首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In previous research, trace amplitudes of surface wave maxima recorded by undamped Milne seismographs were used to determine the surface-wave magnitudes Ms of large shallow earthquakes which occurred prior to 1912. For this purpose, the effective gain of these instruments was calibrated by using the surface-wave magnitudes Ms(GR) which were calculated from the unpublished worksheets for Seismicity of the Earth of Gutenberg and Richter. In this paper, the real quality of Ms(GR) is critically re-evaluated by using independent sets of data. It is found that Ms(GR) for the period 1904–1909 is considerably overestimated. The average excess from the real Ms is 0.5 units for 1904–1906, 0.4 for 1907, 0.3 for 1908–1909 and 0.0 for 1910–1912. This overestimation is so systematic and large that the previous results are all redetermined. The average effective gain of Milne instruments is revised to be 21.9; previously, the gain depended on Ms. This revision results in systematic reduction in the previously assigned magnitudes. The revised values of Ms for 264 shallow earthquakes, with Ms=6.8 and over in the period 1897–1912 inclusive, are listed. The present revision is large enough to preclude the possibility of the high activity of large shallow earthquakes around the turn of the century. The present results have a direct effect on all the magnitude catalogues of shallow earthquakes which occurred prior to 1909.  相似文献   

2.
The risk formula, expressing the probability of at least one occurrence of earthquakes of greater-than-design-value magnitudes over the economic life of a structure, is modified taking into consideration the probability of no-earthquake years. The annual maximum earthquake magnitudes of three scales: Richter magnitude, also known as local magnitude (ML), body-wave magnitude (Mb), and moment magnitude (MM) in a geographical area encompassing the Bingöl Province in Turkey are taken from two sources: (1) report by Kalafat et al. (2007) [14] and (2) the web site reporting data by Kandilli Observatory which has been recording earthquakes occurring in and around Turkey since 1900. Statistical frequency analyses are applied on the three sample series using various probability distribution models, and magnitude versus average return period relationships are determined. The values of the ML, Mb, and MM series for 10% and 2% risk are computed to be around 7.2 and 8.3. The tectonic structure and seismic properties of the Bingöl region are also given briefly.  相似文献   

3.
Calibration of magnitude scales for earthquakes of the Mediterranean   总被引:1,自引:1,他引:0  
In order to provide the tools for uniform size determination for Mediterranean earthquakes over the last 50-year period of instrumental seismology, we have regressed the magnitude determinations for 220 earthquakes of the European-Mediterranean region over the 1977–1991 period, reported by three international centres, 11 national and regional networks and 101 individual stations and observatories, using seismic moments from the Harvard CMTs. We calibrate M(M0) regression curves for the magnitude scales commonly used for Mediterranean earthquakes (ML, MWA, mb, MS, MLH, MLV, MD, M); we also calibrate static corrections or specific regressions for individual observatories and we verify the reliability of the reports of different organizations and observatories. Our analysis shows that the teleseismic magnitudes (mb, MS) computed by international centers (ISC, NEIC) provide good measures of earthquake size, with low standard deviations (0.17–0.23), allowing one to regress stable regional calibrations with respect to the seismic moment and to correct systematic biases such as the hypocentral depth for MS and the radiation pattern for mb; while mb is commonly reputed to be an inadequate measure of earthquake size, we find that the ISC mb is still today the most precise measure to use to regress MW and M0 for earthquakes of the European-Mediterranean region; few individual observatories report teleseismic magnitudes requiring specific dynamic calibrations (BJI, MOS). Regional surface-wave magnitudes (MLV, MLH) reported in Eastern Europe generally provide reliable measures of earthquake size, with standard deviations often in the 0.25–0.35 range; the introduction of a small (±0.1–0.2) static station correction is sometimes required. While the Richter magnitude ML is the measure of earthquake size most commonly reported in the press whenever an earthquake strikes, we find that ML has not been computed in the European-Mediterranean in the last 15 years; the reported local magnitudes MWA and ML do not conform to the Richter formula and are of poor quality and little use, with few exceptions requiring ad hoc calibrations similar to the MS regression (EMSC, ATH). The duration magnitude MD used by most seismic networks confirms that its use requires accurate station calibrations and should be restricted only to events with low seismic moments.  相似文献   

4.
—The maximum likelihood estimation of earthquake hazard parameters has been made in the Himalayas and its surrounding areas on the basis of a procedure which utilizes data containing complete files of the most recent earthquakes. The entire earthquake catalogue used covers the period from 1900–1990. The maximum regional magnitude M max?, the activity rate of the seismic event λ, the mean return period R of earthquakes with a certain lower magnitude M max≥ m along with their probability of occurrence, as well as the parameter b of of Gutenberg Richter magnitude-frequency relationship, have been determined for six different seismic zones of the Himalayas and its vicinity. It is shown that in general the hazard is higher in the zone NEI and BAN than the other four zones. The high difference of the b parameter and the hazard level from zone to zone reflect the high seismotectonic complexity and crustal heterogeneity.  相似文献   

5.
Estimation of Maximum Earthquakes in Northeast India   总被引:1,自引:0,他引:1  
We attempt to estimate possible maximum earthquakes in the northeast Indian region for four seismic source zones, namely EHZ, MBZ, EBZ, and SHZ, which encapsulates the various seismogenic structures of the region and also for combined source zones taken as a single seismic source regime. The latter case exhibits a high maximum earthquake estimate of MW 9.4 (±0.85) through Bayesian interpretation of frequency magnitude distribution with Gamma function implicating a moderate deviation from the standard Gutenberg Richter model at the higher magnitudes. However, tapering Gutenberg Richter models with corner magnitudes at MW 8.01, 8.7 and 9.1, respectively indicated maximum values corresponding to MW 8.4, 9.0, and 9.3. The former approach was applied to each of the source zones wherein the data are presented in parts according to the data completeness, thereof. EHZ, MBZ, EBZ and SHZ are seen with maximum earthquakes of MW 8.35 (±0.59), 8.79 (±0.31), 8.20 (±0.50), and 8.73 (±0.70), respectively. The maximum possible earthquakes estimated for each individual zone are seen to be lower than that estimated for the single regime. However, the pertaining return periods estimated for the combined zone are far less than those estimated for the demarcated ones.  相似文献   

6.
A multi-parametric study of empirical relationships between macroseismic data and magnitude is presented for the Italian region by the analysis of a new extended data set concerning 146 earthquakes. The available magnitude determinations include all of the most intense earthquakes which occurred in Italy in the last century and have been obtained by an accurate revision of original instrumental data. Intensity data have been revised and upgraded on the basis of the most recent studies: only local intensities directly documented have been used. Macroseismic determinations ofM s ,m B andM wa magnitudes have been performed. The empirical relationships between maximum felt intensity (I max ) and magnitude have been determined by the use of a distribution-free approach and a linear regression analysis. This last parameterization allows for the explanation of more than 60% of the variation in magnitude. In order to improve these results, the linear dependence between magnitude,I max and average distances (in logarithm) corresponding to fixed attenuation values has been explored. The comparison between instrumental magnitudes and corresponding macroseismic estimates obtained from empirical relationships shows that the respective uncertainties are comparable.  相似文献   

7.
By linear regression and orthogonal regression methods, comparisons are made between different magnitudes (lo-cal magnitude ML, surface wave magnitudes MS and MS7, long-period body wave magnitude mB and short-period body wave magnitude mb) determined by Institute of Geophysics, China Earthquake Administration, on the basis of observation data collected by China Seismograph Network between 1983 and 2004. Empirical relations between different magnitudes have been obtained. The result shows that: 1 As different magnitude scales reflect radiated energy by seismic waves within different periods, earthquake magnitudes can be described more objectively by using different scales for earthquakes of different magnitudes. When the epicentral distance is less than 1 000 km, local magnitude ML can be a preferable scale; In case M<4.5, there is little difference between the magnitude scales; In case 4.5MS, i.e., MS underestimates magnitudes of such events, therefore, mB can be a better choice; In case M>6.0, MS>mB>mb, both mB and mb underestimate the magnitudes, so MS is a preferable scale for deter-mining magnitudes of such events (6.08.5, a saturation phenomenon appears in MS, which cannot give an accurate reflection of the magnitudes of such large events; 2 In China, when the epicentral distance is less than 1 000 km, there is almost no difference between ML and MS, and thus there is no need to convert be-tween the two magnitudes in practice; 3 Although MS and MS7 are both surface wave magnitudes, MS is in general greater than MS7 by 0.2~0.3 magnitude, because different instruments and calculation formulae are used; 4 mB is almost equal to mb for earthquakes around mB4.0, but mB is larger than mb for those of mB≥4.5, because the periods of seismic waves used for measuring mB and mb are different though the calculation formulae are the same.  相似文献   

8.
面波震级和它的台基校正值   总被引:8,自引:5,他引:8       下载免费PDF全文
郭履灿  庞明虎 《地震学报》1981,3(3):312-320
本文叙述了我国现行的北京地震台面波震级 Ms 公式的由来, 所使用的公式为Ms=log(A/T)max+(△)系以古登堡-里克特(Gutenberg-Richter)对帕萨迪纳(Pasadena)地震台测定的面波震级为标准, 由国际上与该标准一致的六个著名地震台的面波平均震级制定出北京地震台测定面波震级的起算函数(△).当震中距离△=8-130得到公式(△)=(1.660.09)log△+(3.500.14)对于△=130-180之间的公式, 我们结合中国地震观测的实际情况将吸收系数项作了改进, 求得半经验半理论公式为(△)=6.775+1/2[(2.147e-0.04465△+1.325)(△-90)10-2logsin△+1/3(log△-1.954)]为了提高面波定震级的精确度, 将北京地震台的面波震级标准推广到全国十二个基准台, 利用360个地震的数据算出了各台的台基校正值, 提高了测定面波震级的一致性.   相似文献   

9.
The recent seismicity catalogue of metropolitan France Sismicité Instrumentale de l’Hexagone (SI-Hex) covers the period 1962–2009. It is the outcome of a multipartner project conducted between 2010 and 2013. In this catalogue, moment magnitudes (M w) are mainly determined from short-period velocimetric records, the same records as those used by the Laboratoire de Détection Géophysique (LDG) for issuing local magnitudes (M L) since 1962. Two distinct procedures are used, whether M L-LDG is larger or smaller than 4. For M L-LDG >4, M w is computed by fitting the coda-wave amplitude on the raw records. Station corrections and regional properties of coda-wave attenuation are taken into account in the computations. For M L-LDG ≤4, M w is converted from M L-LDG through linear regression rules. In the smallest magnitude range M L-LDG <3.1, special attention is paid to the non-unity slope of the relation between the local magnitudes and M w. All M w determined during the SI-Hex project is calibrated according to reference M w of recent events. As for some small events, no M L-LDG has been determined; local magnitudes issued by other French networks or LDG duration magnitude (M D) are first converted into M L-LDG before applying the conversion rules. This paper shows how the different sources of information and the different magnitude ranges are combined in order to determine an unbiased set of M w for the whole 38,027 events of the catalogue.  相似文献   

10.
Data from 753 earthquakes are used to determine a relationship between surface-wave magnitude (M s) and bodywave magnitude (m b), and from 541 earthquakes to determine a relationship between surface-wave magnitude (M s) and local magnitude (M L) for China and vicinity: M s=0.9883 m b-0.0420, M s=0.9919 M L-0.1773. The relationship of M s versus m b is obtained for 292 events occurred in the Chinese mainland in the time period from 1964 to 1996, 291 events occurred in Taiwan in the time period from 1964 to 1995 and 170 events occurred in the surrounding area. Standard deviation of the fitting is 0.445. Relationship of M s versus M L is obtained for 36 events occurred in the Chinese mainland, 293 events occurred in Taiwan, China and 212 events occurred in the surrounding area. The total amount is 541 events. Standard deviation of the fitting is 0.4673. The uncertainties of the converted M s in different magnitude intervals can be estimated using complementary cumulative distribution function (CCDF). In the relationship of M s versus m b, taking ±0.25 as a range of uncertainties, in magnitude interval m b 4.0–4.9, the probabilities for the converted M s taken value less than (M s-0.25) and more than (M s+0.25) are 17% and 27% respectively. Similarly, we have probabilities for m b 5.0–5.9 are 34% and 20% and that for m b 6.0–6.9 are 11% and 47%. In the relationship of M s versus M L, if the range of uncertainties is still taken as ±0.25, the corresponding probabilities for magnitude interval M L 4.0–4.9 are 22% and 38%, for M L 5.0–5.9 are 20% and 15% and for magnitude interval M L 6.0–6.9, are 15% and 29%, respectively. The relationships developed in this paper can be used for the conversion of one magnitude scale into another magnitude scales conveniently. The estimation of uncertainties described in this paper is more accurate and more objective than the usual estimation expressed by deviation. The estimations described in this paper indicate various dispersions in different magnitude intervals of original data. The estimations of uncertainties described by probabilities can be well connected with the total estimations of uncertainties in seismic hazard assessment.  相似文献   

11.
—?The procedure developed by Kijko and Sellevoll (1989, 1992) and Kijko and Graham (1998, 1999) is used to estimate seismic hazard parameters in north Algeria. The area-specific seismic hazard parameters that were calculated consist of the b value of the Gutenberg–Richter frequency–magnitude relation, the activity rate λ(M) for events above the magnitude M, and the maximum regional magnitude M max. These parameters were calculated for each of the six seismogenic zones of north Algeria. The site-specific seismic hazard was calculated in terms of the maximum possible PGA at hypothetical engineering structures (HES), situated in each of the six seismogenic zones with coordinates corresponding with those of the six most industrial and populated cities in Algeria.  相似文献   

12.
The modified scale M s(20R) is developed for the magnitude classification of the earthquakes of Russia’s Far East based on the surface wave amplitudes at regional distances. It extends the applicability of the classical Gutenberg scale M s(20) towards small epicentral distances (0.7°–20°). The magnitude is determined from the amplitude of the signal that is preliminarily bandpassed to extract the components with periods close to 20 s. The amplitude is measured either for the surface waves or, at fairly short distances of 0.7°–3°, for the inseparable wave group of the surface and shear waves. The main difference of the M s(20R) scale with the traditional M s(BB) Soloviev–Vanek scale is its firm spectral anchoring. This approach practically eliminated the problem of the significant (up to–0.5) regional and station anomalies characteristic of the M s(BB) scale in the conditions of the Far East. The absence of significant station and regional anomalies, as well as the strict spectral anchoring, make the M s(20R) scale advantageous when used for prompt decision making in tsunami warnings for the coasts of Russia’s Far East.  相似文献   

13.
Forecasts of future earthquake hazard in the San Francisco Bay region (SFBR) are dependent on the distribution used for the possible magnitude of future events. Based on the limited observed data, it is not possible to statistically distinguish between many distributions with very different tail behavior. These include the modified and truncated Gutenberg–Richter distributions, and a composite distribution assembled by the Working Group on California Earthquake Probabilities. There is consequent ambiguity in the estimated probability of very large, and hence damaging, events. A related question is whether the energy released in earthquakes is a small or large proportion of the stored energy in the crust, corresponding loosely to the ideas of self-organized criticality, and intermittent criticality, respectively. However, the SFBR has experienced three observed accelerating moment release (AMR) cycles, terminating in the 1868 Hayward, 1906 San Andreas and 1989 Loma Prieta events. A simple stochastic model based on elastic rebound has been shown to be capable of producing repeated AMR cycles in large synthetic catalogs. We propose that such catalogs can provide the basis of a test of a given magnitude distribution, via comparisons between the AMR properties of the real and synthetic data. Our results show that the truncated Gutenberg–Richter distribution produces AMR behavior closest to the observed AMR behavior. The proviso is that the magnitude parameters b and m max are such that a sequence of large events that suppresses activity for several centuries is unlikely to occur. Repeated simulation from the stochastic model using such distributions produces 30-year hazard estimates at various magnitudes, which are compared with the estimates from the 2003 Working Group on California Earthquake Probabilities.  相似文献   

14.
The aim of this study is to investigate the seismicity of Central Anatolia, within the area restricted to coordinates 30–35° longitude and 38–41° latitude, by determining the “a” and “b” parameters in a Gutenberg–Richter magnitude–frequency relationship using data from earthquakes of moment magnitude (Mw)?≥?4.0 that occurred between 1900 and 2010. Based on these parameters and a Poisson model, we aim to predict the probability of other earthquakes of different magnitudes and return periods (recurrence intervals). To achieve this, the study area is divided into six seismogenic zones, using spatial distributions of earthquakes greater than Mw?≥?4.0 with active faults. For each seismogenic zone, the a and b parameters in the Gutenberg–Richter magnitude–frequency relationship were calculated by the least squares method. The probability of occurrence and return periods of various magnitude earthquakes were calculated from these statistics using the Poisson method.  相似文献   

15.
Mine tremors and their aftershocks pose a risk to mine workers in the deep gold mines of South Africa. The statistical properties of mine-tremor aftershocks were investigated as part of an endeavour to assess the hazard and manage the risk. Data from two gold mines in the Carletonville mining district were used in the analysis. Main shocks were aligned in space and time and the aftershock sequences stacked and analysed. The aftershocks were found to satisfy Gutenberg–Richter scaling, with a b value close to 1. Aftershock activity diminished with time in accordance with the modified Omori law, with p values close to 1. However, the relationship between the main shock and its biggest aftershock violated Båths law, with ΔM L  1.9 for main shocks with M L < 3 and increasing for main shocks with M L > 3. The aftershock density was found to fall-off with distance as r ?1.3, suggesting triggering by dynamic stress.  相似文献   

16.
Over the last 25 years mining-induced seismicity in the Ruhr area has continuously been monitored by the Ruhr-University Bochum. About 1,000 seismic events with local magnitudes between 0.7 ≤ M L ≤ 3.3 are located every year. For example, 1,336 events were located in 2006. General characteristics of induced seismicity in the entire Ruhr area are spatial and temporal correlation with mining activity and a nearly constant energy release per unit time. This suggests that induced stresses are released rapidly by many small events. The magnitude–frequency distribution follows a Gutenberg–Richter relation which is a result from combining distributions of single longwalls that themselves show large variability. A high b-value of about 2 was found indicating a lack of large magnitude events. Local analyses of single longwalls indicate that various factors such as local geology and mine layout lead to significant differences in seismicity. Stress redistribution acts very locally since differences on a small scale of some hundreds of meters are observed. A regional relation between seismic moment M 0 and local magnitude M L was derived. The magnitude–frequency distribution of a single longwall in Hamm was studied in detail and shows a maximum at M L = 1.4 corresponding to an estimated characteristic source area of about 2,200 m2. Sandstone layers in the hanging or foot wall of the active longwall might fail in these characteristic events. Source mechanisms can mostly be explained by shear failure of two different types above and below the longwall. Fault plane solutions of typical events are consistent with steeply dipping fracture planes parallel to the longwall face and nearly vertical dislocation in direction towards the goaf. We also derive an empirical relation for the decay of ground velocity with epicenter distance and compare maximum observed ground velocity to local magnitude. This is of considerable public interest because about 30 events larger than M L ≥ 1.2 are felt each month by people living in the mining regions. Our relations, for example, indicate that an event in Hamm with a peak ground velocity of 6 mm/s which corresponds to a local magnitude M L between 1.7 and 2.3 is likely to be felt within about 2.3 km radius from the event.  相似文献   

17.
Prediction of magnitude of the largest potentially induced seismic event   总被引:1,自引:0,他引:1  
We propose a method for determining the possible magnitude of a potentially largest induced seismic event derived from the Gutenberg–Richter law and an estimate of total released seismic moment. We emphasize that the presented relationship is valid for induced (not triggered) seismicity, as the total seismic moment of triggered seismicity is not bound by the injection. The ratio of the moment released by the largest event and weaker events is determined by the constants a and b of the Gutenberg–Richter law. We show that for a total released seismic moment, it is possible to estimate number of events greater than a given magnitude. We determine the formula for the moment magnitude of a probable largest seismic event with one occurrence within the recurrence interval (given by one volumetric change caused by mining or injecting). Finally, we compare theoretical and measured values of the moment magnitudes of the largest induced seismic events for selected geothermal and hydraulic fracturing projects.  相似文献   

18.
The Comprehensive Nuclear-Test-Ban Treaty (CTBT), a global ban on nuclear explosions, is currently in a ratification phase. Under the CTBT, an International Monitoring System (IMS) of seismic, hydroacoustic, infrasonic and radionuclide sensors is operational, and the data from the IMS is analysed by the International Data Centre (IDC). The IDC provides CTBT signatories basic seismic event parameters and a screening analysis indicating whether an event exhibits explosion characteristics (for example, shallow depth). An important component of the screening analysis is a statistical test of the null hypothesis H 0: explosion characteristics using empirical measurements of seismic energy (magnitudes). The established magnitude used for event size is the body-wave magnitude (denoted m b) computed from the initial segment of a seismic waveform. IDC screening analysis is applied to events with m b greater than 3.5. The Rayleigh wave magnitude (denoted M S) is a measure of later arriving surface wave energy. Magnitudes are measurements of seismic energy that include adjustments (physical correction model) for path and distance effects between event and station. Relative to m b, earthquakes generally have a larger M S magnitude than explosions. This article proposes a hypothesis test (screening analysis) using M S and m b that expressly accounts for physical correction model inadequacy in the standard error of the test statistic. With this hypothesis test formulation, the 2009 Democratic Peoples Republic of Korea announced nuclear weapon test fails to reject the null hypothesis H 0: explosion characteristics.  相似文献   

19.
The new scale Mt of tsunami magnitude is a reliable measure of the seismic moment of a tsunamigenic earthquake as well as the overall strength of a tsunami source. This Mt scale was originally defined by Abe (1979) in terms of maximum tsunami amplitudes at large distances from the source. A method is developed whereby it is possible to determine Mt at small distances on the basis of the regional tsunami data obtained at 30 tide stations in Japan. The relation between log H, maximum amplitude (m) and log Δ, a distance of not less than 100 km away from the source (km) is found to be linear, with a slope close to 1.0. Using three tsunamigenic earthquakes with known moment magnitudes Mw, for calibration, the relation, Mt = log H + log Δ + D, is obtained, where D is 5.80 for single-amplitude (crest or trough) data and 5.55 for double-amplitude (crest-to-trough) data. Using a number of tsunami amplitude data, Mt is assigned to 80 tsunamigenic earthquakes that occurred in the northwestern Pacific, mostly in Japan, during the period from 1894 to 1981. The Mt values are found to be essentially equivalent to Mw for 25 events with known Mw. The 1952 Kamchatka earthquake has the largest Mt, 9.0. Of all the 80 events listed, at least seven unusual earthquakes which generated disproportionately-large tsunamis for their surface-wave magnitude Ms are identified from the relation. From the viewpoint of tsunami hazard reduction, the present results provide a quantitative basis for predicting maximum tsunami amplitudes at a particular site.  相似文献   

20.
The large deep earthquake of January 21, 1906 is re-evaluated using old seismogram data and updated analysis techniques. From the P and pP-P time data the hypocentre parameters are determined as follows: origin time, 13h 49min 35s; latitude, 33.8°N; longitude, 137.5°E; depth, 340 km. The body-wave magnitude mB is re-evaluated from the amplitude and periods of P, PP and S waves. The average value of 7.4 is obtained. This value is the smallest among any values assigned previously to this shock, and it is denied that the earthquake is the world's largest deep shock in this century. The focal mechanism is estimated from the P-wave first motions and amplitude distribution of P and S waves. Synthetic body waves are used to constrain the mechanism and to determine the seismic moment. The mechanism solution suggests the down-dip compression typical of this region. A seismic moment of 1.5 × 1027 dyn · cm is obtained. This value and the re-evaluated value of mB are consistent with the moment-B relation obtained for other deep earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号