首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
地磁暴的行星际源研究是了解及预报地磁暴的关键因素之一.本文研究了2007-2012年间的所有Dstmin ≤-50 nT的中等以上地磁暴,建立了这些地磁暴及其行星际源的列表.在这6年中,共发生了51次Dstmin≤-50 nT的中等以上地磁暴,其中9次为Dstmin≤-100 nT的强地磁暴事件.对比上一活动周相同时间段发现,在这段太阳活动极低的时间,地磁暴的数目显著减少.对这些地磁暴行星际源的分析表明,65%的中等以上地磁暴由与日冕物质抛射相关的行星际结构引起,31%的地磁暴由共转相互作用区引起,这与以前的结果一致.特别的,在这个太阳活动极低时期内,共转相互作用区没有引起Dstmin≤-100 nT的强地磁暴,同时,日冕物质抛射相关结构也没有引起Dstmin≤-200 nT的超强地磁暴.以上结果表明极低太阳活动同时导致了共转相互作用区和日冕物质抛射地磁效应的减弱.进一步,分析不同太阳活动期间地磁暴的行星际源发现:在太阳活动低年(2007-2009年),共转相互作用区是引起地磁暴的主要原因; 而在太阳活动上升期和高年(2010-2013年),大部分(75%,30/40)的中等以上地磁暴均由日冕物质抛射相关结构引起.  相似文献   

2.
利用物探方法准确高效地探测输电线路下方采空区的位置和范围对电网安全、稳定地运行具有十分重要的意义.根据采空区的地球物理性质,常使用电阻率法、电磁法、地震法等对其进行探测,但是,由于工区的干扰以及物探资料解释的多解性,单一的探测方法常常难以取得理想的效果.本文综合利用电测深法和浅层地震反射方法对高压架空线路下方采空区进行...  相似文献   

3.
上海佘山地磁台位于中纬度地区,拥有逾百年的连续地磁场观测资料,非常有利于研究地磁活动的周期规律.本文利用该台站1908至2007年的100年磁暴记录,通过时序叠加、傅里叶分析和小波分析研究了磁暴的周期规律.结果表明:强磁暴具有显著的11年、22年和季节变化;弱中等磁暴没有明显的11年周期,并且季节变化的幅度较小.奇/偶太阳活动周相比,强磁暴的季节变化存在一定的差异,低年季节变化不明显,高年季节变化显著,并且偶数周的变化相对复杂.  相似文献   

4.
Great magnetic storms (geomagnetic index C9 is ≥8 for St. Petersburg, which can correspond to Kp ≥ 8 or Dst < ?200 nT), registered from 1841 to 1870 at the St. Petersburg, Yekaterinburg, Barnaul, Nerchinsk, Sitka, and Beijing (at the Russian embassy) observatories are analyzed. A catalog of intensive magnetic storms during this period, which includes solar cycles 9–11, has been compiled. The statistical characteristics of great magnetic storms during this historical period have been obtained. These results indicate that high solar activity played a decisive role in the generation of very intense magnetic storms during the considered period. These storms are characterized by only one peak in a solar cycle, which was registered in the years of the cycle minimum (or slightly earlier): the number of great geomagnetic storms near the solar activity maximum was twice as large as the number of such storms during less active periods. A maximum in September–October and an additional maximum in February are observed in the annual distribution of storms. In addition, the storm intensity inversely depends on the storm duration.  相似文献   

5.
We perform spectral analysis of records of meteorological (temperature, humidity, pressure of the atmosphere) and electrical (strength of quasi-static electric field and electric conductivity of air) parameters observed simultaneously at the Paratunka observatory during the solar events of October 21–31, 2003. Also, we use simultaneous records of X-ray fluxes of solar radiation, galactic cosmic rays, and the horizontal component of the geomagnetic field. We show that the power spectra of the meteorological parameters under fine weather conditions involve oscillations with a period of thermal tidal waves (T ~ 12 and 24 h) caused by the influx of thermal radiation of the Sun. During strong solar flares and geomagnetic storm of October 29–31 with a prevailing component of T ~ 24 h, their spectra involve an additional component of T ~ 48 h (the period of planetary-scale waves). With the development of solar and geomagnetic activities, the power spectra of atmospheric electric conductivity and electric field stress involve components of both thermal tidal and planetary-scale waves, which vary highly by intensity. In the power spectra of galactic cosmic rays accompanying the strong solar flares, components with T ~ 48 h were dominant with the appearance of additional (weaker by intensity) components with T ~ 24 h. The simultaneous amplification of components with T ~ 48 h in the power spectra of electric conductivity and electric field strength provides evidence of the fact that the lower troposphere is mainly ionized by galactic cosmic rays during strong solar flares and geomagnetic storms. The specified oscillation period with T ~ 48 h in their spectra, as well as in the spectra of X-ray radiation of the sun, is apparently caused by the dynamics of solar and geomagnetic activities with this time scale.  相似文献   

6.
7.
地磁秒采样仪器观测过程中,易受各种环境干扰造成数据异常,如磁暴、高压直流输电、人为干扰、仪器故障等,不易被发现并识别,若不能及时处理,将会造成观测数据质量下降。若诸多干扰与磁扰叠加,将更不易识别,导致数据的错误处理。为了提高观测质量,利用现有编程技术,开发地磁秒采样数据智能分析系统软件,实现对地磁观测仪器工作状态、各种干扰、磁暴等现象的实时监控和分析,及时发现异常并报警,同时利用多台数据对比智能分析软件,对复杂干扰和高压直流输电干扰进行自动识别,并数据曲线中标示干扰位置,提高数据资料处理的准确性和有效性。  相似文献   

8.
In biology, circadian rhythms with a period of one cycle in 20–28 h are known to be ubiquitous and partly endogenous. Rhythms with a frequency lower than one cycle per day are called ‘infradian rhythms’. Among them are components with one cycle in about 3.5, 7, 14 and 28 days, the multiseptans, which, like the circadians, must be regarded as a general characteristic of life: they characterize unicells as well as much more differentiated organisms. We hypothesize that heliogeophysical factors other than the solar visible light, held responsible for the evolution of circadian periodicity, underlie the infradian rhythms of biosystems. The periodicities in the solar wind and variations in the interplanetary magnetic field (IMF) which are associated with the solar rotation are very similar in length to the biological periodicities. We investigate the temporal relations of variations in solar activity and in biological systems to test associations between events in the IMF, in geomagnetic disturbance, in myocardial infarction and in physiology. By cross-spectral analysis, we also find relations at certain frequencies between changes in human physiology on the one hand, and (1) the vertical component of the induction vector of the IMF, Bz, and (2) a global index of geomagnetic disturbance, Kp, on the other hand. We wish to stimulate interest in these periodicities of both biological systems and geophysical endpoints among physicists and biologists alike, so that problems relevant to clinicians and other biologists, including evolutionists, are eventually solved by their cooperation with the geophysical community.  相似文献   

9.
对比分析1957--2008年间Dst≤-100nT的强磁暴数与太阳黑子数的变化趋势,发现太阳黑子数和Dst≤-100nT的强磁暴数的变化趋势有很好的一致性。进一步统计强磁暴在太阳周不同阶段的分布后发现,同一太阳周内60%以上的强磁暴出现在下降年,但从太阳周各个阶段的平均磁暴年发生率来看,强磁暴平均年发生率最高的年份仍然是太阳活动极大年。  相似文献   

10.
The effects of the geomagnetic storms of November 8 and 10, 2004, in variations in the strength and power spectra of the electric field in the near-Earth’s atmosphere in Kamchatka were studied, together with the meteorological and geophysical phenomena observed simultaneously. A sequence of strong solar flares was shown to cause an anomalous increase in air temperature and humidity. This resulted in the excitation of anomalously strong thunderstorm processes in the atmosphere during the storm of November 8 and made it impossible to distinguish the effects associated with cosmic rays on this background. During the storm of November 10, on the background of weak variations in meteorological parameters, an increase in the strength and intensity of power spectra of the electric field on the day before the storm of November 10 was detected; it was followed by an attenuation of these parameters on the date of the storm. These effects were supposed to be associated with the action of cosmic rays on currents of the global electric circuit. It was shown that the influence of the Forbush effect of galactic cosmic rays in the power spectrum of the electric field first of all shows as the amplification of the component with the period T ~ 48 h; in variations in humidity, the effect shows as the amplification of the component with T ~ 24 h. Cause-and-effect relationships between variations in the electric field strength and the horizontal component of the geomagnetic field were shown to be absent both under the conditions of “fair weather” and during the storm of November 10. A diurnal negative-difference atmospheric pressure was detected on the second day after the geomagnetic storms of November 8 and 10.  相似文献   

11.
The effect of the 11-year solar cycle on the response of the stratospheric geopotential height and temperature fields at 10 and 30 hPa in winter to solar activity oscillations with periods related to the period of the Sun’s rotation (27.2 days) is discussed, applying methods of statistical spectral analysis to daily data for the period from 1965 to 1996. Atmospheric responses for three periodicities — 27.2 days (period of the Sun’s rotation), 25.3 days (periodicity caused by the modulation of the 27.2 days oscillation by annual atmospheric variation), and 54.4 days (doubled period of the solar rotation) — are studied. A significant effect of the 11-year solar cycle on the atmospheric response to the 27.2 days solar periodicity has not been found. We explain it by a frequency shift of the response from the 27.2 days to the 25.3 days periodicity via amplitude modulation. For the 25.3 days oscillation, prominent differences between the maximum and minimum of the 11-year solar cycle have been found in the coherence between the 10.7 cm solar radio flux and the height/temperature fields: the relationships are stronger at solar maximum than at the minimum of the 11-year cycle. The same differences, but to a greater extent, are revealed for the oscillation with a period of 54.4 days. Coherence and amplitude estimates for this doubled solar rotation periodicity exhibit strong differences between extrema of the 11-year solar cycle. Phase estimates also demonstrate a clear difference between high and low solar activity: on the average, the delay of the atmospheric response after the solar signal is smaller at solar maximum than at solar minimum. Thus, we conclude that the mechanism of the influence of the 11-year solar cycle on the winter middle stratosphere can include both a direct effect of the frequency corresponding to the doubled solar rotation periodicity and an indirect effect of modulation of the intensity of the interaction between the solar 27.2 days oscillation and seasonal atmospheric variations.  相似文献   

12.
在向家坝上海±800 kV特高压直流输电线路2010年6月全电压全功率带电调试期间,进行多测点同步地磁观测试验.结果表明,只要直流线路在极导线上或大地里存在电流,就会对地磁观测产生影响,引起地磁垂直分量Z和水平分量H产生台阶型变化,且垂直分量Z影响更大.  相似文献   

13.
随着国家电网建设规模的不断扩大,越来越多的高压直流输电工程陆续投入使用,对线路两侧的地磁观测资料造成了不可避免的影响。目前有5条高压直流输电线路对甘肃地磁台站的观测造成一定程度的干扰。通过单台及多台观测资料对比的方法,识别高压直流输电线对地磁观测资料的影响,研究干扰特征,对正确预处理观测资料有重要的意义。结果表明:①高压直流输电对地磁Z分量影响明显,D、H分量不明显;②对地磁观测影响产生的形态主要表现为方波型、缓变型、梯形型、复合型等。通过总结高压直流输电对地磁观测资料影响特征及形态,有助于正确预处理观测资料及为今后实现计算机自动化处理提供依据。  相似文献   

14.
The solar wind–magnetosphere coupled system is characterized by dynamical processes. Recent works have shown that nonlinear couplings and turbulence might play a key role in the study of solar wind–magnetosphere interaction processes.Within this framework, this study presents a statistical analysis aimed to investigate the relationship between solar wind MHD turbulence and geomagnetic activity at high and low latitudes as measured by the AE and SYM-H indices, respectively. This analysis has been performed for different phases of solar cycle 23. The state of turbulence was characterized by means of 2-D histograms of the normalized cross-helicity and the normalized residual energy. The geomagnetic response was then studied in relation to those histograms.The results found clearly show that, from a statistical point of view, solar cycle 23 is somewhat peculiar. Indeed, good Alfvénic correlations are found unexpectedly even during solar activity maximum. This fact has implications on the geomagnetic response as well since a statistical relationship is found between Alfvénic fluctuations and auroral activity. Conversely, solar wind turbulence does not seem to play a relevant role in the geomagnetic response at low latitudes.  相似文献   

15.
A study has been carried out to determine the relationship between high energy relativistic (>2 MeV) electron fluence and auroral zone geomagnetic activity for a solar cycle. Data for 1987–1997, spanning Solar Cycle 22, were used in the study. The relativistic electron fluence data were based on fluxes observed by the GOES geosynchronous satellites. The geomagnetic data were the DRX indices derived from a Canadian magnetic observatory located in the auroral zone at Fort Churchill, near the footprint of field lines passing through geostationary satellites. This work, based on data from a solar cycle, confirms earlier findings using limited data from segments of a solar cycle of enhancement in fluence 2–3 days after increases in geomagnetic activity, and shows the cycle dependence of fluence with respect to geomagnetic activity. This study underlines the influence of recurrent coronal holes on fluence level as well as the possible role of Pc5 magnetic pulsations as an electron acceleration mechanism, and highlights the predictability of fluence from ground geomagnetic data. A fluence prediction algorithm can now solely be based on derived expressions relating fluence and DRX. Thus, a simple fluence prediction scheme can easily be implemented to provide a 2–3 day advance warning of space weather conditions hazardous to geosynchronous satellites, since during days of high fluence, the likelihood of internal charging in a satellite is high, with possible discharges that could result in satellite operational anomalies. For verification purpose, daily values of fluence for 1997–2000 and for January 1994 were postcast using the derived expressions. The postcast values were validated, and the results give credence to the fluence prediction scheme.  相似文献   

16.
Geomagnetically induced currents in the Finnish high-voltage power system   总被引:1,自引:0,他引:1  
We consider geomagnetically induced currents (GICs) in power systems from the viewpoint of a geophysicist. Special attention is paid to the Finnish high-voltage power system, in which exact theoretical model calculations together with recordings have been performed for several years. We present several examples of theoretically computed GICs using different geophysical models for estimating the geoelectric field driving GICs. Statistical prediction of GICs is outlined referring to studies made in Finland. We show that a combination of GIC recordings at few sites with theoretical modelling of ionospheric currents and the earth's conductivity, and data of geomagnetic activity makes it possible to derive GIC statistics of the entire power system. Finally, we discuss requirements for a long-range prediction of GICs, which will obviously be a widely-studied topic in future.  相似文献   

17.
Minimum extreme temperature variability from five meteorological stations in the central part of Mexico covering a period from 1920 to 1990 is examined. We found a correlation coefficient (r=0.65) between these temperature records and geomagnetic activity. Furthermore, by performing spectral analysis peaks were obtained with similar periodicities to those found in the sunspot number, the magnetic solar cycle, cosmic ray fluxes and geomagnetic activity; all of these phenomena are modulated by solar activity. Signals with periodicities comparable to those observed in El Niño and the Quasi-Biennial Oscillation were also identified. We conclude that the solar signal is probably present in the minimum extreme temperature record of the central part of Mexico.  相似文献   

18.
A spectral analysis of simultaneous diurnal variations in the E z component of the quasi-static electric field in the near-Earth atmosphere, VLF radio noise, and the horizontal component of the geomagnetic field, observed at Kamchatka in September 1999, has been performed. These geophysical parameters are indirectly used to study wave processes in the near-Earth atmosphere and in the ionospheric D and dynamo regions within the band of periods of internal gravity waves (T = 0.5?3.5 h). The correlation method in the frequency region is used to analyze the interrelation between the wave processes in these atmospheric regions. The power cross-spectra of various pairs of geophysical parameters have been studied depending on meteorological, seismic, and geomagnetic activities. It is shown that the oscillations in the power spectra in the T ~ 1–1.5 h band of periods are caused by the sources of internal gravity waves in the near-Earth atmosphere and by the remote sources above the dynamo region of the ionosphere within the T ~ 1.5–3 h band of periods.  相似文献   

19.
The spectral structure of stratospheric fields (temperature and geopotential) is analyzed in terms of spherical harmonics in an effort to study the long-term behaviour of large-scale circulation patterns, as well as their connections to some extra-terrestrial effects. The daily meteorological data from the Free University Berlin (FUB) cover more or less the period 1976–1996 and are available for stratospheric levels of 50, 30 and 10 hPa. The analysis of the annual cycle of spherical harmonics is introduced, and changes of the principal wave components are compared with the changes in different sets of solar, geomagnetic and global circulation indices. This paper also deals with interannual variability with special emphasis on quasibiennial oscillations (QBO) and El Nino and Southern Oscillations (ENSO). Although this is a rather preliminary study, the decomposition of the stratospheric field into complex spherical harmonics seems to be a powerful technique in investigating and qualifying the response of the global atmospheric system to the changes in solar and geomagnetic activity, and in qualifying the relationships between large-scale circulation patterns and various oscillations such as QBO or ENSO, Using this technique, reasonable strong connections were found between wave numbers and interannual factors, and these connections were tentatively interpreted in terms of statistics. A very high degree of correlation was found for the four-trough shape of the polar vortex.  相似文献   

20.
We analyze 100–150 years-long temperature and precipitation records from 14 meteorological stations in Romania, in connection with long-term trends in solar and geomagnetic activities. The comparison of solar (sunspot number) and geomagnetic (aa index) parameters with the mean air temperature over the Romanian territory, at interdecadal timescales, shows positive correlation coefficients, while the comparison with the mean precipitation shows negative correlation coefficients. The correlation of climatic parameters seems to be stronger for geomagnetic activity than for solar activity. The Romanian temperature series are examined in the context of other European stations and of averages on the European, northern hemisphere, and global scale, respectively. Long-term (interdecadal and centennial) trends and differences between local trends and average trends for larger areas are discussed. The study indicates that solar and geomagnetic activity effects are present on the 22-year Hale cycle timescale. The temperature variation on this timescale lags the solar/geomagnetic ones by 5–9 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号