首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
It is shown that the emission of quiescent and loop prominences in the helium D3 line and in the 4686 Å line of He+ respectively, occurs at low temperatures, of the order of 7000 K.The ionization of neutral helium is produced by short-wave solar radiation, which is absorbed in the outer layers of filaments composing a prominence. The population of helium triplet levels in prominences is determined by recombinations and subsequent resonance scattering of photospheric radiation. Transitions from triplet to singlet levels caused by electron collisions considerably reduce the line brightness.Emission of ionized helium in the 4686 Å line arises in prominence surface layers as well. In quiescent prominences the emission is very faint and is due to recombination; the second ionization is caused by the far ultraviolet radiation.In flare-like events ionized helium emits due to charge-exchange collisions. The symmetrical resonance charge-exchange of -particles is caused by helium ions in corpuscular streams which are probably generated in photospheric layers. Due to increased radiation losses the temperature of the prominence under the action of the stream is negligibly increased. With a stream density equal to 5 × 108 cm-3 and velocity 300 km/s the theoretical intensity of the 4686 He+ line is some hundreds of microängströms and agrees with observations of Goldberg-Rogozinskaya (1962, 1965) and others.  相似文献   

2.
We analyze spectra taken with the 40 cm coronograph at Sacramento Peak Observatory, for evidence of Stark effect on Balmer lines formed in coronal magnetic structures. Several spectra taken near the apex of a bright post-flare loop prominence show significant broadening from H10 to the limit of Balmer line visibility in these spectra, at about H20 The most likely interpretation of the increasing width is Stark broadening, although unresolved blends of Balmer emissions with metallic lines could also contribute to the trend. Less significant broadening is seen in 3 other post-flare loops, and the data from 5 other active coronal condensations observed in this study show no broadening tendency at all, over this range of Balmer number. The trend clearly observed in one post-flare loop requires an ion density of n i ? 2 × 1012 cm?3, if it is to be explained entirely as Stark effect caused by pressure broadening. But mean electron densities measured directly from the Thomson scattering at λ3875 in the same SPO spectra, yield n e ? 3?7 × 1010 cm?3 for the same condensations observed within that loop. Comparison of this evidence from electron scattering, with densities derived from emission measures and line-intensity ratios, argues against a volume filling factor small enough to reconcile the values of n i and n e derived in this study. This discrepancy leads us to suggest that the Stark effect observed in these loops, and possibly also in flares, could be caused by macroscopic electric fields, rather than by pressure broadening. The electric field required to explain the Stark broadening in the brightest post-flare loop observed here is approximately 170 V cm?1. We suggest an origin for such an electric field and discuss its implications for coronal plasma dynamics.  相似文献   

3.
Stellmacher  G.  Wiehr  E.  Dammasch  I.E. 《Solar physics》2003,217(1):133-155
We present a comprehensive set of spectral data from two quiescent solar prominences observed in parallel from space and ground: with the VTT, simultaneous two-dimensional imaging of H4862 Å and Caii 8542 Å yields a constant ratio, indicating small spatial pressure variations over the prominence. With the Gregory, simultaneous spectra of Caii 8542 Å and Hei 10830 Å were taken, their widths yielding 8000 K <T kin<9000 K and 3<v nth<8 km s–1. The integrated line intensities show a distinct relation E(Hei) versus E(Caii) for each prominence (`branching'). The intensity ratio of the helium triplet components is used for a simple estimate of the optical thickness, which is <1.0 for the fainter prominence but reaches up to =2.0 for the brighter one. The 0 values allow us to deduce the source function from the central line intensities and thus a mean excitation temperature Tex mean=3750 K, which determines the relative populations of the helium 3 S and 3 P levels. With SUMER, we sequentially observed six spectral windows containing higher Lyman lines, `cool' emission lines from neutrals and singly charged atoms, as well as `hot' emission lines from ions like Oiv, Sv, Nv, Ov, and Svi. The spatial variation of the EUV lines along the SUMER slit shows a pronounced maximum at the main prominence body and `side-regions' where the `hot' lines are significantly enhanced with respect to the `cool' lines from neutral and singly-ionized atoms. These selected locations were averaged over 7 and the resulting mean EUV lines were fitted by Gaussians yielding realistic widths and integrated line intensities. The intensities of `hot' lines blue-wards of the Lyman series limit appear reduced in the main prominence body but enhanced in the `side-regions'. This absorption is also visible in TRACE images of Feix/x171 Å as fine dark structure which covers only parts of the main (`cool') prominence body. The Lyman lines show a smooth decrease of both line widths and integrated emission, with increasing upper level k=5 to k=19; the widths are smaller for the prominence that yields lower T kin from the ground-based spectra. The level populations along the line of sight follow for 5 lek le a smooth Boltzmann distribution with T ex>6×104 K, the levels k>8 appearing more and more overpopulated. The larger widths of the Lyman lines require high non-thermal broadening close to that of `hot' EUV lines. In contrast, the Heii emission is more related to the `cool' lines.  相似文献   

4.
The present work is a review of papers related to the theory of prominence radiation. Special attention is paid to stationary equations and the theory of radiation diffusion in the lines and continua of hydrogen, helium and metals.We conclude that prominences are low-temperature formations T e 7000 K, of low density 1012 particles per cm3, n e 1011 cm–3, effective thickness 109 cm, and that the chemical composition of prominences and that of the Sun's atmosphere are the same. The prominence radiation in the lines of hydrogen, helium and metals is due mainly to quasiresonance scattering of the photospheric radiation.  相似文献   

5.
Morozhenko  N. N. 《Solar physics》1974,34(2):313-322
Observations of the lines He i 3888 and H8 in 80 quiescent prominences by the author, and in other prominences by Kubota et al. (1972) and Morozhenko (1971), have been used to derive the dependences of I(3888)/I(H8) on I(H8), N 2 3 s on 0 (H), and N + n e on 0(H) (Figures 1, 2, 3 and 4). The equations of ionization equilibrium and triplet system steady state for a helium atom (27 levels and continuum were considered) were solved together with the radiation transfer equation in the helium Lyman continuum. As given n e () distribution with depth and T e =7500 K were assumed. The 23 S level population N2 3 s, helium emission measure N + n e and the intensity ratios of the He i 3888 and H8 lines were calculated and compared with observation (Figures 2, 3 and 4, solid lines). The figures show that in bright prominences the observed values of N 2 3 s and N + n e are systematically higher than the calculated ones. These deviations cannot be eliminated by decreasing n e . One can make the calculations and observations agree for bright prominences by increasing the UV radiation which penetrates into the prominence.  相似文献   

6.
A spectroscopic investigation of a quiescent prominence has been performed: the line profiles of the H and K lines have been carefully determined in all regions of the prominence where these emissions are likely to originate in optically thin layers. Therefore we have been able to study the electron temperature T e and the microturbulent velocity in the outer parts of the prominence. We find that on the average, T e = 5700 K (Figure 1) and = 6.7 km s-1 (Figure 2) which are in very good agreement with classical data. Figure 3 represents the radial velocity measurements and Figure 4 the ratio of the total intensity of H to K lines. Thus the prominence we have observed does not show for T e and the regular increase outward which has been described by Hirayama (1971). On the other hand increases towards the Equator, in the dynamically active part of the prominence, which could indicate that represents the effect of macroturbulence rather than microturbulence (Kawaguchi, 1966). In this part of the prominence only the K line is in emission and the average value of the microturbulence is 9.4 km s-1, the radial velocity is also generally increasing. At last, according to the absolute intensities of the H and K lines, the electron density in the outer layers of the prominence is no more than 1 × 1010 cm-3.  相似文献   

7.
Two-dimensional distributions of kinetic temperature, density and turbulent velocity are obtained for four quiescent prominences observed at the Peruvian eclipse of 12 November, 1966.
  1. The kinetic temperature derived from line widths is around 6000–7000 K in the central part of prominences and rises to 12000K in both edges and possibly in the top of prominences.
  2. The turbulent velocity shows a similar tendency, being 7–9 km/sec in the central part and ≈ 20 km/sec in the outer part. The turbulent velocity also increases slowly towards higher heights in the prominence.
  3. The electron density derived both from the Stark effect and the intensity ratio of the continuous spectra turns out to be about 1010.2–1010.6 cm?3 in the central portion of two prominences.
  4. From the width and the intensity, neutral helium lines are shown to originate in the same region as hydrogen and metallic lines where the kinetic temperature goes down to 6000 K. This indicates that neutral helium is emitted after the ionization due to UV radiation from the corona and the transition region.
  相似文献   

8.
We present measurements of electric fields in quiescent prominences and in a small flare surge, obtained with the CRI electrograph at the NSO/SP 40 cm coronagraph, in 1993 and 1994. Our results on the 9 brightest quiescent prominences enable us to place r.m.s. upper limits ofE t < 2 – 5 V cm–1 on the component ofE transverse to the line of sight. We show that these upper limits may be difficult to reconcile with non-ideal MHD models of quiescent prominences formed in extended neutral sheets, whether or not the tearing mode instability is present. They do, however, seem consistent with ideal MHD models of prominence support. We point out also that these upper limits are within a factor 4 of the minimum value of anistropic electric field that exists due to motional Stark effect in any thermal plasma permeated by a directed magnetic field.Our data on the flare surge suggest an electric field of intensityE 35 V cm–1, oriented approximately parallel to the inferred magnetic field. This detection ofE needs to be verified in other flares. But we note that a detectableE would not be expected in the current interruption flare mechanism, if only a single double layer is present. We show further that the observed relatively narrow, approximately-Gaussian, and only slightly Doppler-shifted Paschen lines, seem inconsistent with the multiple double layers invoked in other models based on the current interruption mechanism. Our detection ofE does seem consistent with reconnection (including tearing-mode) models of flares, provided the field-aligned electrical conductivity is anomalous over substantial volumes of the plasma circuit joining the reconnecting domain to the photosphere.  相似文献   

9.
We present an estimation of the lower limits of local magnetic field strengths in quiescent, activated, and active (surges) prominences, based on reconstructed three-dimensional (3D) trajectories of individual prominence knots. The 3D trajectories, velocities, tangential and centripetal accelerations of the knots were reconstructed using observational data collected with a single ground-based telescope equipped with a Multi-channel Subtractive Double Pass imaging spectrograph. Lower limits of magnetic fields channeling observed plasma flows were estimated under assumption of the equipartition principle. Assuming approximate electron densities of the plasma n e=5×1011?cm?3 in surges and n e=5×1010?cm?3 in quiescent/activated prominences, we found that the magnetic fields channeling two observed surges range from 16 to 40?Gauss, while in quiescent and activated prominences they were less than 10?Gauss. Our results are consistent with previous detections of weak local magnetic fields in the solar prominences.  相似文献   

10.
The radio recombination line intensities of heavy elements of helium, carbon and oxygen are calculated with accounting for dielectronic recombination. Dielectronic recombination rates are determined accurate to the second order of a perturbation theory and the rates are described as function of principal quantum number for helium-like atom or ion. Balance equations are solved for the departure coefficients from LTE bn. The collision and spontaneous transition rates are accounted for the balance equations, in which non-equilibrium distribution source is dielectronic recombination. Non-equilibrium amplification coefficients are found as functions of a medium temperature, density and ion charge z = 1–3 for radio recombination lines. Optical depths are calculated for the heavy element low-frequency lines with the numbers 300 > n > 1200. For the chosen electronic temperatures and densities Te = 0.8× 104–10× 104 K, Ne = 0.05–0.1 cm−3 the line optical depth is determined by the values τL∼ 0.1× 10−4–100× 10−4. Calculated for free-free transition rates, the optical depth is given by using the value τff∼ 10−2τL.  相似文献   

11.
The spectral lines Hα Hβ and CaII K of a quiescent prominence are studied using the completely linearized model. The physical parameters (Te, vt, NH) at several locations are obtained. Itis shown: (1) Near the axis of the prominence, kinetic temperature and hydrogen density decrease, while microturbulent velocity increases, with increasing height. (2) Near the edge, the kinetic temperature does not vary with height; but it increases from the center to the edge. (3) Hydrostatic equilibrium does not hold in prominences, and magnetic field plays an important role in supporting them.  相似文献   

12.
Chultem  Ts.  Yakovkin  N. A. 《Solar physics》1974,34(1):133-150
The statistical equilibrium equations for the continuum and first 10 levels of a hydrogen atom show that the radiation of a bright prominence (the brightness of the H line has attained 56 mÅ of the disc centre spectrum) is completely due to scattering of the Sun radiation. The basic unknowns are separated with certainty: electron concentration (n e = 3.0 × 1010 cm–3), effective thickness (l = 4.2 × 108 cm) and electron temperature (T e = 5000 K).Radiation of a very bright prominence (A (H) = 213 mÅ; T e = 7300 K; n e = 5.0 × 1011 cm–3; l = 1.3 × 107 cm) is on account of electron impacts (40%) and the Sun radiation scattering (60%).The parameters are shown to depend greatly on the prominence optical thickness in the lines of the first subordinate series of a hydrogen atom. In the course of determination all the parameters and 100 interconnected integral equations of the radiation diffusion have been thickness-averaged; the population of levels has been calculated by observations using the self-absorption factors.  相似文献   

13.
The profiles of H and Ca ii K lines of a arch quiescent prominence on April 1, 1971 have been analyzed and the two-dimensional distributions of electron temperature T e , micro-turbulence velocity v t and the column number density of hydrogen along the line-of-sight N H have been obtained. T e , t , and N H are found to be 7500 K, 6 km s–1 and 2.2 × 1018 cm–2 on an average, respectively. The electron temperature at the central part of the prominence and along the two arcades are greater than that at the edges, while the distribution of the micro-turbulence velocity in these regions is opposite. There is no systematic variation in T e and v t , from the center to the periphery as described by Hirayama (1971). The column number density in the central region is lower than that at the two edges.The contour lines of T e , t , and N H are predominantly vertical rather than horizontal. This implies that the height-variation of physical parameters in filamentary structure is small. The arrangement of this structure in the prominence is likely to be arched and is probably in the direction of magnetic field lines.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

14.
We have qualitatively analyzed, in the H and K lines spectral region, 31 flares covering part of umbrae or penumbrae of sunspots. A strong narrowing of the emission lines has been observed over the umbrae, and the lines are, in general, much weaker than in common flares suggesting that the optical thickness is quite low in these parts. We have calculated the Stark broadening of the H line from the general theory, and it has been applied to obtain the electron density in 9 flare spectra. In all cases it has been found that n e > 1013 cm–3. Goldberg's method has been applied to find the kinetic temperature from the H and K lines of Ca ii, and from the ratio between the central intensities of the lines we have calculated the optical thickness in the K line. Much evidence supports the assumption that the flare emission is highly diluted in the cases considered, and we propose a two-component model for the calcium emission lines.
  相似文献   

15.
The flash spectrograms obtained at the June 30, 1973 eclipse contain the monochromatic images of a coronal condensation in three coronal lines of Fexiv 5303, Fex 6374 and Fexi 7892 and Hα line. The assumption of the axially-symmetric distribution of the emissivity in the coronal lines allows us to find the density and temperature structure of the coronal condensation. While the electron density in the central axis of the condensation is about ten times as high as that of the normal corona at each height, the temperature is not so high (T?2.3×106K). This seems to be a representative nature of a coronal active region in the post maximum phase of activity. It is found that there exists a cool and dense core (T = 106K, N e =6 × 109 cm-3 at 17000 km) at the lower part of the coronal condensation, which is in a close geometrical coincidence with the small active prominence protruding from the underlying plage region.  相似文献   

16.
Slitless spectrograms obtained during the eclipse of 10 June 1972 have been analyzed to determine the height distribution of the D3 He line intensity.For undisturbed regions the maximum of D3 line intensity is confirmed to exist at about 1700km above the limb. Besides the above mentioned maximum, in plages a considerable intensity may be observed at low heights (h < 1000 km).An analysis of these observations for h > 1000 km has been carried out within the low temperature mechanism of triplet helium emission taking into account the helium ionization by XUV radiation. The density dependence of the 23 S level population at different XUV flux values has been calculated. Our observations give N e 2 × 1010 cm–3 in the chromosphere at h = 2000 km. The probable coincidence of the H and He emission small filaments in the middle chromosphere is discussed.  相似文献   

17.
R. R. Fisher 《Solar physics》1974,35(2):401-408
Observations of a loop prominence formed after the flare of 11 August 1972 are discussed. Estimates of electron density are obtained from (a) the line ratio of the Ca xv forbidden lines and (b) a Thompson scattering model. Both methods give an approximate value of n e = 1011 cm-3. This density was high enough to render the loop structures visible as continuum features, corresponding to the Ca xv structures as seen in the plane of the sky. By a double exposure technique, it was found that the loop structures seen in H and Fe xiv differ significantly.  相似文献   

18.
Slitless spectrograms of the chromosphere obtained during the eclipse of 4–5 February 1962 have been analyzed to obtain the decrements of the level populations of hydrogen, the self-absorption in the Balmer lines, and parameters useful in construction of models of the low chromosphere.The decrement of the high energy levels of hydrogen inferred under the optically thin assumption does not vary significantly with height, and it appears to be unnecessary to seek large deviations from local thermodynamic equilibrium in the high levels. The observed Balmer-to-Paschen line intensity ratios have been used to infer self-absorption and opacities in the Balmer lines. The resulting population of the second energy level is about an order of magnitude smaller than that found by Athay and Thomas from the 1952 data.The chromospheric continuum was generally underexposed; the absence of observed continuum in the visible region of the spectrum made it impossible to derive a unique model from the 1962 data alone. However, the high Balmer line data and new theoretical solutions of the statistical equilibrium equations for hydrogen combined with corrected 1952 observations at 4700 A are compatible with a model having approximately the same temperature and neutral hydrogen structure as the 1952 model by Pottasch and Thomas but half the electron density: T e = 6200K, N 1 = 7.4 × 1013 cm-3, N e = 2.3 × 1011 cm-3 at 500 km and T e = 7200K, N 1 = 2.6 × 1012 cm-3, N e = 1.7 × 1011 cm-3 at 1000 km.Based in part on a Ph.D. thesis submitted to the Department of Astro-Geophysics, University of Colorado.Now at the Department of Astronomy, Indiana University.  相似文献   

19.
Studies of the flare-produced line feature at 1.9 Å due to highly ionized iron show that it is emitted in conditions closely approximating steady-state ionization equilibrium. Calculations of the line flux per unit emission measure from time-dependent and steady-state ionization equilibria are compared with observed values during four flares in particular. Only for electron densities N e 1010 cm-3 do the time-dependent equilibrium values give as good an approximation to the observed values as the steady-state equilibrium. This lower limit is compared with values of N e derived from analyses of the temperature decline in each of these events, and with estimates of N e given by other workers.NAS/NRC Research Associate.  相似文献   

20.
A technique developed for analysing line profiles with both speed and high accuracy was used to study the physical conditions of a coronal formation near a quiescent prominence. Detailed analyses of five coronal lines (Fe xiv λ 5303, Fe x λ 6374, Ni xv λ 6702, Fe xv λ 7059, and Fe xi λ 7892) provided total intensities, Doppler width temperatures, ionization temperatures, and velocities. Dissimilar spatial fluctuations in intensity are obvious for ions grouped according to (low vs high) ionization potentials. The intensity of the green line shows a local minimum around the observed quiescent prominence; a corresponding but much more diffuse pattern is visible in the red line intensity. Large differences are observed in temperatures derived by different means. In particular, , while , and . The differences between and are taken as direct evidence of temperature inhomogeneity. One can thus put little significance in T e (xi/x). T D(λ5303) and T e (xv/xiv) fluctuate nearly in parallel at each slit height, with a weak local minimum evident around the prominence. The discrepancy between these two can be removed if a non-thermal turbulent motion of 6–16 km s−1 is assumed. Variations with height of both T D(λ5303) and T e (xv/xiv) suggest that the coronal temperature maximum is located no more than 15000 km above the top of spicules. A negative gradient of about 6 deg km−1 is found in the height variation of T D(λ5303). The height variation of the green line wavelength shows that the majority of coronal material in this region is flowing from west to east on the Sun, with the highest velocity of 12 km s−1 found at the lowest heights. This motion is in the same sense as that of the nearby coronal rain, as determined both from the spectra and wavelength-shifted Hα filtergrams. Superposed on the above flow is a systematic velocity field of up to ±5 km s−1. This field similarly reaches maximum amplitudes at lowest heights showing a local maximum around the prominence. On leave from Institute of Earth Science and Astrophysics, Shiga University, Ohtsu 520, Japan, as 1973–75 National Academy of Science/National Research Council Senior Post-Doctoral Research Associate at Sacramento Peak Observatory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号