首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Magnetostratigraphic study of the Toarcian type sections of Thouars and Airvault (Deux-Sèvres, France) has yielded two reliable magnetic polarity sequences. Most samples were treated by mixed cleaning: thermal demagnetization (250°, 300° or 350°C) and subsequent alternating field demagnetization. Polarity intervals are easily identified and correlate well between the two sections using the biostratigraphic data provided by the detailed standard ammonite zonation of the Toarcian stage. The polarity sequence extends from ammonite horizon V (Pseudoserpentinum horizon,Serpentinus zone) to horizon XXV (Subcompta horizon,Aalensis zone); it shows 5 reversed and 5 normal polarity magnetozones.  相似文献   

2.
The geological evolution of the Mesozoic Troodos Ophiolite Complex in Cyprus, and the tectonic nature and timing of the palaeomagnetically indicated anticlockwise rotation of Cyprus of some 80° and ca. 15° northward translation, have been open for debate for some time. New palaeomagnetic data from 18 sites ( 180samples) in the post-ophiolite sediments, ranging in age from Upper Cretaceous to Upper Miocene, are presented. Most of the sites are of normal geomagnetic polarity, but indications of reversed polarity have been found in an older group of sediments (the Lefkara Formation of Upper Palaeocene age).Six sites from the older group of sediments (Upper Cretaceous to Eocene in age) give a site mean direction of the AF cleaned sediments of (D, I) = (323°, 29°) with α95 = 18°, while 5 sites from a younger group of sediments (Oligocene to Miocene in age) give a cleaned site mean direction of (D, I) = (334°, 58°) with α95 = 9°. These and published data suggest that an anticlockwise rotation of Cyprus of 60 ± 10° occurred early during the post-igneous evolution of the Cyprus oceanic crust between 90 and 50Ma, leaving only a minor anticlockwise rotation of 20 ± 10° to occur during the last 50 Ma. It is furthermore concluded that the northward translation of Cyprus of 15° mostly took place during the last 30Ma.It thus appears that a fairly rapid rotation of the Cyprus microplate first took place in the Late Cretaceous and Early Tertiary time with an average angular velocity of 1–2°/Ma, during which the northward translation was minor or negligible. In the latter half of the Tertiary, the sense of movement appears to have radically changed, the northward translation now being dominant with an average velocity of 5–6cm/yr. This temporal evolution is found to be in good agreement with the Mesozoic and Tertiary movements of the African lithospheric plate relative to Europe, as evidenced from the Atlantic sea-floor magnetic anomaly spreading history.  相似文献   

3.
The thermal history of outcropping Devonian sediments of the northern Appalachian Basin, New York, has been investigated using fission track analysis of detrital apatites from 57 sandstone samples. Based on lengths and apparent age measurements using fission tracks in apatite it is concluded that Lower Devonian sediments presently at the surface in the Catskill region were cooled rapidly from temperatures higher than about 110°C during Early Cretaceous times (120–140 Ma ago). In the western part of New York (Wellsville-Buffalo) data from late Devonian sediments are consistent with cooling at the same time as that identified for the Catskill region but from lower temperatures, in the range of approximately 80–110°C, the maximum temperature these sediments experienced since deposition. For a pre-uplift paleogeothermal gradient of 25–35°C/km, the confined track length data indicates uplift and erosion of 2–3 km for western New York and greater than 3–4 km for the Catskill region, a differential uplift pattern which is consistent with the historical stratigraphic data from the region. This conclusion is at variance with earlier interpretations put forth by others.Rapid broad scale uplift and erosion of the scale identified imply that large volumes of sediment could have been supplied from the northern Appalachian Basin during the Early Cretaceous. This timing for the dominant post-Devonian cooling phase in the basin is not accounted for by recent models of the tectonic evolution of the Appalachian Orogen but is compatible with the change from carbonate to siliciclastic deposition in the Atlantic coastal plain. It is suggested that this style of broad regional uplift without significant deformation is characteristic of a tectonic regime associated with, and subsequent to, continental rifting.Apatite fission track analysis is shown to be a basic tool in providing fundamental limits for thermal history assessment in regional tectonic problems.  相似文献   

4.
Paleomagnetic data from 46 sites (674 specimens) of the Westcoast Crystalline Gneiss Complex on the west coast of Vancouver Island using AF and thermal demagnetization methods yields a high blocking temperature WCB component (> 560°C) with a pole at 335°W, 66°N (δp = 4°, δm = 6°) and a lower coercivity WCA component ( 25 mT, < 500°C) with a pole at 52°W, 79°N (δp = 7°, δm = 8°). Further thermal demagnetization data from 24 sites in the Jurassic Island Intrusions also defines two high blocking temperature components. The IIA component pole is at 59°W, 79°N (δp = 7°, δm = 8°) and IIB pole at 130°W, 73°N (δp = 12°, δm = 13°). Combined with previous data from the Karmutsen Basalts and mid-Tertiary units on Vancouver Island and from the adjacent Coast Plutonic Complex, the geotectonic motions are examined for the Vancouver Island segment of the Wrangellian Subterrane of composite Terrane II of the Cordillera. The simplest hypothesis invokes relatively uniform translation for Terrane II from Upper Triassic to Eocene time producing 39° ± 6° of northward motion relative to the North American craton, combined with 40° of clockwise rotation during the Lower Tertiary.  相似文献   

5.
In view of the recent recognition of widespread Late Paleozoic remagnetization of Devonian formations across North America, we undertook a reinvestigation of the Upper Devonian Perry Formation of coastal Maine and adjacent New Brunswick. Thermal demagnetization of samples from the redbeds yielded a characteristic direction (D = 166°, I = 4°) that fails a fold test. Comparison of the corresponding paleopole (312°E, 41°S) with previously published Paleozoic poles for North America suggests that the sediments were remagnetized in the Late Carboniferous. After the removal of a steep, northerly component, the volcanics also reveal a shallow and southerly direction ( D = 171°, I = 25° without tilt correction). No stability test is available to date the magnetization of the volcanics; however, similarity of several of the directions to those seen in the sediments raises the suspicion that the volcanics are also remagnetized. Although the paleopole without tilt correction (303°E, 32°S) could be taken to indicate an early Carboniferous age for the remagnetization, scatter in the data suggests that the directions are contaminated by the incomplete removal of a steeper component due to present-day field. Thus, it is more likely that the volcanics were remagnetized at the same time as the sediments. Isothermal remanent magnetization (IRM) acquisition curves, blocking temperatures, coercivities and reflected light microscopy indicate that the magnetization is carried by hematite in the sediments and by both magnetite and hematite in the volcanics. It is therefore likely that the remagnetization of the Perry Formation involved both thermal and chemical processes related to the Variscan/Alleghenian orogeny. Our results indicate that previously published directions for the Perry Formation were based on the incomplete resolution of two magnetic components. These earlier results can no longer be considered as representative of the Devonian geomagnetic field.  相似文献   

6.
Sr-isotopic data from the Main and Upper Zones of the Bushveld Complex show that the evolution of the Upper Zone started with a large influx of magma close to the level of the “Pyroxenite Marker”, a distinctive orthopyroxenite layer in otherwise relatively uniform gabbronorites. Whole rock samples, which span the complete stratigraphic succession (ca. 2100 m) above this layer, fall on a single RbSr isochron (2066 ± 58Ma) and hence have a common initial ratio of 0.7073 ± 1. This ratio is significantly lower than those of the Main Zone (ca. 0.7085), below the level of the Pyroxenite Marker.The entire Upper Zone crystallized from a mixed magma which was thoroughly blended before crystallization. This magma had an isotopic ratio intermediate between that of the Main Zone and the added magma which had an initial ratio of ca. 0.7067. Further significant magma additions during crystallization are precluded unless they were of the same isotopic composition as the blended magma, which is considered improbable. Hence the layering and mineralogical diversity of the Upper Zone was produced by internal processes and not produced by magma influxes during crystallization.The lithological, compositional and isotopic changes at the Pyroxenite Marker and the petrological coherence of all rocks above this horizon support the placing of the Upper Zone boundary at this point in the stratigraphy.  相似文献   

7.
Paleomagnetic investigations have been conducted on Tournaisian volcanics and sediments from the Laval syncline, in order to evaluate the consequences of the Late Variscan tectonic and thermic phases. On the southern flank of the syncline, anisotropy measurements have yielded maximum susceptibility in the schistosity planes. Thermal demagnetization exhibits only remagnetizations, characterized by a large range of blocking temperatures (from 350° to 670°C). Two phases of remagnetization seem to follow each other. The first may have occurred during the Tournaisian major orogenic phase. The second has taken place during the latest Stephanian/earliest Permian, in relation with the latest Variscan thermal event. All results are in favour of a clockwise rotation by 15–40° of the Laval syncline after the latest overprints. According to results from other regions of Brittany, this clockwise rotation involved the whole Armorican Massif. This motion may be related to the latest compression phase which has tightened the Ibero-Armorican arc, well before the Permo-Triassic opening of the Bay of Biscay.  相似文献   

8.
Seventy sites of sills, flows and dikes from Northeastern Paraná Magmatic Province (PMP), were submitted to paleomagnetic, chemical and radiometric analyses. The rocks are high in TiO2 content, and similar in composition to the rocks from the northern region of PMP. The sills intrude mainly Paleozoic sediments, and can be subdivided into two domains; the northern being characterized by sills showing reversed polarities, and the southern essentially by sills of normal polarities. 40Ar/39Ar dating of three distinct sills gave plateau ages (129.9 ± 0.1, 130.3 ± 0.1 and 131.9 ± 0.4 Ma) that are similar to surface-outcropping flows of the Northern Paraná Basin, and the Ponta Grossa dikes. The new paleomagnetic data combined with existing data from the northern PMP allowed the calculation of a paleomagnetic pole at 71.4° E and 83.0° S (N = 92; α95=2.4°; k = 39). This pole is in good agreement with poles for central and southern PMP, which are slightly older than the northern PMP, as well as for the contemporaneous Central Alkaline Province (Paraguay) on the western side of PMP. In contrast, the coeval pole for the Ponta Grossa dikes (eastern border of PMP), however, is slightly displaced from that group of poles, suggesting that dikes in that area may have undergone some tectonic tilting.  相似文献   

9.
The Berriasian-Valanginian stage boundary near the town of Cehegin in the eastern Subbetic Cordillera of Spain is documented by a detailed ammonite zonation in pelagic limestones. Two magnetostratigraphic sections spanning the uppermost ammonite subzone of the Berriasian and the lower two zones of the Valanginian yielded identical magnetic polarity patterns. Remanent magnetization is predominantly carried by magnetite, and characteristic directions were obtained by thermal demagnetization. The mean characteristic directions from both sites have an inclination of 48°; however, the site declinations are divergent (030° and 074°) due to the tectonic disturbance of the region. The Cehegin polarity pattern can be correlated by means of ammonite and calpionellid zonation to the magnetostratigraphies of the Berriasian stratotype and several Italian sections, thereby enabling a unique correlation to the M-sequence magnetic polarity time scale. The Berriasian-Valanginian stage boundary is in the middle of normal-polarity chron M15n.  相似文献   

10.
Rock magnetic investigations of Permo-Carboniferous carbonate sediments from two areas on Spitsbergen are described, conducted to identify the carriers of the NRM in these rocks. Since microscopic and magnetic separation techniques could not profitably be applied, the nature of magnetic minerals was investigated by thermal demagnetization of the NRM and decay of saturation isothermal remanence (Irs) during heating to 600°C, as well as by the distribution of the median destructive fields of the NRM and observation of magnetic susceptibility after subsequent heatings. The results show that the NRM of these limestones resides mainly in magnetite, but creation of magnetic pyrrhotite and of fresh magnetite is observed during heating to 600°C. Presence of sulphides indicates that magnetite is an oxidation product of pyrite or of non-magnetic pyrrhotite. Examination of rock magnetic properties of limestones leads to the conclusion that most of the magnetite in the rocks of the Bellsund area is of detrital origin, whereas the rocks at Festningen contain magnetite derived from pyrite probably during an early stage of the diagenetic process.  相似文献   

11.
Forty-five samples have been collected at nine sites on the 42.5 Ma Quxu pluton (90°50′E, 29°20′N) in the Gangdese batholith. Westerly declination (D = −48°and−83°) is observed in primary magnetizations from two sites about 25 km from the Indus-Zangbo suture zone after thermal demagnetization. This direction is consistent with the westerly paleomagnetic directions of the crustal blocks in other areas along the Indus-Zangbo suture zone. The Quxu pluton of the Gangdese Belt was rotated in a “domino style” deformation process as a part of a long (840 km) and narrow (less than 100 km) deformed zone between the India-Eurasia continents associated with the collision of India since 42.5 Ma. The pluton, between 11 km and 14 km from the suture acquired the secondary magnetization (D = −28°and−39°) during a cataclastic metamorphic process at sometime during the ‘domino style’ deformation. The primary magnetization was completely destroyed in the pluton within 11 km of the suture during slow cooling at the uplift stage and was replaced by thermoviscous remanent magnetization parallel to the present axial dipole field.  相似文献   

12.
In this paper, data obtained by the 1995, 1996 and 1999 three GPS campaigns in North China have been used to study intraplate tectonic block movements in this area (N36°–N42°, and E112°–E120°). By a Bayesian inversion method, negative dislocation distributions on three main fault zones and individual relative movements between four intraplate tectonic blocks have been obtained based on these GPS data. The results show that the relative movements between four intraplate tectonic plates are several millimeters per year. The obtained negative dislocation values on the Front Tai-Hong Mountain fault are −5±2 mm/a in tensile component, and 2±2 mm/a in both strike and dip component, which indicates that this fault mainly suffers pull apart tectonic movements. On the Tangshan–Ninghe fault, the obtained negative dislocation values are −3±3 mm/a in dip, −2±2 mm/a in tensile and −1±3 mm/a in strike, which indicates that the east part of this fault still undergoes upward movement. On the Zhangjiako–Beipiao fault, the obtained negative dislocation values are −4±2 mm/a in strike, 0±2 mm/a in dip, and 1±2 mm/a in tensile, which indicates that this fault has sinistral strike movement. According to the inversion results, the southern part of the Zhangjiako-Beipiao fault suffers pull tectonic movements caused by recent upward movement of the eastern part. The pulling tectonic movements are almost totally blocked on the Front Tai-Hong Mountain fault and this fault is more likely to be a potential earthquake source.  相似文献   

13.
The age of the Permian-Triassic boundary   总被引:1,自引:0,他引:1  
The 5 cm boundary clay bed in the Chinese stratotype section through the Permian-Triassic boundary has been recognised as a bentonite. SHRIMP ion microprobe dating of zircons in the bentonite indicates a magmatic age of 251.2 ± 3.4 Ma (2σ); this is the first direct constraint on the numerical age of the Permian-Triassic boundary.Future refinements of ages at this important, but poorly constrained, level of the Phanerozoic timescale may depend on re-analysis of this uniquely placed volcanic horizon, and other bentonites in the fossiliferous Chinese Upper Permian and Lower Triassic. The utility of defining the Permian-Triassic boundary in the Chinese stratotype section, in the vicinity of known dateable horizons, should be considered.  相似文献   

14.
Five samples from a biotite-hornblende granodiorite phase of the 42.5 Ma Quxu pluton, Gangdese batholith, southern Tibet, have been collected at 250 m vertical intervals. Biotite from these rocks yields monotonically decreasing40Ar/39Ar isochron ages with decreasing elevation of 26.8 ± 0.2, 23.3 ± 0.5, 19.7 ± 0.3, 18.4 ± 0.4,and17.8 ± 0.1Ma (Tc = 335°C). Coexisting K-feldspars have virtually identical minimum apparent40Ar/39Ar ages of 17.0 ± 0.4Ma (Tc = 285°C). These data indicate parts of southern Tibet experienced a pulse of uplift in the early Miocene with the rate of uplift rising from 0.07 to 4.4 mm/year in the interval 20 to 17 Ma. An apatite fission track age of 9.9 ± 0.9Ma from this locality constrains the average uplift rate at this site to about 0.81 mm/year between 17 and 9.9 Ma and 0.30 mm/year from 9.9 Ma to present. K-feldspar from the Dagze granite, 30 km to the east, near Lhasa, yields a minimum apparent40Ar/39Ar age of 35.9 ± 0.9Ma (Tc = 227°C) which indicates an average uplift rate there of 0.21 mm/year since then. The marked pulse of uplift of the Quxu granodiorite and the difference in uplift history between the Dagze and Quxu plutons suggests southern Tibet has experienced discrete pulses of uplift variable in both space and time. These data are not consistent with models which require a large proportion of uplift of the Tibetan plateau to have occurred in the last 2 Ma. The data support the suggestion that convergence between India and Asia was largely accommodated by tectonic escape during the opening of the South China Sea 32 to 17 Ma ago and permit distributed shortening as a mechanism for crustal thickening and uplift of this part of the Tibetan plateau subsequent to 20 Ma.  相似文献   

15.
The Upper Pliocene to Pleistocene Casabianca Formation is an assemblage of coarse-grained volcanogenic sediments derived from the Ruiz-Cerro Bravo volcanic axis, which were deposited on the west and east flanks of the middle Colombian Central Cordillera (5°–5°30′ N Lat.; 74°30′–76° W Long.).Facies assemblages, paleocurrent data, and geomorphic expression define four depositional settings: (1) an alluvial fan with debris-flow lobes represented by the Manizales fan in the western sector and the Fresno fan in the eastern sector, characterized by the facies assemblage of Gms, Gp and Gt; (2) valley fill deposits represented by the Arauca section at the west sector, characterized by the facies assemblage of Gms and Gi; (3) deposits produced by the diversion of the debris-flow and hyperconcentrated flood-flow deposits from the main channels into narrow effluent channels; represented by the Delgaditas and Manzanares-Marquetalia sections, in the eastern sector and characterized by the facies assemblage Gms and Gm(a); and (4) lateral accretion in gravelly, medium to high-sinuosity rivers, represented by the Casabianca-Villa Hermosa, Palo Cabildo-Falan, Lagunillas and Guali sections of the eastern sector, characterized by the facies assemblage Gms, Gp and Gt.Casabianca Formation deposition records the response of a semi-arid to tropical fluvial system to large, volcanism-induced sediment loads.  相似文献   

16.
Four sections in Majocian-Bathonian (Middle Jurassic) pelagic limestone with standard ammonite zonation have yielded magnetic polarity sequences. Magnetic directions in these red to white limestones were obtained by thermal demagnetization and were stable from about 300°C to in excess of 450°C. The polarity patterns indicate that the majority of the Bajocian and Bathonian is characterized by quite frequent reversals of the magnetic field. Lengthy periods of constant polarity, particularly constant normal polarity, were not observed. The average frequency of reversals is about 6 per ammonite zone, which roughly may be interpreted as a frequency of a reversal every 260,000 years, a rate comparable to that of the Miocene-Pliocene. Paleolatitudes of these sites (25–28°) are about 10° south of their present positions; variable clockwise block rotations within the Subbectic region have rotated these sites relative to stable Iberia.  相似文献   

17.
Recent field and geochemical studies indicate a need to test the stratigraphy of the ca. 3.5 Ga Barberton Greenstone Belt as it is presently adopted [1,2]. This work uses the ion microprobe SHRIMP, to attempt such a test. Results show that: (1) Volcaniclastic sediments of the Theespruit Formation (< 3453 ± 6Ma) could be younger than the (structurally) overlying mafic and ultramafic volcanics of the Komati Formation (3482 ± 5Ma). A major structural discontinuity may therefore exist between the two formations. (2) An age of 3538 ± 6Ma established for a tectonic wedge of tonalitic gneiss within the Theespruit Formation confirms the presence of a sialic basement and deformed unconformity below that unit. The tonalitic gneiss is the oldest unit yet recorded within the greenstone belt, equal in age to the older components of the adjacent Ancient Gneiss Complex. (3) The interpreted ages of felsic volcanic rocks from both the Hooggenoeg (3445 ± 8Ma) and Theespruit Formations and the nearby Theespruit Pluton (3437 ± 6Ma) are essentially the same, and corroborate field and geochemical evidence that the felsic units were probably cogenetic and emplaced simultaneously as high-level equivalents of trondjhemite-tonalite plutons that intrude the greenstone belt at its southwestern extremity. (4) Felsic-intermediate volcanic-volcaniclastic rocks locally separating the two major groups (the Fig Tree and Moodies Groups) which overlie the Onverwacht Group record a second major peak of tonalitic magmatism in the Barberton terrain at about 3250 Ma. This is close to the age of the Kaap Valley tonalite pluton which intrudes the Barberton Greenstone Belt at ca. 3226 Ma along its northwestern margin. The present results indicate the Barberton Greenstone Belt is part of an allochthonous sequence containing major tectonic and stratigraphic breaks, with a protracted history; of which the last 200 million years, at least, evolved within a tectonically active convergent environment.  相似文献   

18.
Bengal Fan Miocene sediments were collected during International Ocean Discovery Program Expedition 354 and investigated using petrographic and detrital garnet chemistry analyses. The Miocene Siwalik Group, which is composed of sediments deposited in the Himalayan foreland basin, was also analyzed for comparison with the Bengal Fan data for the provenance change during the Miocene. Our petrographic analyses revealed that the Miocene sediments of the Bengal Fan and Siwalik Group consist predominantly of Higher Himalayan Crystalline (HHC)-derived detritus such as chloritoid, staurolite, sillimanite, and/or kyanite, which appear among the accessory minerals. The chemistry of the detrital garnet varies across the stratigraphy; most of the garnet is rich in almandine and poor in spessartine and pyrope. However, pyrope-rich garnet, which is considered to originate from the HHC core (granulite facies), was found in the lower to upper Miocene deposits. The deposition of HHC-derived detrital garnet began before the Middle Miocene (15 Ma) and before the Late Miocene (10–9 Ma) in the Siwalik Group. The Bengal Fan data, by contrast, indicated that pyrope-rich garnet appeared in the Early Miocene (17.3 Ma) and Late Miocene (8.5–6.5 Ma). We conclude that the Bengal Fan sediments record the erosion of the HHC zone since the Early Miocene that appears in the Siwalik sediments. Furthermore, we found that the HHC-derived inputs decreased from the late Middle Miocene (12 Ma) to the early Middle Miocene (10 Ma) in both the Nepal Himalaya foreland basin and the Bengal Fan. The disappearance of the HHC-derived detritus is probably the result of dilution by Lesser Himalayan detritus, which suggests that the Lesser Himalayan zone, which is composed of metamorphosed and unmetamorphosed sedimentary rocks, was uplifted.  相似文献   

19.
The stratigraphic chronology of Yellow River terraces was investigated and studied in Lanzhou Basin, western Chinese Loess Plateau. The optically stimulated luminescence (OSL) dating results show that terraces T1, T2 and T3 formed at 8 ka, 20 ka and 70 ka, respectively. Lateral accretion of the riverbed facies gravel sediments occurred during interglacial periods while vertical aggradations of the terrace sediments deposited predominantly under cold and dry glacial period. A thick layer of aeolian loess with a basal age about 35 ka indicates a remarkable drop of air temperature and a dry, cold climate. The temporal correlation between terrace formation and tectonic movement has not yet been established in this research, but the stratigraphic chronology of the terrace sections provides the timing of the terrace formation, the incision rate of the Yellow River, and the slip rate of the fault horizon.  相似文献   

20.
On the evolution of the geothermal regime of the North China Basin   总被引:1,自引:0,他引:1  
Recent heat flow and regional geothermal studies indicate that the North China Basin is characterized by relatively high heat flow compared with most stable areas in other parts of the world, but lower heat flow than most active tectonic areas. Measured heat flow values range from 61 to 74 mW m−2. The temperature at a depth of 2000 m is generally in the range 75 to 85°C, but sometimes is 90°C or higher. The geothermal gradient in Cenozoic sediments is in the range 30 to 40°C/km for most of the area. The calculated temperature at the Moho is 560 and 640°C for surface heat flow values of 63 and 71 mW m−2, respectively. These thermal data are consistent with other geophysical observations for the North China Basin. Relatively high heat flow in this area is related to Late Cretaceous-Paleogene rifting as described in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号