首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Oligocene basalt samples, cored from Yarraman Creek in the Liverpool Range, New South Wales, Australia, have been found to contain two remanence components with opposing directions. The self-reversed component has been clearly identified in several samples subjected to detailed thermal demagnetization. Moreover, through AF demagnetization results alone, some unheated specimens display consistent multicomponent behavior.Several flows under investigation were extruded during what appears to have been an excursion of the geomagnetic field, each possessing a magnetization direction far from the full polarity state. The possibility that the self-reversed moments are simply secondary components, acquired in an opposing field direction is, therefore, ruled out.Optical examinations and thermomagnetic curves indicate that the samples contain from nearly unoxidized, to moderately low-temperature oxidized, titanomagnetite. The self-reversed component is most clearly removed during thermal demagnetization between about 230 and 290°C, above the observed Curie point of the titanomagnetite, and is believed to be associated with titanomaghemite. Consistently, the role of the self-reversed moment is seen to be most dramatic in samples showing the highest degree of low-temperature oxidation. Moreover, thermal demagnetization of samples from varying depths below the creek bed provide strong evidence that the self-reversed component in some, if not all, of the samples investigated develops at room temperature. The relevant self-reversal mechanism is currently under investigation.  相似文献   

2.
Some 50 oriented samples (120 specimens) have been collected on eight sites of volcanic rocks from the Lower Devonian Dalhousie Group of northern New Brunswick and Devonian andesitic to basic dykes from central New Brunswick. Univectorial and occasional multivectorial components were extracted from the various samples. Results after AF and thermal demagnetization compare relatively well. In the volcanics and tuffs, two components of magnetization have been isolated: A (D = 33°, I = ?58°, α95 = 7.3°, K = 236) for four sites and B (D = 66°, I = +53°) for three sites. The grouping of component A is improved after tilt correction but the fold test is not significantly positive at the 95% confidence level. Component A is interpreted as being primary while component B is unresolved and appears to be the resultant magnetization of a Late Paleozoic and a recent component. The pole position obtained for tilt corrected component A is 268°E, 1°S, dp = 6.5°, dm = 8.8°. The paleolatitude calculated for component A is 39°S. The paleopole of in situ component A is located close to those of the Early-Middle Devonian formations from Quebec, New Brunswick and New England states while the paleopole of tilt-corrected component A is similar to Lower Devonian poles of rock units from the Canadian Arctic Archipelago. If component A is primary (as we believe it to be), then the western half of the northern Appalachians had already docked onto the North American Craton by Early Devonian time. Alternatively, if component A is secondary the same conclusion applies but the juxtaposition took place in Middle Devonian time.  相似文献   

3.
Results of a systematic paleomagnetic study are reported based on Late Carboniferous to Early Permian sedimentary rocks on the north slope of the Tanggula Mountains,in the northern Qiangtang terrane(NQT),Tibet,China.Data revealed that magnetic minerals in limestone samples from the Zarigen Formation(CP^z)are primarily composed of magnetite,while those in sandstone samples from the Nuoribagaribao Formation(Pnr)are dominated by hematite alone,or hematite and magnetite in combination.Progressive thermal,or alternating field,demagnetization allowed us to isolate a stable high temperature component(HTC)in 127 specimens from 16 sites which successfully passed the conglomerate test,consistent with primary remnance.The tilt-corrected mean direction for Late Carboniferous to Early Permian rocks in the northern Qiangtang terrane is D_s=30.2°,I_s=-40.9°,k_s=269.0,a_(95)=2.3°,N=16,which yields a corresponding paleomagnetic pole at 25.7°N,241.5°E(dp/dm=2.8°/1.7°),and a paleolatitude of 23.4°S.Our results,together with previously reported paleomagnetic data,indicate that:(1)the NQT in Tibet,China,was located at a low latitude in the southern hemisphere,and may have belonged to the northern margin of Gondwana during the Late Carboniferous to Early Permian;(2)the Paleo-Tethys Ocean was large during the Late Carboniferous to Early Permian,and(3)the NQT subsequently moved rapidly northwards,perhaps related to the fact that the Paleo-Tethys Ocean was rapidly contracting from the Late Permian to Late Triassic while the Bangong Lake-Nujiang Ocean,the northern branch of the Neo-Tethys Ocean,expanded rapidly during this time.  相似文献   

4.
Relative paleointensities are obtained from a 6-m sediment core from Lake St. Croix, Minnesota, spanning the time range from 445 to 1740 years B.P. To normalize the natural remanent magnetization (NRM) for variations in the magnetic content, a laboratory-induced remanence is chosen, whose alternating field (AF) demagnetization curves most closely resemble the NRM demagnetization curves. By plotting the ratio of the NRM to the normalizing remanence versus AF demagnetizing field, HAF, for samples of the same sediment horizon, as well as for samples from different horizons, estimates are obtained for expected uncertainties in the relative paleointensities. For the Lake St. Croix sediments the anhysteretic remanence (ARM) demagnetization curves are very similar to those of the NRM's, and ARM is therefore used as the normalization parameter. Because the sediment exhibits homogeneous remanence properties throughout, and HAF = 100Oe is the optimum “cleaning” field for the entire core, NRM100/ARM100 is evaluated to represent the fluctuations of the relative paleointensity. Our relative paleointensity data exhibit the same general features as obtained from archeomagnetic studies. The intensity increases as one goes back in time with a peak near 800 years B.P., representing an increase in the intensity of up to 60%. Apparent periodicities in the intensity of 300–400 years are observed.  相似文献   

5.
The characteristic magnetization of redbed samples from the upper part of the Série d'Abadla (probably Early Permian 31°N, 2.7°W) has a mean direction derived from 13 sites of D=129°, I=11°, k=59, α95=6° and a corresponding south paleopole at 29°S, 60°E, A95=5°. All directions have reversed polarity. The paleolatitude of the northern fringe of the Saharan craton was 6°±3°S, which is in excellent agreement with that for the Moroccan Meseta. Therefore, in all probability, there has been no paleolatitudinal displacement greater than about 500 km of the Moroccan Meseta relative to Africa since Permian time. Comparison of results from sedimentary rocks shows no evidence for relative rotation of the Moroccan Meseta since Permian time. Small apparent rotations are indicated by evidence from massive trachyandesite lavas from Morocco, but we argue that these could have arisen from the incomplete averaging of secular variation and uncertainties in estimates of paleohorizontal, rather than from true tectonic rotations. The combined latest Carboniferous/Early Permian paleopole for the Saharan craton and the Meseta differs form the path of apparent polar wandering for North America when the continents are assembled in Wegener's Pangea (Pangea A, in which northwest Africa is opposite North America). It is in reasonable agreement when the continents are assembled in the Pangea B configuration (northwest Africa opposite Europe).  相似文献   

6.
In view of the recent recognition of widespread Late Paleozoic remagnetization of Devonian formations across North America, we undertook a reinvestigation of the Upper Devonian Perry Formation of coastal Maine and adjacent New Brunswick. Thermal demagnetization of samples from the redbeds yielded a characteristic direction (D = 166°, I = 4°) that fails a fold test. Comparison of the corresponding paleopole (312°E, 41°S) with previously published Paleozoic poles for North America suggests that the sediments were remagnetized in the Late Carboniferous. After the removal of a steep, northerly component, the volcanics also reveal a shallow and southerly direction ( D = 171°, I = 25° without tilt correction). No stability test is available to date the magnetization of the volcanics; however, similarity of several of the directions to those seen in the sediments raises the suspicion that the volcanics are also remagnetized. Although the paleopole without tilt correction (303°E, 32°S) could be taken to indicate an early Carboniferous age for the remagnetization, scatter in the data suggests that the directions are contaminated by the incomplete removal of a steeper component due to present-day field. Thus, it is more likely that the volcanics were remagnetized at the same time as the sediments. Isothermal remanent magnetization (IRM) acquisition curves, blocking temperatures, coercivities and reflected light microscopy indicate that the magnetization is carried by hematite in the sediments and by both magnetite and hematite in the volcanics. It is therefore likely that the remagnetization of the Perry Formation involved both thermal and chemical processes related to the Variscan/Alleghenian orogeny. Our results indicate that previously published directions for the Perry Formation were based on the incomplete resolution of two magnetic components. These earlier results can no longer be considered as representative of the Devonian geomagnetic field.  相似文献   

7.
塔里木地块奥陶纪古地磁新结果及其构造意义   总被引:2,自引:1,他引:1       下载免费PDF全文
本文报道塔里木地块阿克苏—柯坪—巴楚地区奥陶纪古地磁研究新结果.对采自44个采点的灰岩、泥灰岩及泥质砂岩样品的系统岩石磁学和古地磁学研究表明,所有样品可分成两组:第一类样品以赤铁矿和少量磁铁矿为主要载磁矿物,该类样品通常可分离出特征剩磁组分A;第二类样品以磁铁矿为主要载磁矿物,系统退磁揭示出这类样品中存在特征剩磁组分B.特征剩磁组分A分布于绝大多数奥陶纪样品中,具有双极性,但褶皱检验结果为负,推测其可能为新生代重磁化.特征剩磁组分B仅能从少部分中晚奥陶世样品中分离出,但褶皱检验结果为正,且其所对应古地磁极位置(40.7°S,183.3°E,dp/dm=4.8°/6.9°)与塔里木地块古生代中期以来的古地磁极位置显著差别,表明其很可能为岩石形成时期所获得的原生剩磁.古地磁结果表明塔里木地块中晚奥陶世位于南半球中低纬度地区,很可能与扬子地块一起位于冈瓦纳古大陆的边缘;中晚奥陶世之后,塔里木地块通过大幅度北向漂移和顺时针旋转,逐步与冈瓦纳大陆分离、并越过古赤道;至晚石炭世,塔里木地块已到达古亚洲洋构造域的南缘.  相似文献   

8.
A paleomagnetic study was made of the granitic rock farsundite, exposed in southern Norway. An objective was to test the contemporaneity of this body with the neighbouring Egersund anorthosite of presumed age about 900 m.y. Two of the nine sites sampled were rejected, as the magnetization was dominantly unstable. At the seven other sites, this unstable component was either absent or it could be equally well removed by AF or thermal demagnetization: after AF treatment, all samples from these sites were left with a very stable remanence, directed steeply upwards. This magnetization was probably acquired at the time of either emplacement or recrystallization of the farsundite. A magnetic test for anisotropy indicated that the stable remanence is misaligned with the ancient Earth's field direction by about 3°, apparently due to layering of the rock fabric. After correction for this anisotropy, the mean direction from the seven sites is D = 341°, I = 82.2°, k = 142, α = 5.0°, corresponding to a paleomagnetic north pole at 43.3°S, 166.0°W, dp = 9.3°, dm = 9.7°, which lies on Spall's European polar wandering curve. The farsundite pole is not significantly different from a pole position based on the Egersund anorthosite, which supports the supposition that the two rock formations are cogenetic.  相似文献   

9.
Measurement of the remanent magnetization of samples of Jurassic oceanic red sediments recovered in the western Atlantic on Leg 11, site 105 of the Deep Sea Drilling Project yields quite different results, depending on the demagnetization processes used. Both the Jurassic section and the Berriasian-Valanginian part of the Lower Cretaceous were measured, but with less satisfactory results for the Lower Cretaceous. The natural remanent magnetization of the Jurassic section is almost entirely normal, with 44.6° inclinations (standard deviation = 13.9°) and is not changed by 1000 Oe alternating field (AF) demagnetization. Thermal demagnetization to temperatures of 630°C brings the inclination and polarity sequence in line with that expected for Oxfordian through Tithonian time at this site. The average inclination after thermal demagnetization is 22.1°, standard deviation = 12.1°, and the polarity pattern is one of frequently alternating polarity, much more similar to published reversal patterns for this time than the all normal results of AF demagnetization. The polarity pattern is not identical to the published ones as a result of insufficiently detailed sampling. Thermomagnetic and X-ray analyses were ambiguous, but suggest the presence of titanomagnetite, hematite, and possibly titanomaghemite and pyrrhotite. The primary remanence is carried by hematite.  相似文献   

10.
Jinlongshan gold orebelt, a newly discovered one in sedimentary rock region in southern Qinling Mountains, is mainly located in upper Devonian and lower Carboniferous calcareous siltstone and argillic silty limestone of later Paleozoic era. Typical disseminated gold mineralization occurred in calcareous siltstone, which is major host rock and mainly composed of silt (SiO2 mostly varies from 38% to 73%) and calcite (CaO mostly varies from 10% to 25%). Pyrite created by living beings in Nanyangshan formation may be poor in gold. Faults and favorable layers jointly control disseminated gold mineralization. The significance of this opinion is very great for gold exploration.  相似文献   

11.
We report normalized AF demagnetization curves of anhysteretic remanences (ARM's) produced by 1-, 10- and 40-Oe steady fields and of saturation isothermal remanence (IRMs) in a suite of dispersed, unannealed magnetite powders with median sizes of 2, 4, 6, 10 and 14 μm (pseudo-single-domain or PSD size range) and 100 μm (multidomain or MD size). Interpreted in the light of the domain structure test first proposed by Lowrie and Fuller [12], the relative stability trend of curves for the 2 μm sample is of single-domain (SD) type, the 1-Oe ARM being most resistant to demagnetization followed by the 10-Oe and 40-Oe ARM's and IRMs. For the 100-μm sample, the trend is exactly reversed and is of MD-type. In the 4–14 μm samples, hitherto undescribed transitional trends between SD-type and MD-type occur. At 6 μm, 1-Oe, 10-Oe and 40-Oe ARM's preserve an SD-type trend but for all AF's > 75 Oe, IRMs is more resistant than any of these remanences. At 10 μm, this trend is unmistakable, and only at 14 μm do the 1-Oe, 10-Oe and 40-Oe ARM curves merge. We conclude (1) that the Lowrie-Fuller test distinguishes between small MD grains enhanced by PSD remanence and large MD grains lacking PSD remanence, rather than between SD and MD structures per se, and (2) that in the PSD transition region from 6 to 14 μm in magnetite, IRMs changes over to MD-type relative stability around 6 μm, whereas 10-Oe and 40-Oe ARM's achieve an MD-type trend around 14 μm, in accord with the predicted field dependence of the PSD threshold size.Our theoretical interpretation assumes that the intrinsic (internal field) coercive force spectra of weak-field and strong-field remanences are identical but that the observed (external field) spectrum is shifted to lower fields as a result of the internal demagnetizing field — NJr of the remanence Jr. The effect is slight for weak-field Jr's but substantial for IRMs. Since all coercivities, high as well as low, are shifted, the result of the Lowrie-Fuller test is determined simply by the shape of the intrinsic coercivity spectrum or the corresponding AF demagnetization curve. Depending on the model of self-demagnetization used, either subexponential or sublinear AF decay curves of weak-field remanence will automatically lead to an MD-type trend, whereas by either model the decay curves that characterize SD and PSD remanences (decaying slowly initially and then more rapidly) will always produce and SD-type trend.  相似文献   

12.
Thermal remanent magnetization (TRM) and anhysteretic remanent magnetization (ARM) components were imposed on natural rock samples. The artificial laboratory components had different directions and the blocking temperature and/or coercivity spectra were overlapping. Two methods, principal component analysis (PCA) by Kirschvink and analytical modelling of demagnetization data (by Stupavsky and Symons, S&S) were used to resolve these components. The PCA technique calculated lines fitted to the demagnetization path with ASD = 10° (angular standard deviation), and the S&S method used four types of intensity decay curves for calculated components.

Both methods (PCA and S&S) resolved perfectly the one-component case. The two- or three-component case results strongly depended on spectra overlapping, and on the angles between component directions and magnetic minerals in samples. Principal component analysis gave more reliable results for separated spectra of TRM and thermally cleaned samples, whereas the S&S technique was more efficient for the case of strong spectra overlapping of ARM components and the alternative current field (AF) demagnetization method. Remarkable anisotropy of RM was observed which influences the results for the haematite-bearing samples.  相似文献   


13.
Magnetic properties of samples from Bell Island sedimentary rocks have been studied. X-ray analysis indicates that the main magnetic mineral is hematite in all samples. The other iron-bearing minerals identified are siderite and chamosite. Microscope observations of thin sections suggest that the rocks consist of oolitic hematite in a matrix of siderite or calcite. The intensity of natural remanent magnetization (NRM) varies in the range of (0.03–0.4 A m?1), depending on the percentage of hematite. The thermal demagnetization curves of NRM show in some cases a sharp increase in magnetization at temperatures in the range 500–600°C. The peaks that occur in these demagnetization curves are due to a chemical change of siderite during repeated laboratory heating. X-ray analysis confirmed that the newly formed material is magnetite. Since the original NRM has been masked by the new intergrown material, this would result in a serious error in the determination of paleomagnetic pole positions. The samples showing this behaviour were not considered for paleomagnetic study. The samples containing oolitic hematite in a calcite matrix exhibit very high stability of NRM, including directional stability until almost 670°C. For these samples, a virtual pole position based on N = 6 samples (32 specimens) demagnetized to 665°C is 34°N, 114°E, not far from published Ordovician poles for the North American craton.  相似文献   

14.
Two techniques, namely alternating-field demagnetization and thermal demagnetization, are widely being used for determining the stability of magnetization of a rock specimen. Recently a faster and simpler technique known as low-field hysteresis loop and memory-phenomenon test has been developed for determining the stability of magnetization directions of igneous rocks. In this paper the results of this new technique, after applying it to about 1000 specimens obtained from 250 oriented rock samples collected from 42 sites of Deccan Trap basalts from Mount Girnar (21°30′N; 70°30′E) and Mount Pavagarh (22°30′N; 73°30′E), India, are presented.The agreement between the mean natural remanent magnetization directions determined by this procedure and those computed after alternating-field demagnetization has been found to be very good. All the specimens from Mount Girnar and 94% of Mount Pavagarh specimens showed a stable line without any memory in a field ≈ 10 Oe. This indicates that the rocks from these two localities are highly stable and are most suitable ones for the determination of a precise palaeomagnetic direction.  相似文献   

15.
Paleomagnetic samples were collected from four localities located in the southern rim of the Tarim basin. The samples were taken from volcanic rocks erupted between Jurassic and Quaternary. Detailed analysis of all samples has been carried out with progressive thermal demagnetization. A characteristic remanence (ChRM) with higher unblocking temperature has been isolated from all samples. The pole position from the middle Jurassic is at 52.5°N, 187.9°E(dp = 3.7°,dm =6.5°); the directions of the ChRM of Cretaceous correspond to a paleopole at 69.7°N, 211.6°E (dp = 9.8°,dm = 15.9°); the Quaternary pole from the Pulu site is at 79. 9°N, 183.1°E(dp = 1.6°.dm =2.4°). On the basis of these new paleomagnetic data, tectonic evolution of Tarim block is presented.  相似文献   

16.
Paleomagnetic samples were collected from 190 m of the Late Carboniferous/Early Permian Casper Formation in southeastern Wyoming. A total of 549 samples was drilled near the vicinity of Horse Creek Station at an average stratigraphic interval of 33 cm. All samples were reversely magnetized. Rock magnetic analyses indicate that the primary carrier of remanence in the formation is hematite. A selection criterion applied to the partial demagnetized data restricted the sample population to 233, resulting in a paleomagnetic North Pole located at 47.4°N, 127.4°E (δp=0.7;δm=1.4). The Casper pole agrees well with other Late Carboniferous/Early Permian poles for cratonic North America. The tight clustering of these paleomagnetic poles suggests that little apparent polar motion with respect to North America occurred during this time. Comparing the stable North American poles with paleomagnetic poles from Late Carboniferous/Early Permian strata of the New England-Canadian Maritime region (Acadia) indicates that this region did not reach its present position relative to North America until at least the Early Permian.  相似文献   

17.
We have obtained additional evidence for the Early Carboniferous paleomagnetic field for cratonic North America from study of the Barnett Formation of central Texas. A characteristic magnetization of this unit was isolated after thermal demagnetization at four sites (36 samples) out of eight sites (65 samples) collected. The mean direction of declination = 156.3°, inclination = 5.8° (N = 4 ,k = 905 , α95 = 3.0°), corresponds to a paleomagnetic pole position at lat. = 49.1°N,long. = 119.3°E (dp = 1.5° , dm = 3.0°). Field evidence suggests that characteristic magnetization was acquired very early in the history of the rock unit whereas the rejected sites are comprised of weakly magnetized limestones dominated by secondary components near the present-day field direction. Comparison of the Barnett pole with other Early Carboniferous (Mississippian) paleopoles from North America shows that it lies close to the apparent polar wander path for stable North America and that the divergence of paleopoles from the Northern Appalachians noted previously for the Devonian persisted into the Early Carboniferous. We interpret this difference in paleopoles as further evidence for the Northern Appalachian displaced terrain which we refer to here as Acadia, and the apparent coherence of Late Carboniferous paleopoles as indicating a large (~1500 km) motion of Acadia with respect to stable North America over a rather short time interval in the Carboniferous.  相似文献   

18.
Magnetizations in 24 flows of Tertiary age in Israel indicate two stable directions, each of which has both normal and reversed polarities. AF demagnetization decreases the scatter of the NRM results. Typical Tertiary poles are near 70°N 110°W and another set of anomalous poles are near 34°N 50°W. These are similar to other reported Tertiary and Cretaceous poles.  相似文献   

19.
Basaltic lavas from the southern Alborz, an area about 40 km northeast of Tehran, Iran, have been paleomagnetically investigated. The lavas are of Late Devonian-Early Carboniferous age, and belong to the basal member of the Geirud Formation. At 11 sites a total of 80 cores was drilled.Detailed analyses by means of progressive demagnetization of the natural remanent magnetization (NRM) were made both by the application of alternating magnetic fields and by heating. Also, on a number of specimens a study was done both with thin sections and with polished sections. There proved to be general agreement between the properties of the characteristic NRM and the kind of Fe-Ti oxides in the lavas. In the case of specimens containing magnetite only the characteristic NRM was entirely removed at temperatures just below 600°C, or in alternating fields up to 1500/2000 Oe peak value; on the other hand, in specimens containing both magnetite and a substantial part of hematite (martite) the final part of the characteristic remanence was removed at temperatures above 600°C, and this remanence resisted alternating fields above 2000 Oe peak value. From the characteristic site-mean directions of 5 sites an average paleomagnetic direction is computed withD = 210.8°,I = 66.9°, and α95 = 3.9°.This result might be taken as an indication that at the Devono-Carboniferous transition the southern part of the Alborz was located in the present Indian Ocean off the Arabian coast.  相似文献   

20.
The eastern segment of the Appalachian orogen is largely underlain by late Precambrian (Hadrynian) rocks affected by the Avalonian, Acadian and possibly Alleghenian orogenies. The provenance of the Avalon Zone of Newfoundland is uncertain. The region investigated in this segment consists of porphyrite stocks and sills (laccoliths) intrusive into the sedimentary, tuffaceous and volcanic rocks of the Harbour Main Group and rhyolite sills intrusive into the porphyrites. Some 55 oriented samples (148 specimens) collected at 11 sites were thermally (20–650°C) and AF (0.05–100 mT) demagnetized. Three components of magnetization were isolated: C (311°, +48°, α95 = 11°, k = 21, 10 sites), A (13°, +37°, α95 = 14°, k = 22, 6 sites), and B (67°, +45°, α95 = 15°, k = 27,5 sites). Based on coercivity spectra, unblocking temperatures, frequency distribution and precision parameters of the respective components, it is suggested that component C is older than component A which is turn is older than component B. The palaeopoles of components C, A and B are: 211°E, 48°N (dp = 9.8°, dm = 14.7°); 101°E, 61°N (dp = 9.6°, dm = 16.4°); 33°E, 34°N (dp = 12°, dm = 19°), respectively. Component C is most probably primary. Component A is secondary and its pole is near that of Carboniferous and Early Permian North America poles, indicating that the porphyrites and the rhyolites were remagnetized in the late Palaeozoic. Component B remains unexplained; it is possible that it is an unresolved pseudo-component but it is more likely an overprint. There are few palaeomagnetic results for the late Precambrian period in Avalon terrane(s). The preliminary results of this study suggest the presence of a separate plate from North American at that time. These results will prove useful for the palaeoreconstruction of the continents (North Africa, northeast Europe) in the late Precambrian period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号