma and eight analyses of five samples of Kaoko basalt gave ages between 110±4 and 128 ± 2 Ma.
The components of remanent magnetization (RM) used to compute palaeomagnetic pole positions for the Kaoko lavas (48° N, 93° W, A95 = 3°) and for the Hoachanas basalts (61° N, 106° W, A95 = 7° are stable to alternating field (AF) and thermal demagnetization.
Correlation on a pre-drift map and on a map reconstructed for 112 Ma BP (before present) between the palaeomagnetic poles from the Kaoko and Serra Geral lavas suggests that the South Atlantic had not opened appreciably by 112 Ma BP. Cretaceous pole positions for S. America and Africa on a map reconstructed for 80 Ma BP are also discussed.  相似文献   

3.
Apparent polar wander in the mean-lithosphere (= no-net-rotation = no-net-torque uniform drag) reference frame is compared with apparent polar wander in the hotspot reference frame over the past 100 Myr. Palaeo-magnetic poles and plate rotations previously used to determine an apparent polar wander path for the hotspot reference frame are here used to determine an apparent polar wander path in the mean-lithosphere reference frame. We find that the two paths are similar, especially for Late Cretaceous time, when a 10°–20° shift of the pole occurred. To first-order the hotspots and lithosphere (as a whole) moved in unison relative to the palaeomagnetic axis during Late Cretaceous time. A non-dipole field explanation for the apparent shift can probably be excluded. However, either motion of the time-averaged geomagnetic axis relative to the spin axis or polar wandering could have caused this shift, the latter being the more likely explanation.  相似文献   

4.
Summary. Stable components of magnetization have been isolated in 15 lava flows (mean K-Ar age 123 ± 4 Myr) from the alkaline sequence outcropping at El Salto-Almafuerte, Province of Cordoba, Argentina. Magnetic and geologic stratigraphy, as well as K-Ar ages indicate that this sequence was probably extruded in the Lower Cretaceous during the first volcanic cycle of the Sierra de los Cóndores Group (Vulcanitas Cerro Colorado Formation).
The palaeomagnetic pole-position for El Salto-Almafuerte lava flows, computed from the mean of 15 virtual geomagnetic poles and denoted SAK7, is: 25° E, 72° S ( k = 35, α95= 6.5°); it is fairly close to other Lower Cretaceous palaeomagnetic poles for South America. The elongated distribution of Cretaceous palaeomagnetic poles suggest recurrent drift for South America in early Cretaceous time.
The palaeomagnetic and radiometric data for the igneous rocks from El Salto-Almafuerte support the magnetic reversal time-scale for the early Cretaceous suggested by oceanic magnetic lineations.  相似文献   

5.
Measurements are described of the directions of remanent magnetization of 89 samples from nine lava flows and red beds. Stable remanent magnetization was isolated after AC demagnetizing. All the units have normal remanent magnetization, except one lava flow which yields a direction toward the north with positive inclination. From the mean direction of stable remanence, referred to the bedding, of each unit a virtual geomagnetic pole is computed; the mean of eight of these poles is 90·6 °E, 84·2° South, α95= 4·7° and represents the position of the palaeomagnetic pole for the exposures of the Sierra de Los Condores group from El Estrecho-Cerro Libertad. The position of this pole is reasonably close to the positions of the South American Lower Cretaceous palaeomagnetic poles for the Serra Geral and Vulcanitas Cerro Colorado formations and the trachybasaltic dykes from Rio Los Molinos. This supports the interpretations that the South Atlantic Ocean was formed in Lower Cretaceous times and that the Earth's magnetic field was on average similar to that of a geocentric dipole in South America in the Lower Cretaceous, and suggests that there has not been substantial relative movements between Central Argentina and Southern Brazil.  相似文献   

6.
Summary. Thirty-six palaeomagnetic sampling sites distributed within 6000 m of dominantly andesitic flows and tuffs of Cretaceous age from the La Serena area, Chile confirm the normal polarity bias of the Cretaceous period. Af, thermal and limited chemical demagnetization techniques have been used in testing the stability of the remanent magnetization isolated in samples from these sites. A positive fold test in the Quebrada Marquesa Formation, the second lowest in the stratigraphic pile, confirms that the magnetization isolated is pre-Tertiary in age. Ages calculated by the K–Ar whole rock method however, appear to have been variably up-dated probably due to argon loss caused by Cretaceous–Tertiary intrusives. Thermal and hydrothermal effects of these intrusions have probably reset the magnetization in the youngest formation of the volcanic pile. A composite palaeomagnetic pole calculated from the 30 site poles of the three lower formations (209° E, 81° S, A95= 4½°), is in good agreement with mid to Late Cretaceous poles derived from rock units of the stable platform of South America. The use of Andean–Caribbean palaeomagnetic data however, to resolve small time-dependent polar shifts within the Cretaceous and thus to estimate the time of opening of the south Atlantic is questioned. Many of the Andean–Caribbean Cretaceous poles appear to have been affected by local tectonic rotation.  相似文献   

7.
Summary. We present palaeomagnetic results from the Durgapipal and Rudraprayag formations, which are basic volcanic formations in the Lesser Himalayas of Uttar Pradesh State. NRM measurements and AF demagnetization stability tests were made on specimens cored from oriented block samples collected at representative sites. Mean stable remanent magnetic directions were used for calculating the Virtual Geomagnetic Pole (VGP) positions; where necessary tectonic corrections were applied.
The virtual geomagnetic north poles were found to be located at:
  • (a). 

    Durgapipal (Permian): λ p = 10° S, Lp = 42° W;

  • (b). 

    Rudraprayag (Silurian-Devonian): λ p = 30° S, Lp = 12° W.


A new, continuous Phanerozoic apparent polar wandering curve for the Indian subcontinent has been plotted from the available palaeomagnetic data and the VGP positions reported in this paper. As a result, the gap in the Indian palaeomagnetic data from the Lower Carboniferous to the Cambrian has been partially filled. The locations of the pole positions for the two formations on the Phanerozoic polar wandering curve for the Indian subcontinent, have been found to coincide with the stratigraphic ages assigned to them on the basis of rather limited geological and palaeontological evidence.
The Cambrian and Permian poles for the Salt Range in the NW Himalayas and the Permian pole for the Kumaon Himalayas are grouped along with the pole positions of contemporaneous formations of the Peninsular Shield. The palaeomagnetic data thus suggests that the two formations are autochthonous in nature.  相似文献   

8.
Summary. Middle Precambrian and Cretaceous kimberlites were collected from three sites (Premier, Montrose and National) and two sites (Wesselton and Koffyfontein) in South Africa respectively. The natural remanent magnetization of these rocks remains stable to both alternating field and thermal demagnetization. The virtual geomagnetic pole-positions derived from the directions of stable remanence of the Precambrian rocks can be correlated with palaeomagnetic poles obtained from other Middle-Late Precambrian rocks in Africa. The Cretaceous poles for the Wesselton and the Koffyfontein rocks coincide with other Cretaceous poles.  相似文献   

9.
Palaeomagnetic pole positions have been determined for a collection of igneous rocks, comprising nearly five hundred samples, from the Cape Verde Islands of Santa Antao, Sao Vicente, Sao Nicolao and Sao Tiago. Limited data from the islands of Sal, Maio and Fogo are also presented. Stratigraphic control suggusts that the lavas are overwhelmingly Miocene in age on Sao Tiago and Sao Nicolao. Similarity in the palaeomagnetic pole positions indicates that Miocene lavas are also dominant on Santa Antao and Sao Vicente.
Substantial areas within two of the islands are of reversed polarity only, suggesting either a rapid extrusion rate, or the existence of a long reversed polarity epoch during the Miocene period. The palaeomagnetic pole positions for each island are close to the present geographic pole, excluding the possibility of Post-Miocene differential crustal spreading (or rotation about a vertical axis) in this part of the Atlantic. The palaeomagnetic pole position for the entire survey is consistent with the Miocene geographic pole being removed from, but close to, the present geographic pole; and is in harmony with the European polar wandering curve.  相似文献   

10.
Summary. Palaeomagnetic results from Part I of this study and their analysis in Part II are combined to eliminate bias from the Cenozoic apparent polar wander path for Australia – a bias due to non-dipole components in past geomagnetic fields or, for poles calculated from hot-spot data, due to the motion of hot spots relative to the Earth's rotational axis. This path is extended in approximately bias-free form to the late Mesozoic, and indicates a significant change in the drift direction of the continent between 26 and about 60 Ma.
The bias-corrected Australian path is used, first, with seafloor spreading data for the Southern Ocean to derive a corresponding late Mesozoic–Cenozoic pole path for Antarctica. The latter shows that the Antarctic drift direction reversed in the early Tertiary. It is suggested that the early Tertiary directional changes of both Australia and Antarctica are part of a global reorganization of plates during the Eocene, postulated by Rona & Richardson, Cande & Mutter and Patriat & Achache.
Next, the Australian path is compared with hot-spot data from the African and Australian plates, indicating a movement of the hot spots relative the Earth's rotational axis during the Cenozoic. The direction of this movement is found to be consistent with previous results from other parts of the world.
Finally, the Australian path is used together with non-dipole components in the geomagnetic field to explain a prominent westward displacement of the mid- and late Cenozoic poles of India relative to those of Australia.
Because of uncertainties in the original poles and in the analysis, the present results are likely to contain appreciable errors. Nevertheless, their consistency with independent findings supports the dipole-quadrupole model of Part II for mid- and late Cenozoic geomagnetic fields.  相似文献   

11.
Ultra‐large rift basins, which may represent palaeo‐propagating rift tips ahead of continental rupture, provide an opportunity to study the processes that cause continental lithosphere thinning and rupture at an intermediate stage. One such rift basin is the Faroe‐Shetland Basin (FSB) on the north‐east Atlantic margin. To determine the mode and timing of thinning of the FSB, we have quantified apparent upper crustal β‐factors (stretching factors) from fault heaves and apparent whole‐lithosphere β‐factors by flexural backstripping and decompaction. These observations are compared with models of rift basin formation to determine the mode and timing of thinning of the FSB. We find that the Late Jurassic to Late Palaeocene (pre‐Atlantic) history of the FSB can be explained by a Jurassic to Cretaceous depth‐uniform lithosphere thinning event with a β‐factor of ~1.3 followed by a Late Palaeocene transient regional uplift of 450–550 m. However, post‐Palaeocene subsidence in the FSB of more than 1.9 km indicates that a Palaeocene rift with a β‐factor of more than 1.4 occurred, but there is only minor Palaeocene or post‐Palaeocene faulting (upper crustal β‐factors of less than 1.1). The subsidence is too localized within the FSB to be caused by a regional mantle anomaly. To resolve the β‐factor discrepancy, we propose that the lithospheric mantle and lower crust experienced a greater degree of thinning than the upper crust. Syn‐breakup volcanism within the FSB suggests that depth‐dependent thinning was synchronous with continental breakup at the adjacent Faroes and Møre margins. We suggest that depth‐dependent continental lithospheric thinning can result from small‐scale convection that thins the lithosphere along multiple offset axes prior to continental rupture, leaving a failed breakup basin once seafloor spreading begins. This study provides insight into the structure and formation of a generic global class of ultra‐large rift basins formed by failed continental breakup.  相似文献   

12.
This study presents an integrated provenance record for ancient forearc strata in southern Alaska. Paleocene–Eocene sedimentary and volcanic strata >2000 m thick in the southern Talkeetna Mountains record nonmarine sediment accumulation in a remnant forearc basin. In these strata, igneous detritus dominates conglomerate and sandstone detrital modes, including plutonic and volcanic clasts, plagioclase feldspar, and monocrystalline quartz. Volcanic detritus is more abundant and increases upsection in eastern sandstone and conglomerate. U‐Pb ages of >1600 detrital zircons from 19 sandstone samples document three main populations: 60–48 Ma (late Paleocene–Eocene; 14% of all grains), 85–60 Ma (late Cretaceous–early Paleocene; 64%) and 200–100 Ma (Jurassic–Early Cretaceous; 11%). Eastern sections exhibit the broadest distribution of detrital ages, including a principal population of late Paleocene–Eocene ages. In contrast, central and western sections yield mainly late Cretaceous–early Paleocene detrital ages. Collectively, our results permit reconstruction of individual fluvial drainages oriented transverse to a dissected arc. Specifically, new data suggest: (1) Detritus was eroded from volcanic‐plutonic sources exposed along the arcward margin of the sampled forearc basin fill, primarily Jurassic–Paleocene magmatic‐arc plutons and spatially limited late Paleocene–Eocene volcanic centers; (2) Eastern deposystems received higher proportions of juvenile volcanic detritus through time from late Paleocene–Eocene volcanic centers, consistent with emplacement of a slab window beneath the northeastern part of the basin during spreading‐ridge subduction; (3) Western deposystems transported volcanic‐plutonic detritus from Jurassic–Paleocene remnant arc plutons and local eruptive centers that flanked the northwestern part of the basin; (4) Diagnostic evidence of sediment derivation from accretionary‐prism strata exposed trenchward of the basin fill is lacking. Our results provide geologic evidence for latest Cretaceous–early Paleocene exhumation of arc plutons and marine forearc strata followed by nonmarine sediment accumulation and slab‐window magmatism. This inferred history supports models that invoke spreading‐ridge subduction beneath southern Alaska during Paleogene time, providing a framework for understanding a mature continental‐arc/forearc‐basin system modified by ridge subduction. Conventional provenance models predict reduced input of volcanic detritus to forearc basins during progressive exhumation of the volcanic edifice and increasing exposure of subvolcanic plutons. In contrast, our results show that forearc basins influenced by ridge subduction may record localized increases in juvenile volcanic detritus during late‐stage evolution in response to accumulation of volcanic sequences formed from slab‐window eruptive centers.  相似文献   

13.
Claudio Vita-Finzi   《Geomorphology》2009,104(3-4):317-322
The term cataclastic diapirism is proposed for the low-temperature extrusion of highly fractured rocks through more competent strata to produce domed topographies at the surface. The process is illustrated by reference to the geomorphology, neotectonics and microseismicity of the Pie de Palo, an elongated ridge in the western Sierras Pampeanas of Argentina composed of shattered and sheared Lower Palaeozoic rocks and subject to coseismic uplift. The Pie de Palo is conventionally interpreted as a fault-driven basement fold linked to low-angle eastward subduction of the Nazca plate beneath South America; the diapiric model implies instead that deformation is powered by regional compression from west-verging, near-surface, crustal shortening which results ultimately from Atlantic spreading.  相似文献   

14.
The subsidence and exhumation histories of the Qiangtang Basin and their contributions to the early evolution of the Tibetan plateau are vigorously debated. This paper reconstructs the subsidence history of the Mesozoic Qiangtang Basin with 11 selected composite stratigraphic sections and constrains the first stage of cooling using apatite fission track data. Facies analysis, biostratigraphy, palaeo‐environment interpretation and palaeo‐water depth estimation are integrated to create 11 composite sections through the basin. Backstripped subsidence calculations combined with previous work on sediment provenance and timing of deformation show that the evolution of the Mesozoic Qiangtang Basin can be divided into two stages. From Late Triassic to Early Jurassic times, the North Qiangtang was a retro‐foreland basin. In contrast, the South Qiangtang was a collisional pro‐foreland basin. During Middle Jurassic‐Early Cretaceous times, the North Qiangtang is interpreted as a hinterland basin between the Jinsha orogen and the Central Uplift; the South Qiangtang was controlled by subduction of Meso‐Tethyan Ocean lithosphere and associated dynamic topography combined with loading from the Central Uplift. Detrital apatite fission track ages from Mesozoic sandstones concentrate in late Early to Late Cretaceous (120.9–84.1 Ma) and Paleocene–Eocene (65.4–40.1 Ma). Thermal history modelling results record Early Cretaceous rapid cooling; the termination of subsidence and onset of exhumation of the Mesozoic Qiangtang Basin suggest that the accumulation of crustal thickening in central Tibet probably initiated during Late Jurassic–Early Cretaceous times (150–130 Ma), involving underthrusting of both the Lhasa and Songpan–Ganze terranes beneath the Qiangtang terrane or the collision of Amdo terrane.  相似文献   

15.
Summary. Stable natural remanent magnetization (NRM) in the Jersey Volcanics and in a single rhyolite dyke was probably acquired during the Cambrian before folding of the volcanics in the Cadomian Orogeny. After dip correction, the volcanics yield a palaeomagnetic pole at 323° E, 52° N ( dp = 33°, dm = 35°). In Jersey dolerite dykes three groups of stable NRM directions are recognized, with palaeomagnetic poles at 248° E, 26° N ( dp = 10°, dm = 20°), 339° E, 1° S ( dp = 9°, dm = 12°), and 336° E, 31° S ( dp = 5°, dm = 9°). Comparison with the European apparent polar wander path implies that stable NRM in these groups was acquired respectively during Late Precambrian or early Cambrian, Siluro-Devonian and middle Carboniferous time. The stable NRM of the Jersey lamprophyre dykes yields a palaeomagnetic pole at 322° E, 16° N ( dp = 31°, dm = 38°) and is probably of Silurian or Devonian age.
These palaeomagnetic poles and other new data determined by the author for the Armorican Massif can be fitted to a common apparent polar wander path for Europe, and this implies that the basement of Lower Palaeozoic Europe extended from the Baltic Shield at least as far south as the Armorican Massif. The Hercynian Orogeny in these parts of Europe was therefore probably intracratonic. This polar wander path implies that in early Cambrian time the pole did not move significantly relative to Europe, but that this was followed by a large middle to late Cambrian polar shift which corresponded to rapid drift of Europe across the South Pole.  相似文献   

16.
The Orphan Basin, lying along the Newfoundland rifted continental margin, formed in Mesozoic time during the opening of the North Atlantic Ocean and the breakup of Iberia/Eurasia from North America. To investigate the evolution of the Orphan Basin and the factors that governed its formation, we (i) analysed the stratigraphic and crustal architecture documented by seismic data (courtesy of TGS), (ii) quantified the tectonic and thermal subsidence along a constructed geological transect, and (iii) used forward numerical modelling to understand the state of the pre‐rift lithosphere and the distribution of deformation during rifting. Our study shows that the pre‐rift lithosphere was 200‐km thick and rheologically strong (150‐km‐thick elastic plate) prior to rifting. It also indicates that extension in the Orphan Basin occurred in three distinct phases during the Jurassic, the Early Cretaceous and the Late Cretaceous. Each rifting phase is characterized by a specific crustal and subcrustal thinning configuration. Crustal deformation initiated in the eastern part of the basin during the Jurassic and migrated to the west during the Cretaceous. It was coupled with a subcrustal thinning which was reduced underneath the eastern domain and very intense in the western domains of the basin. The spatial and temporal distribution of thinning and the evolution of the lithosphere rheology through time controlled the tectonic, stratigraphic and crustal architecture that we observe today in the Orphan Basin.  相似文献   

17.
Palaeomagnetic investigation of Lower Ordovician limestone in the vicinity of St. Petersburg yields a pole position at latitude 34.7°N, longitude 59.1°E ( dp / dm =5.7°/6.4°). A probable primary remanence origin is supported by the presence of a field reversal. The limestone carries one other remanent magnetization component associated with a Mesozoic remagnetization event.
An apparent polar wander path is compiled for Baltica including the new result, ranging in age from Vendian to Cretaceous. Ages of the published Lower to mid-Palaeozoic palaeomagnetic pole positions are adjusted in accordance with the timescale of Tucker & McKerrow (1995). The new Arenig result is the oldest of a series of Ordovician and Silurian palaeomagnetic pole positions from limestones in the Baltic region. There are no data to constrain apparent polar wander for the Tremadoc, Cambrian and latest Vendian. If the Fen Complex results, previously taken to be Vendian in age ( c . 565 Ma), are reinterpreted as Permian remagnetizations, an Early Ordovician–Cambrian–Vendian cusp in the polar wander path for Baltica is eliminated. The apparent polar wander curve might then traverse directly from poles for Vendian dykes on the Kola peninsula ( c . 580 Ma) towards our new Arenig pole ( c . 480 Ma). The consequence of this change in terms of the motion of Baltica in Cambrian times is to reduce significantly a rotational component of movement.
The new Arenig pole extends knowledge of Ordovician apparent polar wander an increment back in time and confirms the palaeolatitude and orientation of Baltica in some published palaeogeographies. Exclusion of the Fen Complex result places Baltica in mid- to high southerly latitudes at the dawn of the Palaeozoic, consistent with faunal and sedimentological evidence but at variance with some earlier palaeomagnetic reconstructions.  相似文献   

18.
The asymmetry (skewness) of marine magnetic anomaly 32 (72.1–73.3  Ma) on the Pacific plate has been analysed in order to estimate a new palaeomagnetic pole. Apparent effective remanent inclinations of the seafloor magnetization were calculated from skewness estimates of 108 crossings of anomaly 32 distributed over the entire Pacific plate and spanning a great-circle distance of ~12  000  km. The data were inverted to obtain a palaeomagnetic pole at 72.1°N, 26.8°E with a 95 per cent confidence ellipse having a 4.0° major semi-axis oriented 98° clockwise of north and a 1.8° minor semi-axis; the anomalous skewness is 14.2° ± 3.7°. The possible dependence of anomalous skewness on spreading rate was investigated with two empirical models and found to have a negligible effect on our palaeopole analysis over the range of relevant spreading half-rates, ~25 to ~90  mm  yr−1 . The new pole is consistent with the northward motion for the Pacific plate indicated by coeval palaeocolatitude and palaeoequatorial data, but differs significantly from, and lies to the northeast of, coeval seamount poles. We attribute the difference to unmodelled errors in the seamount poles, mainly in the declinations. Comparison with the northward motion inferred from dated volcanoes along the Hawaiian–Emperor seamount chain indicates 13° of southward motion of the Hawaiian hotspot since 73  Ma. When the pole is reconstructed with the Pacific plate relative to the Pacific hotspots, it differs by 14°–18° from the position of the pole relative to the Indo–Atlantic hotspots. This has several possible explanations including bias in one or more of the palaeomagnetic poles, motion between the Pacific and Indo–Atlantic hotspots, and errors in plate reconstructions relative to the hotspots.  相似文献   

19.
When marine magnetic-anomaly data are used to construct geomagnetic polarity timescales, the usual assumption of a smooth spreading-rate function at one seafloor spreading ridge forces much more erratic rate functions at other ridges. To eliminate this problem, we propose a formalism for the timescale problem that penalizes non-smooth spreading behaviour equally for all ridges. Specifically, we establish a non-linear Lagrange multiplier optimization problem for finding the timescale that (1) agrees with known chron ages and with anomaly-interval distance data from multiple ridges and (2) allows the rate functions for each ridge to be as nearly constant as possible, according to a cumulative penalty function. The method is applied to a synthetic data set reconstructed from the timescale and rate functions for seven ridges, derived by Cande & Kent (1992) under the assumption of smooth spreading in the South Atlantic. We find that only modest changes in the timescale (less than 5 per cent for each reversal) are needed if no one ridge is singled out for the preferential assumption of smoothness. Future implementation of this non-prejudicial treatment of spreading-rate data from multiple ridges to large anomaly-distance data sets should lead to the next incremental improvement to the pre-Quaternary geomagnetic polarity timescale, as well as allow a more accurate assessment of global and local changes in seafloor spreading rates over time.  相似文献   

20.
Summary. Recent versions of the Australian apparent polar wander path (APWP) for the late Mesozoic and Tertiary show considerable variation. Re-examination of the Australian igneous data suggests that they are more reliable than assumed by some recent authors. The trajectory of the Australian APWP is defined by fitting the position of a set of poles including both igneous and laterite/overprint data. This allows the dated igneous poles to be used to determine age as a function of distance along the trajectory. Both the trajectory and the age are fitted by means of weighted least-squares regression, and are given approximate confidence limits.
Age is best fitted in the Australian case as a linear function of distance along the APWP. This result contrasts with that of Idnurm, who suggested a variable rate of polar wander during the Tertiary. The new APWP is in better agreement with hot-spot data. Dating of New Caledonian laterites by the new APWP gives a result consistent with geological evidence, while dating by reference to Idnurm's path does not. Large non-dipole components or significant true polar wander are not needed to explain the Australian Tertiary APWP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号