首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-salinity, Na–Ca–Cl-rich fluids (˜20 wt% salts) in inclusions in gangue and ore minerals from Mesozoic Mississippi Valley-type (MVT) deposits in the Verviers Synclinorium (eastern Belgium) and in Cretaceous vein calcites at the Variscan front were investigated by microthermometric and crush-leach analysis. The MVT deposits formed at temperatures of ˜110 °C while the Cretaceous vein calcites were precipitated at temperatures <50 °C. Their Cl–Br content (Cl/Br ratio between 246 and 458) suggests that the fluids probably originated by the evaporation of seawater during basin development at the southern margin of the Caledonian Brabant Massif in the Late Palaeozoic. The Na–Ca–K content (Na: 29,700–49,600 ppm, Ca: 25,700–46,200 ppm, K: 1,000–5,620 ppm) is similar to that of the mineralising fluids in other Pb–Zn districts, interpreted to be of evaporative origin (e.g. Newfoundland, East Tennessee, Polaris). Furthermore, comparison of the Na–Ca–K content of the fluids with that of an evolved evaporitic brine enables the recognition of major water–rock interactions that modified the fluid composition. It indicates that the ambient fluids participated in the early diagenetic dolomitisation of Upper Palaeozoic carbonates and also in the albitisation of plagioclase in Lower Palaeozoic siliciclastics of the Caledonian basement. Illitisation of smectites or dissolution of K-feldspar probably controlled the K-content of the fluids. A model is proposed where the bittern brines migrated down into the deep subsurface because of their density during extension. After the Variscan orogeny, these fluids were finally expelled along extensional faults, resulting in the formation of Zn–Pb deposits. Received: 26 April 2000 / Accepted: 22 November 2000  相似文献   

2.
通过1∶5万区域地质调查,在青藏高原羌塘地块西南缘鸡夯地区原划上三叠统日干配错群中新识别出一套上侏罗统—下白垩统地层。本文根据该套地层的岩石组合以及古生物面貌特征,初步探讨了该套地层的沉积环境和沉积相特征,对其中发育的玄武岩夹层采用锆石U-Pb(LA-ICP-MS)同位素测年方法,获得其年龄为118.3±2.1Ma。在发育的生物碎屑灰岩夹层中采集了珊瑚、双壳类、腕足、腹足类化石,化石资料显示该套地层形成于晚侏罗世—早白垩世。这是首次在南羌塘地块发现该时期海相地层,这一发现证明南羌塘地块在晚侏罗世—早白垩世时期海水并未完全退出,而是局部发育海相三角洲。  相似文献   

3.
4.
The Šambron–Kamenica Zone is situated on the northern margin of the Levočské vrchy mountains and Šarišskà vrchovina Highland, where the Central Carpathian Paleogene joins the Pieniny Klippen Belt. Sandstone outcrops in this area. From Cretaceous to Late Oligocene in age, these sediments suggest transport directions from S and SE. The heavy mineral assemblages of this sandstone include Cr-spinel grains, mainly displaying types II and III alpine-peridotite affinities, and are representative of Ocean Island Basalt volcanism. A sample from Upper Eocene sediments at Vit’az shows a clear change in Cr-spinel composition, which turns out to have types I and II peridotite affinities, and to derive from arc and Middle Ocean Ridge Basalt volcanism, with sediment transport directions from SW and WSW. These data indicate major variations in the Upper Eocene tectonic setting, giving constraints to paleogeographic reconstruction of the Slovak Central Carpathians.  相似文献   

5.
Summary Integration of new mineral chemical, geochronological and structural data from the Texel Complex yielded information on (re)crystallization and deformation processes in metapelites, eclogites and tonalitic orthogneisses during eclogite facies metamorphism. Maximum PT conditions reached 1.2 to 1.4 GPa and 540–620 °C in the Upper Cretaceous. In tonalitic orthogneisses and metapelites, substantial garnet growth took place prior to eclogite facies metamorphism and Sm–Nd data indicate the presence of pre-Cretaceous mineral relics. In contrast, complex garnet-growth and -resorption processes are inferred for eclogites, which produced characteristic atoll microstructures and occurred close to the pressure peak of a single, coherent high pressure event. Garnet Sm–Nd data indicate eclogite facies crystallization at 85 ± 5 Ma. While eclogites retained information on the maximum burial stage, matrix phases in metapelites and orthogneisses were intensely recrystallized during the amphibolite facies metamorphic decompression. All the meso- and macro-scale deformation structures formed during the high pressure event and subsequent exhumation. The major mylonitic foliation is represented by the high pressure phases but was refolded during amphibolite facies exhumation. A biotite-whole-rock Rb–Sr age of 70–80 Ma indicates that cooling below about 300 °C occurred in the Upper Cretaceous. Supplementary material to this paper is available in electronic form at Appendix available as electronic supplementary material  相似文献   

6.
7.
Combined subsidence and thermal 1D modelling was performed on six well-sections located in the north-western Mid-Polish Trough/Swell in the eastern part of the Central European Basin system. The modelling allowed constraining quantitatively both the Mesozoic subsidence and the magnitude of the Late Cretaceous–Paleocene inversion and erosion. The latter most probably reached 2,400 m in the Mid-Polish Swell area. The modelled Upper Cretaceous thickness did not exceed 500 m, and probably corresponded to 200–300 m in the swell area as compared with more than 2,000 m in the adjacent non-inverted part of the basin. Such Upper Cretaceous thickness pattern implies early onset of inversion processes, probably in the Late Turonian or Coniacian. Our modelling, coupled with previous results of stratigraphic and seismic studies, demonstrates that the relatively low sedimentation rates in the inverted part of the basin during the Late Cretaceous were the net result of several discrete pulses of non-deposition and/or erosion that were progressively more pronounced towards the trough axis. The last phase of inversion started in the Late Maastrichtian and was responsible for the total amount of erosion, which removed also the reduced Upper Cretaceous deposits. According to our modelling results, a Late Cretaceous heat-flow regime which is similar to the present-day conditions (about 50 mW/m2) was responsible for the observed organic maturity of the Permian-Mesozoic rocks. This conclusion does not affect the possibility of Late Carboniferous–Permian and Late Permian–Early Triassic thermal events.  相似文献   

8.
280 core samples were collected from Upper Jurassic, Cretaceous and Eocene sediments outcropping in the Istria peninsula (Yugoslavia). Due to the very low intensities of the initial natural remanent magnetizations, more than 50% of the collection, consisting mainly of rock samples of Jurassic and Eocene sediments, was not suitable for paleomagnetic studies.The Cretaceous samples yield a mean paleomagnetic pole (lat. 53°, long. 275° and α95 = 4.8°), which is significantly different from the African and European paleomagnetic poles of the same age. The position of the Istria peninsula on the autochthonous Adriatic platform allows the result to be interpreted as applicable to all the autochthonous Periadriatic region. This new paleomagnetic result indicates that the autochthonous Adriatic platform rotated counterclockwise over an angle of about 30° with respect to Africa in post-Mesozoic times.  相似文献   

9.
Rb-Sr isochron age of fluid inclusions in quartz from the Fuwan super-large silver deposit is 68 - 6 Ma, the silver deposit is characterized by high μ values (10.67 - 10.95 ), which are much higher than those of the ore-hosted Paleozoic strata and are close to those of ores hosted in the Proterozoic metamorphic basement in western Guangdong Province. Based on the Pb isotopic characteristics, coupled with much high background silver contents (200-1000ng/g) in the Proterozoic basement and relatively low silver contents in the Paleozoic strata in the region of the Sanshui Basin, it is concluded that the ore-forming material of the super-large silver deposit came mainly from the old basement. The super-large silver deposit related genetically to the intense volcanic activities during the Upper Cretaceous to Eogene. The formation of the Fuwan super-large silver deposit is controlled by the following favorable geological conditions : ( 1 ) The intersection of deep faults and contemporaneous faults at the margin of the Sanshui Basin led to the formation of an excellent structure as passageway for ore fluids; (2) The special ore-hosted rock association forms a ore gathering-trap structure that favors the precipitation of ore; (3) The silver-rich old basement, multi-stage mineralization and multi-episode volcanic activities which constitute a geothermal convection system.  相似文献   

10.
This study reports on the transfer of contaminants from waste rock dumps and mineralised ground into soils, sediments, waters and plants at the rehabilitated Mary Kathleen uranium mine in semi-arid northwest Queensland. Numerous waste rock dumps were partly covered with benign soil and the open pit mine was allowed to flood. The mineralised and waste calc-silicate rock in the open pit and dumps has major (>1 wt%) Ca, Fe and Mg, minor (>1,000 ppm) Ce, La, Mn, P and S, subminor (>100 ppm) Ba, Cu, Th and U, and trace (<100 ppm) As, Ni, Pb, Y and Zn values. Consequently, chemical and physical weathering processes have acted on waste rock and on rock faces within the open pit, mobilising many elements and leading to their dispersion into soils, stream sediments, pit water and several plant species. Chemical dispersion is initiated by sulfide mineral breakdown, generation of sulfuric acid and formation of several soluble, transient sulfate minerals as evaporative efflorescent precipitates. Radiation doses associated with the open pit average 5.65 mSv year−1; waste dumps commonly have lower values, especially where soil-covered. Surface pit water is slightly acid, with high sulfate values accompanied by levels of U, Cu and Ni close to or above Australian water guideline values for livestock. Dispersion of U and related elements into soils and stream sediments occurs by physical (erosional) processes and from chemical precipitation. Plants growing in the mine void, on waste dumps and contaminated soil display evidence of biological uptake of U, LREE, Cu and Th and to a lesser degree of As, Ni, Pb, Y and Zn, with values being up to 1–2 orders of magnitude above background sites for the same species. Although rehabilitation procedures have been partly successful in reducing dispersion of U and related elements into the surrounding environment, it is apparent that 20 years after rehabilitation, there is significant physical and chemical mobility, including transfer into plants.  相似文献   

11.
位于浙江南部的丽水盆地是华南东部典型的白垩纪火山岩盆地。对盆地中5个凝灰岩夹层样品进行了锆石LA-MC-ICPMS U-Pb同位素年代学分析,结果给出了(114±1)Ma,(114±2)Ma,(118±1)Ma,(122±1)Ma和(112±1)Ma的主体谐和年龄。结合区域沉积-构造接触关系,本文将盆地内火山-沉积序列分为上、下2个组合:下火山-沉积组合包括馆头组和朝川组,其形成时代在124~112 Ma;上火山-沉积组合以方岩组为代表,其时代在104~91 Ma。这两套岩石组合的形成记录了盆地两期伸展断陷事件。结合区域构造变形和古构造应力场反演结果,本文认为丽水盆地早白垩世经历了两个伸展-挤压旋回的构造演化过程,每一旋回的古构造应力场均以NW-SE伸展和NWSE挤压应力场的交替演化为特征。NW-SE伸展事件控制了盆地的初始张开、断陷和沉积物充填作用,其产生的动力背景与古太平洋板块俯冲过程中因俯冲板片后撤(roll-back)诱发的弧后扩张作用有关。NW-SE挤压事件导致盆地的构造反转,下白垩统普遍褶皱,并形成区域角度不整合面,其形成与俯冲板片的深部几何学变化或大陆碰撞的远程效应有关。丽水盆地伸展-挤压事件的幕式交替反映了弧后扩张过程中复杂的深部动力学背景。  相似文献   

12.
Eastern and western portions of the Jinchuan ultramafic intrusion have previously been interpreted as dismembered segments of a single elongate intrusion by late faults. However, the different stratigraphic sequences of the two portions indicate that they are originally two separate intrusions, referred to as Eastern and Western intrusions in this study. The Eastern intrusion is characterized by a concentric distribution of rock types with a core of sulfide dunite enveloped by lherzolite, whereas the Western intrusion is composed of the Upper and Lower units, interpreted as magmatic mega cycles with regular variations in lithology and chemistry. In the Western intrusion, the Upper unit consists of fine-grained dunite, lherzolite, and pyroxenite from its base to its top. The MgO contents decrease upward from the dunites (42–45 wt.%) to the lherzolites (36–41 wt.%), while Al2O3 and incompatible elements increase upward. In contrast, the Lower unit consists of coarse-grained dunites and lherzolites containing 37–40 and 28–35 wt.% MgO, respectively. Sharp contacts between the Upper and Lower units and fine-grained dunite xenoliths at the top of the Lower unit indicate that the Lower unit intruded along the base of the Upper unit. Disseminated and net-textured sulfides primarily occur in the Lower unit and comprise the no. 24 ore body. Very low S contents (<100 ppm) of the wall rocks at Jinchuan indicate that they were not the source of S causing sulfide immiscibility. Sulfide segregation more likely occurred in deep-seated magma chambers, and sulfides were deposited in the Western intrusion when sulfide-bearing magmas passed through the intrusion. In contrast, the Eastern intrusion was formed by injections of sulfide-free and sulfide-bearing olivine-crystal mushes, respectively, from another deep-seated staging magma chamber. The Eastern and Western intrusions and the deep-seated magma chambers comprise a complicated magma plumbing system at Jinchuan. Normal faults played a significant role in the formation of the magma plumbing system and provided pathways for the magmas.  相似文献   

13.
 A karst-fissured aquifer in the Upper Jurassic carbonate rocks of the Krakow Upland shows a very high yield (safe yield 117 000 m3/day) and belongs to the major groundwater basins (MGBs) of Poland. The uncovered character of the aquifer and its hydraulic structure favor the intensive infiltration and migration of anthropogenic pollutants from the surface. This pollution is caused by agriculture and industry in the proximity of Krakow and the Upper Silesian agglomeration. Progressive degradation of groundwater quality on a regional scale results. Evaluation of the endangering of the aquifer studied is based on the analysis of the time interval of vertical water percolation from the surface, the time interval of groundwater horizontal flow through the aquifer and the duration of water residence in the aquifer derived from tritium data. Quaternary and Cretaceous overburden occur in the Krakow Upland in addition to numerous outcrops of limestones. The time interval of vertical water percolation in highly permeable limestones does not exceed 3 years and in the areas covered by overburden it is from several to 50 years. The mean effective time interval of horizontal groundwater flow through the Upper Jurassic rocks along the flow paths ranges from several months in the areas of direct drainage to over 15 years in the elevated areas of local groundwater divides. The age of water in the rock matrix was determined using tritium data interpreted according to an exponential model and it ranges from 70 years to over 130 years. In karst-fissured systems with a high retardation index (Rp=21) the effective time of water circulation in local drainage basins does not exceed 7 years. The Krakow-Wieluń Upland is the most extensive and uniform karst region in Poland. It is a belt of Upper Jurassic limestone extending from Krakcow in the southeast to Wieluń in the northwest on the northeast slope of the Silesian Upland. Residual hills of Paleogene age separated by infilled karst depressions are the most characteristic features of the Krakow-Wieluń Upland. More than 800 small caves are known in this area, but only two of them reach 1 km of aggregate passage length (Gazek and others 1992). Received: 4 December 1996 · Accepted: 29 April 1997  相似文献   

14.
Late Mesozoic dioritic and quartz dioritic plutons are widespread in the Daye region, eastern Yangtze craton, eastern China. Detailed geochronological, geochemical, and Sr–Nd isotopic studies have been undertaken for most of these plutons, in an attempt to provide a comprehensive understanding in the age, genesis and geodynamical control of the extensive magmatism. SHRIMP and LA-ICP-MS zircon U–Pb dating indicate that the plutons were emplaced in the range of latest Jurassic (ca. 152 Ma) to early Cretaceous (ca. 132 Ma), which was followed by dyke emplacement between 127 and 121 Ma and volcanism during the 130–113 Ma interval. Both diorites and quartz diorites are sodic, metaluminous, high-K calc-alkaline, and characterized by strongly fractionated, sub-parallel REE patterns without obvious Eu anomalies. The rocks are enriched in highly incompatible elements and large ion lithophile elements, but depleted in high field strength elements. Samples of diorite and quartz diorite have similar Sr–Nd isotopic compositions that are consistent with the early Cretaceous basalts and mafic intrusions throughout the eastern Yangtze craton. The geochemical and isotopic data, together with results of geochemical modeling, indicate an enriched mantle source for the plutonic rocks. The quartz diorites have geochemical signatures resembling adakites, such as high Al2O3 (15–19 wt.%), Sr (630–2,080 ppm), Na2O (>3.5 wt.%), negative Nb–Ta anomalies, low Y (7–19 ppm), Yb (0.5–1.8 ppm), Sc (5–15 ppm), and resultant high Sr/Y (45–200) and La/Yb (31–63) ratios. Genesis of the adakitic quartz diorites is best explained in terms of low-pressure intracrustal fractional crystallization of cumulates consisting of hornblende, plagioclase, K-feldspar, magnetite, and apatite from mantle-derived dioritic magmas. Mantle-derived magmatism broadly coeval with that of the Daye region also is widespread in other regions of the eastern Yangtze craton, reflecting large-scale melting of the lithospheric mantle during the Late Mesozoic. The large-scale magmatism was most likely driven by lithospheric extension associated with thinning of lithospheric mantle beneath the eastern China continent.  相似文献   

15.
K–Ar dating of mineral separates extracted from various granitoid rock units of the eastern Pontides and central Anatolia, Turkey, has provided some new insights unravelling various stages of the Neo-Tethyan convergence system, which evolved with northward subduction between the Eurasian plate (EP) to the north and the Tauride-Anatolide platform (TAP) to the south along the İzmir-Ankara-Erzincan suture (IAES) zone. Arc-related granitoid rocks are only encountered in the eastern Pontides and yield K–Ar cooling ages of both Early Cretaceous (138.5 ± 2.2 Ma) (early arc), and Late Cretaceous, ranging from 75.7 ± 0.0 to 66.5 ± 1.5 Ma (mature arc), respectively. The multi-sourced granitoids of the eastern Pontides, with a predominant mantle component and K–Ar ages between 40 and 50 Ma, are considered to be a part of post-collisional slab break-off magmatism accompanied by tectonic denudation of pre-Late Cretaceous granitoid rocks following juxtaposition of the EP and the TAP around 55–50 Ma in the eastern Pontides. The K–Ar cooling ages of collision-related S-, I- and A-type granitoids in central Anatolia reflect good synchronism between 80 and 65 Ma, suggesting a coeval genesis in a unique geodynamic setting but with derivation from various sources—namely, purely crustal, purely mantle and/or of mixed origin. This sort of simultaneous generation model for these S-I-A-type intrusives seems to be consistent with a post-collisional lithospheric detachment related geodynamic setting. I-type granodioritic to tonalitic intrusives with K–Ar cooling ages ranging from 40 to 48 Ma in east-central Anatolia are interpreted to have been derived from a post-collisional, within-plate, extension-related geodynamic setting following the amalgamation of the EP and the TAP in east-central Anatolia.  相似文献   

16.
王贝  李鹏  刘智贤  程龙  闫磊  王卫军 《地质通报》2016,35(9):1479-1487
西藏谢通门县一带区域上属于冈底斯花岗岩带南亚带,侵入岩极其发育,目前填绘有白垩纪、古近纪和新近纪岩体。通过同位素年代学研究,获得12个锆石的U-Pb同位素年龄数据,在原划归白垩纪、古近纪和新近纪岩体中解体出侏罗纪侵入体,按其岩石类型特征,归并为早侏罗世东热村序列和中侏罗世东嘎乡序列。其中,在约拉嘎莫岩体中获得锆石U-Pb同位素年龄166.9±2.8Ma,时代为中侏罗世巴柔期。  相似文献   

17.
Zinc–lead–barite deposits located in Lefan and Lower Banik localities of about 25 km northeast of Zakho City, Northern Iraq consist of a group of strata-bound sulfides hosted in Upper Cretaceous (Upper Campanian–Maastrichtian) dolomitic limestone. Carbonate-hosted ores contain 3.77% Zn, 2% Pb, and 5% Fe, while in lower Banik, they contain 1.5% Zn, 0.37% Pb, and 1.4% Fe. Diagenetic processes, such as dolomitization and recrystalization in addition to the type of microfacies, provided appropriate physical and chemical conditions that permitted the passage of ore-bearing fluids and participated in precipitation and ore localization. These deposits are precipitated in a platform and developed within the Foreland Thrust Belt. Ore precipitated as infill of intergranular dolomite porosity with replaced dolomite and rudist shells forming disseminated crystals that occupy intergranular pore spaces around dolomite and calcite and as infill of dissolution spaces and fractures.  相似文献   

18.
El Galeno and Michiquillay are early to middle Miocene Cu–Au–Mo porphyry-related deposits located in the auriferous Cajamarca district of northern Peru. The El Galeno deposit (486 Mt at 0.57% Cu, 0.14 g/t Au and 150 ppm Mo) is associated with multiple dioritic intrusions hosted within Lower Cretaceous quartzites and shales. Emplacement of the porphyry stocks (17.5–16.5 Ma) in a hanging wall anticline was structurally controlled by oblique faults superimposed on early WNW-trending fold-thrust structures. Early K-feldspar–biotite–magnetite (potassic) alteration was associated with pyrite and chalcopyrite mineralisation. A quartz–magnetite assemblage that occurs at depth has completely replaced potassically altered rocks. Late- and post-mineralisation stocks are spatially and temporally related to weak quartz–muscovite (phyllic) alteration. High Au grades are associated with early intrusive phases located near the centre of the deposit. Highest Cu grades (~0.9% Cu) are mostly associated with a supergene enrichment blanket, whilst high Mo grades are restricted to contacts with the metasedimentary rocks. The Michiquillay Cu–Au–Mo deposit (631 Mt at 0.69% Cu, 0.15 g/t Au, 100–200 ppm Mo) is associated with a Miocene (20.0–19.8 Ma) dioritic complex that was emplaced within the hanging wall of a back thrust fault. The intrusive complex is hosted in quartzites and limestones. The NE-trending deposit is crosscut by NNW-trending prospect-scale faults that influenced both alteration and metal distribution. In the SW and NE of the deposit, potassic alteration zones contain moderate hypogene grades (0.14 g/t Au and 0.8% Cu) and are characterised by chalcopyrite and pyrite mineralisation. The core of the deposit is defined by a lower grade (0.08 g/t Au and 0.57% Cu) phyllic alteration that overprinted early potassic alteration. Michiquillay contains a supergene enrichment blanket of 45–80 m thickness with an average Cu grade of 1.15%, which is overlain by a deep leached cap (up to 150 m). Cu–Au–Mo (El Galeno-Michiquillay) and Au-rich (Minas Conga) deposits in the Cajamarca region are of similar age (early–middle Miocene) and intrusive rock type (dioritic) associations. Despite these geochronological and geochemical similarities, findings from this study suggest variation in metal grade between the hybrid-type and Au-rich deposits result from a combination of physio-chemical factors. These include variations in temperature and oxygen fugacity conditions during hypogene mineralisation resulting in varied sulphide assemblages, host rock type, precipitation of ubiquitous hydrothermal magnetite, and late hydrothermal fluid flow resulting in a well-developed phyllic alteration zone.  相似文献   

19.
Calcic skarn deposits related to Upper Cretaceous – Paleocene banatitic intrusions are widely developed in the Banat Mountains (southwestern Romanian Carpathians). There is a spatial distribution of banatitic igneous rocks and associated ore deposits in parallel zones, due to subduction beneath the southwest Carpathians. As a result three distinct petro-metallogenetic units developed, i.e. marginal unit: Moldova Nouă– Sasca; median unit: Ciclova – Oravita; and the inner unit: Dognecea – Ocna de Fier. The magmatism changed inland from monzonite and diorite → granodiorite occurrences to granodiorite → granite plutons. The related mineralization shifted simultaneously from Cu (Mo) to Cu-Mo (W) and eventually Fe(Cu)/Pb-Zn. The distribution of both magmatism and related ore deposits in parallel petro-metallogenetic zones is considered similar to that in the Andes. In particular, calcic skarns and related ore deposits that occur in these units show a transversal zonal variation represented by compositional features of pyroxene and granat, sequence of mineralization and metallogenetic environment. Such zonal characteristics represent an additional but nonetheless significant indicator for an Andean-type subduction-related setting. Received: 3 June 1996 / Accepted: 10 January 1997  相似文献   

20.
The Tongshankou Cu–Mo deposit, located in the westernmost Daye district of the Late Mesozoic Metallogenic Belt along the Middle-Lower reaches of the Yangtze River, eastern China, consists mainly of porphyry and skarn ores hosted in the Tongshankou granodiorite and along the contact with the Lower Triassic marine carbonates, respectively. Sensitive high-resolution ion microprobe zircon U–Pb dating constrains the crystallization of the granodiorite at 140.6 ± 2.4 Ma (1σ). Six molybdenite samples from the porphyry ores yield Re–Os isochron age of 143.8 ± 2.6 Ma (2σ), while a phlogopite sample from the skarn ores yields an 40Ar/39Ar plateau age of 143.0 ± 0.3 Ma and an isochron age of 143.8 ± 0.8 Ma (2σ), indicating an earliest Cretaceous mineralization event. The Tongshankou granodiorite has geochemical features resembling slab-derived adakites, such as high Sr (740–1,300 ppm) and enrichment in light rare earth elements (REE), low Sc (<10 ppm), Y (<13.3 ppm), and depletion in heavy REE (<1.2 ppm Yb), and resultant high Sr/Y (60–92) and La/Yb (26–75) ratios. However, they differ from typical subduction-related adakites by high K, low MgO and Mg#, and radiogenic Sr–Nd–Hf isotopic compositions, with (87Sr/86Sr) t  = 0.7062–0.7067, ɛ Nd(t) = −4.37 to −4.63, (176Hf/177Hf) t  = 0.282469–0.282590, and ɛ Hf(t) = −3.3 to −7.6. The geochemical and isotopic data, coupled with geological analysis, indicate that the Tongshankou granodiorite was most likely generated by partial melting of enriched lithospheric mantle that was previously metasomitized by slab melts related to an ancient subduction system. Magmas derived from such a source could have acquired a high oxidation state, as indicated by the assemblage of quartz–magnetite–titanite–amphibole–Mg-rich biotite in the Tongshankou granodiorite and the compositions of magmatic biotite that fall in the field between the NiNiO and magnetite–hematite buffers in the Fe3+–Fe2+–Mg diagram. Sulfur would have been present as sulfates in such highly oxidized magmas, so that chalcophile elements Cu and Mo were retained as incompatible elements in the melt, contributing to subsequent mineralization. A compilation of existing data reveals that porphyry and porphyry-related Cu–Fe–Au–Mo mineralization from Daye and other districts of the Metallogenic Belt along the Middle-Lower reaches of the Yangtze River took place coevally in the Early Cretaceous and was related to an intracontinental extensional environment, distinctly different from the arc-compressive setting of the Cenozoic age that has been responsible for the emplacement of most porphyry Cu deposits of the Pacific Rim.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号