首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There have been reports for many years that the ionosphere is very sensitive to seismic effects, and the detection of ionospheric perturbations associated with earthquakes (EQs) attracts a lot of attention as a very promising candidate for short-term EQ prediction. In this review we present a possible use of VLF/LF (very low frequency (3–30 kHz)/low frequency (30–300 kHz)) radio sounding of seismo-ionospheric perturbations. In order to avoid the overlapping with my own previous reviews, we first show some pioneering results for the Kobe EQ and we try to present the latest results including the statistical evidence on the correlation between the VLF/LF propagation anomalies (ionospheric perturbations) and EQs (especially with large magnitude and with shallow depth), medium-distance (6-8 Mm) propagation anomalies, the fluctuation spectra of subionospheric VLF/LF data (the effect of atmospheric gravity waves, the effect of Earth's tides, etc.), and the mechanism of lithosphere-atmosphere-ionosphere coupling. Finally, we indicate the present situation of this kind of VLF/LF activities going on in different parts of the globe and we suggest the importance of international collaboration in this seismo-electromagnetic study.  相似文献   

2.
Electromagnetic anomalies associated with 1995 Kobe earthquake   总被引:1,自引:0,他引:1  
Occurrences of anomalous electro-magnetic phenomena at varied frequency ranges, covering ELF to VHF, have been reported in relation to the 17 January 1995 Kobe earthquake (M7.2), by several independent research groups. Prominent pre-seismic peaks, which could have been emitted from the focal area, were observed on 9-10 January in ELF, VLF, LF and HF ranges. Whether these changes were truly related to the earthquake is not certain, because atmospheric (thunderbolt discharge) activities also peaked on 9-10 January. The nomalous changes were markedly enhanced toward the catastrophe in agreement with many reports on unusual radio/TV noise. Anomalous transmission of man-made electromagnetic waves in VLF and VHF ranges was also detected from a few days before the earthquake, indicating the possibility that the ionosphere above the focal zone was disturbed at the final stage of the earthquake preparation process.  相似文献   

3.
In the last decades, one of the main research directions in identifying seismic precursors involved monitoring VLF (Very Low Frequency) and LF (Low Frequency) radio waves and analysing their propagation characteristics. Essentially this method consists of monitoring different available VLF and LF transmitters from long distance reception points. The received signal has two major components: the ground wave and the sky wave, where the sky wave propagates by reflection on the lower layers of the ionosphere. It is assumed that before and during major earthquakes, unusual changes may occur in the lower layers of the ionosphere, such as the modification of the charged particles number density and the altitude of the reflection zone. Therefore, these unusual changes in the ionosphere may generate unusual variations in the received signal level.The International Network for Frontier Research on Earthquake Precursors (INFREP) was developed starting with 2009 and consists of several dedicated VLF and LF radio receivers used for monitoring various radio transmitters located throughout Europe. The receivers’ locations were chosen so that the propagation path from these VLF/LF stations would pass over high seismicity regions while others were chosen to obtain different control paths.The monitoring receivers are capable of continuously measuring the received signal amplitude from the VLF/LF stations of interest. The recorded data is then stored and sent to an INFREP database, which is available on the Internet for scientific researchers. By processing and analysing VLF and LF data samples, collected at different reception points and at different periods of the year, one may be able to identify some distinct patterns in the envelope of the received signal level over time. Significant deviations from these patterns may have local causes such as the electromagnetic pollution at the monitoring point, regional causes like existing electrical storms over the propagation path or even global causes generated by high-intensity solar flares. As a consequence, classifying these perturbations and minimizing them (when possible) would represent an important step towards identifying significant pattern deviations caused by seismic activities.Taken into consideration some of the issues mentioned above, this paper intends to present some aspects meant to improve the overall performance of the existing INFREP network. The signal-to-noise ratio improvement of the monitoring receiver may be achieved by relocating the antenna (or even the entire monitoring system if possible) in areas with less electromagnetic pollution within the VLF and LF bands. Other solution may involve replacing the existing electric “whip” antennas with magnetic loop antennas.Regarding the measuring method, long-term averaging of the received signal to reduce the electromagnetic noise should be carefully applied. If the averaging time is too long, there is a risk that, during a seismic event, the details of the received signal envelope would be lost. Moreover, this may reduce the possibility of making correlations between the monitored stations and INFREP receivers in case of sudden ERP (Effective Radiated Power) variations of the VLF/LF stations. For the same reason, the time synchronization of the recorded data using (for instance) GPS technology is highly recommended.Other aspects related to the overall performance improvement of the INFREP network consist of monitoring other VLF/LF stations such as the Krasnodar station (south of Russia), part of the ALPHA/RSDN-20 VLF navigation system, or the 77.5 kHz DCF77 time signal transmitter (near Frankfurt am Main, Germany). Moreover, the installation of a new reception point in Romania (near Cluj-Napoca) for monitoring the Vrancea area (within the Carpathians Mountains) and the Adriatic region will provide complementary scientific data within the network.  相似文献   

4.
In this paper, we suggest a technique for forecasting seismic events based on the very low and low frequency (VLF and LF) signals in the 10 to 50 Hz band using the neural network approach, specifically, the error back-propagation method (EBPM). In this method, the solution of the problem has two main stages: training and recognition (forecasting). The training set is constructed from the combined data, including the amplitudes and phases of the VLF/LF signals measured in the monitoring of the Kuril-Kamchatka region and the corresponding parameters of regional seismicity. Training the neural network establishes the internal relationship between the characteristic changes in the VLF/LF signals a few days before a seismic event and the corresponding level of seismicity. The trained neural network is then applied in a prognostic mode for automated detection of the anomalous changes in the signal which are associated with seismic activity exceeding the assumed threshold level. By the example of several time intervals in 2004, 2005, 2006, and 2007, we demonstrate the efficiency of the neural network approach in the short-term forecasting of earthquakes with magnitudes starting from M ≥ 5.5 from the nighttime variations in the amplitudes and phases of the LF signals on one radio path. We also discuss the results of the simultaneous analysis of the VLF/LF data measured on two partially overlapping paths aimed at revealing the correlations between the nighttime variations in the amplitude of the signal and seismic activity.  相似文献   

5.
VHF and HF radio signals are widely used to observe the Sun and pulsars. Nowadays, large low-frequency radio astronomical arrays (LOFAR, 30–240 MHz; MIRA, 80–300 MHz) are being constructed to record radiation of pulsars at the maximum distance. registration of the solar radio emission intensity at fixed frequencies and in the spectral VHF band is very important along with other methods of monitoring of coronal mass ejections. Interpreting radio astronomical data is known to be necessary to take into account possible distortions of these signals in the Earth ionosphere. However, in contrast to modern navigation systems (Global Position System (GPS), GLObal NAvigation Satellite System (GLONASS), GALILEO), in which a very accurate reconstruction of ionosphere parameters is a built-in function, in present-day radio astronomy a retrieve of ionosphere transfer characteristics has not been appropriately worked out. This collides with increasing requirements to accuracy of the analysis of a radio emission amplitude profile and to the angular and polarizing resolution of radio telescopes of new generation (LOFAR, SKA, etc.). We have developed a method and software to calculate the ionosphere rotation measure (RM) and dispersion measure (DM). We used the ionosphere model IRI-2001, magnetic field model IGRF-10, and the ionosphere total electron content values obtained from GPS measurements. The obtained values of DM and RM were recalculated into characteristics of the phase delay, Faraday amplitude modulation, and polarization changes. We calculated ones for different levels of geomagnetic activity as well as different angular positions of radio sources. Our main idea is to use a signal of navigation satellites (GPS, GLONASS, GALILEO) as a testing signal from a “reference” source located at minimal angle distance from a source studied. Our project allows development of methods and systems of ADAPTIVE RADIO ASTRONOMY, adaptive to the non-uniform and non-stationary ionosphere, by analogy with known systems of adaptive optics intended to adapt optical telescopes to varying conditions of the optically non-uniform and non-stationary troposphere.  相似文献   

6.
The long-term data during seven years from January 2001 to December 2007, as observed by the Pacific VLF/LF network consisting of several Japanese stations and one station in Kamchatka, are extensively utilized to perform a statistical correlation study between the lower ionospheric perturbations as detected by subionospheric propagation and earthquakes (EQs). In this paper, we adopt a physical parameter, the maximum seismicity intensity observed (I) to define the strength of an EQ unlike the previously and conventionally used EQ magnitude and depth, which is a combined effect of EQ magnitude and depth, together with the Earth’s surface information and geological condition around the EQ epicenter. After considering EQs only take place on the land because of the use of seismicity and by using the superimposed epoch analysis, it is found for the larger EQs with I from 5 to 7 (we feel serious trembling and we expect serious damage) that the most important VLF/LF parameter, trend (nighttime average amplitude), shows a definite decrease about 10 days before the EQ by exceeding 2σ (σ: standard deviation) criterion; the dispersion shows a maximum about 10 days before the EQ but not exceeding 2σ line and finally the nighttime fluctuation shows an enhancement about 10 days before the EQ (with exceeding the 2σ level). A definite statistical correlation is confirmed between the ionospheric perturbations and I when I is strong enough in a range from 5 to 7. Whereas, there is no significant correlation between the two when I is in a range from 3 to 4. Finally, together with the corresponding results for EQs in the sea, but close to the land, these results are discussed in the light of lithosphere–ionosphere coupling mechanism.  相似文献   

7.
张学民 《地震学报》2021,43(5):656-673
甚低频/低频人工源电波作为一种主动源发射的通讯导航信号,因其长距离波导传播的特性在地-电离层观测及应用中表现出极大的优势.本文总结了二十世纪末以来基于甚低频/低频(VLF/LF)电波观测技术及其数据分析方法、典型震例及统计研究成果、圈层耦合机理等方面的研究进展,并通过探讨其应用成果的快速积累及前兆扰动起源等研究难点,展...  相似文献   

8.
大功率高频电波与电离层的相互作用会引起电子密度扰动,进而产生人工沿场不均匀体,其对无线电波特别是超短波信号有强的定向散射能力,可形成一种新型的超短波通信方式.基于各向异性介质的散射理论,首先通过求解电子密度扰动产生的附加极化势获得电子密度扰动散射方程,然后对电子密度扰动进行高斯自相关处理,并结合入射波/散射波与地磁场方向的空间几何关系,获得电子密度扰动的波数谱表达式,建立了人工沿场不均匀体的散射系数理论模型.利用模型对Platteville站实验中产生的人工不均匀体散射截面积进行了数值模拟,并通过与实测值对比验证了模型的正确性.根据人工沿场散射原理给出了利用其进行无线电信号传输的约束条件.重点仿真分析了人工沿场不均匀体的散射系数和散射覆盖区范围,结果表明:同等条件下,相对于高纬度地区,低纬度地区人工沿场不均匀体的散射系数小5~10 dB,但其散射覆盖区的地面范围大,东西向可达3000 km,南北向可达1500 km,完全可用于超短波信号的超远距离传输.本文结果为中低纬度地区开展相关实验研究提供了理论指导,对利用人工沿场不均匀体进行无线信号的超远距离传输应用研究具有重要意义.  相似文献   

9.
With the use of a complete 1 year (2005) data on over-horizon VHF signals (transmitted in Sendai and received in Chofu), we have investigated the statistical significance on the correlation of VHF signal characteristics (amplitude and variance) with meteorological radio duct effect and seismicity (earthquakes). It is found that the meteorological radio duct effect is rather predominant in July–September. On the other hand, over-horizon VHF signals are found to be correlated with earthquakes in other seasons. Especially, when we narrow our analysis area just around the middle region of the great-circle path, we have always significant correlation between VHF signal characteristics (average, median intensity or variance) with seismicity in any months of the year, with exceeding the confidence level.  相似文献   

10.
The geophysical mechanism behind astronomical time–latitude residuals (ATLR) are discussed. The photoelectric astrolabe at Yunnan Observatory (YO) observed apparent synchronous anomalous ATLR before the Wenchuan M8.0 earthquake (EQ) in May 12, 2008 and the Lushan M7.0 EQ n April 20, 2013. We compared the ATLR from the YO photoelectric astrolabe and EQ data since 1976. Anomalous ATLR was observed before several strong EQs in the Yunnan Province. We believe the photoelectric astrolabe can be used to predict strong EQs and the anomalous ATLR are a potential EQ precursor.  相似文献   

11.
Some anomalous TV receptions in India on band I have been interpreted as being propagated viaF-layer artificially modified by high power broadcast transmitters. In this paper, the possibility of VHF communication by artificially modifiedE-layer is discussed. The presented theoretical analysis shows that high-power broadcast trasmitters can produce substantial changes in temperature and ionisation in theE-layer. The rate of energy transfer from the wave to the medium particles has also been computed. Model calculations are made for a transmitter located near Calcutta. The possibility of the extra-ionisation producing field-aligned structures to support VHF communication is discussed.  相似文献   

12.
It is widely known that very low frequency/low frequency (VLF/LF) radiation has been recorded prior to large earthquakes in several seismically active countries of the world. The networks employed to detect this radiation consist of stationary transmitters and receivers. However, there are reported cases of existing networks being unable to detect any electromagnetic radiation prior to large earthquakes. In this study, we determined the optimal arrangement of a mobile VLF/LF electromagnetic radiation network to ensure the detection of an upcoming earthquake precursor. We consi-dered the possible arrangements of the VLF/LF mobile network based on certain physical considerations, and deve-loped a relatively simple arrangement that is completely different from the existing stationary networks. The suggested design will significantly increase the number of detected/predicted earthquakes by using the relevant electromagnetic radiation receivers strategically placed in regions of increased tectonic and seismic activity.  相似文献   

13.
本文研究了景泰地震台记录到的几种异常地震波形的形态特征及随时间分布特征,采用测震学的方法和数理统计的方法,对各个阶段的异常波形出现的数量、类型和振幅进行了定量分析,发现在1990年10月20日景泰6.2级地震前,异常波形数量明显地呈平静一密集交替出现的现象;临震前各种异常波形的数量增多,振幅增大,异常持续时间增长,震后异常波形很快衰减并消失.与其他前兆对比,可以认为异常波形的出现可能与景泰地震的孕育过程有关,根据该类波形的变化特征有可能对地震作出预报.  相似文献   

14.
There have been evidences of the presence of atmospheric disturbances associated with earthquakes, as based on the reception of over-horizon VHF signals. In this paper we propose a generation mechanism of such atmospheric perturbation based on the changes in geochemical quantities associated with earthquakes.  相似文献   

15.
Multi-fractal analysis under the self-organized criticality (SOC) hypothesis is performed for the VHF electromagnetic noises observed before an earthquake. A rather strong (M=7.2) earthquake took place in the off-sea of Sendai, and we have utilized the corresponding VHF noise (at 49.5 MHz) data at several stations in the Tohoku area. Among the three observing stations used for analysis, the VHF data only at one station (Kunimi) have exhibited significant precursors; that is, a significant increase in multi-fractal complexity at the last stage of the rupture. The use of fractal analysis enables to sort out the lithospheric effect following the SOC, among the few possible noise sources at VHF. The change observed only at this station might be related with the geological structure around this station because there are fault regions around the station.  相似文献   

16.
On October 12, 2013, an earthquake with Mw = 6.5 occurred in the southern Hellenic Arc, approximately 20 km off the west coast of Crete. The main shock, the focal depth of which is on the order of 40 km, was followed by aftershocks felt in the nearby cities and villages, although the aftershock sequence was poor. The epicentre was located at approximately 60 km from a radio receiver in Crete (CRE), which belongs to the European VLF/LF Radio Network. Several days before the earthquake, a clear disturbance occurred in one of the ten radio signals that the CRE receiver sampled. The disturbance, which can be considered an anomaly, appeared in the 216 kHz radio signal radiated by the Radio Monte Carlo (MCO) transmitter. The radio path MCO-CRE crossed directly over the epicentre area of the aforementioned earthquake. In this work, we present a detailed analysis of the MCO signal anomaly using spectral tools. We also investigate the behaviour of other radio signals sampled by the CRE receiver and consider other possible causes of disturbances on the MCO radio signal. We conclude that the disturbance in the MCO radio signal is a convincingly possible precursor of the earthquake in Crete. Emission of electromagnetic waves with a frequency band that includes 216 kHz from the focal zone of the earthquake can provide a satisfactory explanation of the radio anomaly.  相似文献   

17.
Over the last few decades, very low frequency electromagnetics has been widely and successfully applied in mineral exploration and groundwater exploration. Many radio transmitters with strong signal‐to‐noise ratios are scattered in the very low frequency band and low frequency band. Based on experiences gained from ground measurements with the radio‐magnetotelluric technique operating in the frequency interval 1–250 kHz, broadband magnetometers have been used to cover both very low frequency (3–30 kHz) and low frequency (30–300 kHz) bands to increase the resolution of the near‐surface structure. The metallic aircraft as a conductive body will distort the magnetic signal to some extent, and thus it is important to investigate aircraft interference on the electromagnetic signal. We studied noise caused by rotation of an aircraft and the aircraft itself as a metallic conductive body with three methods: 3D wave polarization, determination of transmitter direction and full tipper estimation. Both very low frequency and low frequency bands were investigated. The results show that the magnetic field is independent of the aircraft at low frequencies in the very low frequency band and part of the low frequency band (below 100 kHz). At high frequencies (above 100 kHz), the signals are more greatly influenced by the aircraft, and the wave polarization directions are more scattered, as observed when the aircraft turned. Some aircraft generated noise mixed with radio transmitter signals, detected as ‘dummy’ signals by the 3D wave polarization method. The estimated scalar magnetic transfer functions are dependent on the aircraft flight directions at high frequencies, because of aircraft interference. The aircraft eigenresponse in the transfer functions (tippers) between vertical and horizontal magnetic field components was compensated for in the real part of the estimated tippers, but some unknown effect was still observed in the imaginary parts.  相似文献   

18.
The purpose of the paper is to try to find ULF electromagnetic precursors to the 2011 Tohoku earthquake (EQ), on the basis of extensive investigation of radiations in vertical component of the magnetic field or with a large ratio of the vertical to full horizontal component. Nighttime records have been analyzed of three Japanese fluxgate magnetometers located in a distance from 300 to 1300 km from the epicenter of the main shock, and the frequency range from 10 to 150 mHz was used for the analysis. We have applied wavelet analyses to improve the detection of pulsed signals. All obtained scalograms have been averaged over the nighttime interval from 01 h to 05 h JST and flattened by means of multiplication by square of frequency. The sequence of spectra thus obtained has been compared with the evolution of seismicity, which has resulted in that the radiation in the vertical component has been detected. It exhibits seasonal variations with winter maxima, but it increases further by approaching the moment of the EQ and decreases after that. This radiation seems to be correlated with atmospheric parameters – air humidity, temperature, vapor pressure and rainfall. So, we consider that this radiation cannot be caused by subsurface sources, but its possible sources can be atmospheric discharges. The evolution of this phenomenon can be explained by a seasonal variation of atmospheric parameters and also its variations under the influence of injection of gas from the focal zone of a forthcoming EQ.  相似文献   

19.
TimespaceevolutioncharacteristicsofabruptvariationofwavevelocityratiointheseismogenicprocesofrecentstrongearthquakesinYunna...  相似文献   

20.
叙述了遥测地震台网联网中使用的有线、无线电VHF和UHF地震信号及数字数据的传递技术原理及其方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号