首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Résumé La formule de base, traduisant une propriété analytique d'une classe très générale de fonctions, est un corollaire du théorème fondamental démontré dans un mémoire précédent, d'après lequel, étant donnés une fonction continue,p(, ,t) des points (, ) d'une surface régulière fermée et du temps et le champ d'un vecteur vitesse de transfert ou d'advection tangent à et ayant des lignes de flux fermées et régulières, il existe un opérateur spatial, linéaire, non singulierA tel que la fonctionA(p+Const.) soit purement advective par rapport a (sans creusement ni comblement). Ce théorème peut être exprimé par l'équation , où est un opérateur spatial, linéaire et non singulier, fonction deA.La détermination de peut être faite, soit en comparant deux formes différentes de la solution générale de l'équation en , soit en utilisant un raisonnement a priori très simple. On arrive ainsi au résultat pour un certain scalaireu(, ).Dans le cas oùp(, ,t) est la perturbation de la pression sur la surface du géoïde l'équation résulte aussi, comme nous l'avons montré dans le mémoire précédent, de notre théorie hydrodynamique des perturbations. On montre ici que la même équation peut encore être déduite de l'équation de continuité associée à la condition d'équilibre quasi statique selon la verticale.Comme applications de la formule de base (solution générale de l'équation enM), on étudie les problèmes suivants: 1o creusement et comblement en général; 2o creusement et comblement des centres et des cols; 3o mouvement des centres et des cols; 4o instabilité d'un champ moyen; 5o propriétés spatiales des champsp(, ,t) et des vecteurs d'advection analytiques.Après une discussion des erreurs de la prévision d'un champp(, ,t) par la formule de base, du fait des erreurs des observations et du fonctionnement du calculateur, on examine quelques particularités du transfert ou advection d'un champf 0(, ) par le vecteur . Enfin, le dernier chapitre du mémoire donne des éclaircissements complémentaires sur la structure du calculateur électronique «Temp» (qui effectue automatiquement les opérations mathématiques de la formule de base) et expose l'état actuel de sa construction.
Summary The basic formula, expressing an analytical property of a very general class of functions, is a corollary of the fundamental theorem, proved in a previous paper, according to which, given a functionp(, ,t) of the points (, ) of a closed regular surface and of the time, and a transfer or advection velocity vector tangent to and having regular closed streamlines, there is a spatial, linear, non singular operatorA such thatA(p+const.) is a purely advective function in respect to (no deepening). This theorem can be expressed by the equation where is a spatial, linear, non singular operator depending onA.The determination of can be attained, either by the comparison of two different forms of the general solution of the -equation, or by a simple a priori reasonning. The conclusion is thus reached that for a certain scalaru(, ).Whenp(, ,t) is the pressure perturbation at sea level, it was shown, in the preceding paper, that the equation can also be derived from our hydrodynamical perturbation theory. We now show that for this particular case, the same equation is also a consequence of the equation of continuity together with the condition of quasi statical vertical equilibrium.The following problems are then analysed by means of the basic formula: 1o deepening and filling in general; 2o deepening and filling of the centres and cols; 3o motion of the centres and cols; 4o instability of a mean field; 5o spatial properties of the analytical fields and advection vectors .The errors in the forecast of a field,p(, ,t) by means of the basic formula, due to the observational and computational errors, are discussed, and some peculiarities of the transfer or advection of a fieldf 0(, ) by are examined. Finally, complementary points are disclosed on the structure of the electronic computer «Temp» which performs automatically the mathematical operations of the basic formula, and a brief report is given of the present state of its construction.
  相似文献   

2.
Summary Seven optimal networks consisting of 4 to 10 stations are compared for a given region, where velocity-depth profiles and the distribution of seismic intensity are known. Assuming that the standard error of arrival time is t =0.05 s and the standard errors of the parameters of velocity-depth profiles are equal to 5% of their values, the average standard errors of the origin time and focus coordinates are estimated. The application of optimum methods to the planning of seismic networks in the Lublin Coal Basin is presented, and maps of standard errors of origin time , depth and epicenter ( xy ) for the case of an optimum network of 6 seismic stations are given.  相似文献   

3.
The Drude law (molecular refraction) for the temperature radiation in a monoatomic model of the Earth's mantle is derived. The considerations are based on the Lorentz electron theory of solids. The characteristic frequency (or eigenfrequency) of independent electron oscillators (in energy units, ) is identified with the band gapE G of a solid. The only assumption is that solid material related to the Earth's mantle has the mean atomic weight A21 g/mole, and its energy gap (E G) is about 9 eV. In this case the value of molecular refraction (in cm3/g) is (n 2–1)/=0.5160.52, where andn are the density and the refractive index at wavelength D=0.5893 m (sodium light), respectively. The average molecular refraction of important silicate and oxide minerals with A21, obtained byAnderson andSchreiber (1965) from laboratory data, is , where denotes the mean arithmetic value calculated from three principal refractive indices of crystal. For the rock-forming minerals with 19A<24 g/mole the new relation was found byAnderson (1975).  相似文献   

4.
A new dissipation model based on memory mechanism   总被引:5,自引:0,他引:5  
Summary The model of dissipation based on memory introduced by Caputo is generalized and checked with experimental dissipation curves of various materials.List of symbols unidimensional stress - unidimensional strain - Q –1 specific dissipation function - c(t) creep compliance - m(t) relaxation modulus - c 0 instantaneous compliance - m equilibrium modulus - (t) creep function - relaxation function - () spectral distribution of retardation times - spectral distribution of relaxation times - c *() complex compliance - m *() complex modulus - tang loss-tangent  相似文献   

5.
Résumé On commence par définir le creusement et le comblement d'une fonctionp(, t) du tempst et des points (, ) d'une surface régulière fermée en se donnant, sur cette surface, un vecteur vitesse d'advection ou de transfert tangent à . Le creusement (ou le comblement) est la variation dep sur les particules fictives se déplaçant constamment et partout à la vitesse , A chaque vecteur et pour un mêmep(, ,t) correspond naturellement une fonction creusementC (, ,t) admissible a priori; mais une condition analytique très générale (l'intégrale du creusement sur toute la surface fermée du champ est nulle à chaque instant), à laquelle satisfont les fonctions de perturbation sur les surfaces géopotentielles, permet de restreindre beaucoup la généralité des vecteurs d'advection admissibles a priori et conduit à des vecteurs de la forme: , oùT est un scalaire régulier, () une fonction régulière de la latitude , le vecteur unitaire des verticales ascendantes etR/2 une constante. Ces vecteurs sont donc une généralisation naturelle des vitesses géostrophiques attachées à tout scalaire régulier. Dans le cas oùp(, ,t) est la perturbation de la pression sur la surface du géoïde, le vecteur d'advection par rapport auquel on doit définir le creusement est précisément une vitesse géostrophique: on a alors ()=sin etT un certain champ bien défini de température moyenne.On déduit ensuite une formule générale de géométrie et de cinématique différentielles reliant la vitesse de déplacement d'un centre ou d'un col d'un champp(, ,t) à son champ de creusementC (, ,t) et au vecteur d'advection correspondant. Cette formule peut être transformée et prend la forme d'une relation générale entre le creusement (ou le comblement) d'un centre ou d'un col et la vitesse de son déplacement, sans que le vecteur d'advection intervienne explicitement. On analyse alors les conséquences de ces formules dans les cas suivants: 1o) perturbations circulaires dans le voisinage du centre; 2o) perturbations ayant, dans le voisinage du centre, un axe de symétrie normal ou tangent à la vitesse du centre; 3o) évolution normale des cyclones tropicaux.Finalement, on examine les relations qui existent entre le creusement ou le comblement d'un champ, le vecteur d'advection et la configuration des iso-lignes du champ dans le voisinage d'un centre.Ces considérations permettent d'expliquer plusieurs propriétés bien connues du comportement des perturbations dans différentes régions.
Summary The deepening and filling (development) of a functionp(, ,t) of the timet and the points (, ) of a regular closed surface is first of all defined, in respect to a given advection or transfer velocity field tangent to , as the variation ofp on any fictitious particle moving constantly and everywhere with the velocity . For a givenp(, ,t) and to any there corresponds a well defined development fieldC (, ,t). All theseC fields are a priori admissible, but a very general analytical condition of the perturbation fields in synoptic meteorology (the integral of the development fieldC (, ,t) on any geopotential surface vanishes at any moment), leads to an important restriction to advection vectors of the form: , whereT is any regular scalar, () any regular function of latitude, the unit vector of the ascending verticals andR/2 a constant. These vectors are a natural generalisation of the geostrophic velocities attached to any regular scalar. Whenp(, ,t) is the pressure perturbation at sea level, its development must be defined in respect to a geostrophic advection vector belonging to the above defined class of vectors with ()=sin andT a well defined mean temperature field.A general formula of the differential geometry and kinematics ofp(, ,t) is then derived, giving the velocity of any centre and col of ap(, ,t) as a function of the advection vector and the corresponding development fieldC (, ,t). This formula can be transformed and takes the form of a general relation between the deepening (and filling) of a centre (or a col) of ap(, ,t) and its displament velocity, the advection vector appearing no more explicitly. A detailed analysis of the consequences of these formulae is then given for the following cases: 1o) circular perturbations in the vicinity of a centre; 2o) perturbations having, in the vicinity of a centre, an axis of symmetry normal or tangent to the velocity of the centre; 3o) normal evolution of the tropical cyclones.Finally, the relations between the developmentC (, ,t) of a fieldp(, ,t), the advection velocity vector and the configuration of the iso-lines in the vicinity of a centre are analysed.These theoretical results give a rational explanation of several well known properties of the behaviour of the perturbations in different geographical regions.


Communication à la 2ème Assemblée de la «Società Italiana di Geofisica e Meteorologia» (Gênes, 23–25 Avril 1954).  相似文献   

6.
Some comparisons between mining-induced and laboratory earthquakes   总被引:3,自引:0,他引:3  
Although laboratory stick-slip friction experiments have long been regarded as analogs to natural crustal earthquakes, the potential use of laboratory results for understanding the earthquake source mechanism has not been fully exploited because of essential difficulties in relating seismographic data to measurements made in the controlled laboratory environment. Mining-induced earthquakes, however, provide a means of calibrating the seismic data in terms of laboratory results because, in contrast to natural earthquakes, the causative forces as well as the hypocentral conditions are known. A comparison of stick-slip friction events in a large granite sample with mining-induced earthquakes in South Africa and Canada indicates both similarities and differences between the two phenomena. The physics of unstable fault slip appears to be largely the same for both types of events. For example, both laboratory and mining-induced earthquakes have very low seismic efficiencies where a is the apparent stress and is the average stress acting on the fault plane to cause slip; nearly all of the energy released by faulting is consumed in overcoming friction. In more detail, the mining-induced earthquakes differ from the laboratory events in the behavior of as a function of seismic momentM 0. Whereas for the laboratory events 0.06 independent ofM 0, depends quite strongly onM 0 for each set of induced earthquakes, with 0.06 serving, apparently, as an upper bound. It seems most likely that this observed scaling difference is due to variations in slip distribution over the fault plane. In the laboratory, a stick-slip event entails homogeneous slip over a fault of fixed area. For each set of induced earthquakes, the fault area appears to be approximately fixed but the slip is inhomogeneous due presumably to barriers (zones of no slip) distributed over the fault plane; at constant , larger events correspond to larger a as a consequence of fewer barriers to slip. If the inequality a / 0.06 has general validity, then measurements of a E a /M 0, where is the modulus of rigidity andE a is the seismically-radiated energy, can be used to infer the absolute level of deviatoric stress at the hypocenter.  相似文献   

7.
Summary If the condition R(A)=k(n), whereA is the design matrix of the type n × k and k the number of parameters to be determined, is not satisfied, or if the covariance matrixH is singular, it is possible to determine the adjusted value of the unbiased estimable function of the parameters f(), its dispersion D( (x)) and 2 as the unbiased estimate of the value of 2 by means of an arbitrary g-inversion of the matrix . The matrix , because of its remarkable properties, is called the Pandora Box matrix. The paper gives the proofs of these properties and the manner in which they can be employed in the calculus of observations.  相似文献   

8.
Piest  Jürgen 《Ocean Dynamics》1963,16(1):9-14
Zusammenfassung Als Zusammenhang zwischen der kennzeichnenden Wellenperiode und der durchschnittlichen Periode im Seegang wird die Formel angesetzt. Mit Hilfe empirischer Unterlagen wird nachgewiesen, daßc eine Funktion des von D. E. Cartwright und M. S. Longuet-Higgins [1956] eingeführten Spektralparameters ist. Es wird eine vorläufige quantitative Beziehung zwischenc und abgeleitet.
Empirical investigations of the relation between the mean and the significant wave period in the sea
Summary It is supposed that the formula represents the relation between the significant wave period and the mean period in the sea. With the aid of empirical data it is demonstrated thatc is a function of the spectral parameter introduced by D. E. Cartwright and M. S. Longuet-Higgins [1956]. A preliminary quantitative relation betweenc and is derived.

Etudes empiriques de la relation entre la période moyenne et la période significative des vagues dans la houle
Résumé On suppose que la formule représente la relation entre la période significative des vagues et la période moyenne dans la houle. A l'aide des données empiriques on montre quec est une fonction du paramètre spectral , introduit par D. E. Cartwright et M. S. Longuet-Higgins [1956]. Une relation quantitative préliminaire entrec et est dérivée.

  相似文献   

9.
A relatively simple indentation technique for the rapid measurement of fracture surface energy, , of small samples is described. The reliability of this technique is assessed by testing soda-lime glass for which there are good independent fracture mechanics determinations of fracture surface energy. The indentation technique gives a value for of 4.33 J m–2 which compares favourably with the accepted value of 3.8 J m–2. Fracture surface energies of the {010} and {001} cleavage planes of single crystal olivine (modal composition Fo88Fa12) are then determined and compared with theoretical estimates of the thermodynamic surface energy, , calculated from atomistic parameters ( is equal to in the absence of dissipative processes during crack extension). The experimental values for {010} and {001} are respectively 0.98 J m–2 and 1.26 J m–2. The calculated values of {010} and {001} are respectively in the range from 0.37 J m–2 to 8.63 J m–2 and 12.06 J m–2. The particular advantages of the indentation technique for the study of the fracture surface energies of geological materials are outlined.  相似文献   

10.
The horizontal and vertical derivative profiles of magnetic anomalies of dykes show some interesting properties. The points of zero derivatives and the points where the derivatives are equal are conjugate point pairs. A method of interpretation of dyke anomalies is suggested, which utilizes the distances between these points.Notation F Magnetic anomaly in total intensity - Z Depth to top of the dyke - 2T Width of the dyke - Geological dip of the dyke - I Effective intensity of magnetisation in the plane of profile - Dip of effective magnetisation vector in the plane of profile - Strike angle of the dyke - i Magnetic dip - Q – - Q f –+arctan (sin coti) - I f   相似文献   

11.
Fermat's variational principle states that the signal propagates from point S to R along a curve which renders Fermat's functional (l) stationary. Fermat's functional (l) depends on curves l which connect points S and R, and represents the travel times from S to R along l. In seismology, it is mostly expressed by the integral (l) = (x k,x k ')du, taken along curve l, where (x k,x k ') is the relevant Lagrangian, x k are coordinates, u is a parameter used to specify the position of points along l, and x k ' = dx k÷du. If Lagrangian (x k,x k ') is a homogeneous function of the first degree in x k ', Fermat's principle is valid for arbitrary monotonic parameter u. We than speak of the first-degree Lagrangian (1)(x k,x k '). It is shown that the conventional Legendre transform cannot be applied to the first-degree Lagrangian (1)(x k,x k ') to derive the relevant Hamiltonian (1)(x k,p k), and Hamiltonian ray equations. The reason is that the Hessian determinant of the transform vanishes identically for first-degree Lagrangians (1)(x k,x k '). The Lagrangians must be modified so that the Hessian determinant is different from zero. A modification to overcome this difficulty is proposed in this article, and is based on second-degree Lagrangians (2). Parameter u along the curves is taken to correspond to travel time , and the second-degree Lagrangian (2)(x k, k ) is then introduced by the relation (2)(x k, k ) = [(1)(x k, k )]2, with k = dx k÷d. The second-degree Lagrangian (2)(x k, k ) yields the same Euler/Lagrange equations for rays as the first-degree Lagrangian (1)(x k, k ). The relevant Hessian determinant, however, does not vanish identically. Consequently, the Legendre transform can then be used to compute Hamiltonian (2)(x k,p k) from Lagrangian (2)(x k, k ), and vice versa, and the Hamiltonian canonical equations can be derived from the Euler-Lagrange equations. Both (2)(x k, k ) and (2)(x k,p k) can be expressed in terms of the wave propagation metric tensor g ij(x k, k ), which depends not only on position x k, but also on the direction of vector k . It is defined in a Finsler space, in which the distance is measured by the travel time. It is shown that the standard form of the Hamiltonian, derived from the elastodynamic equation and representing the eikonal equation, which has been broadly used in the seismic ray method, corresponds to the second-degree Lagrangian (2)(x k, k ), not to the first-degree Lagrangian (1)(x k, k ). It is also shown that relations (2)(x k, k ) = ; and (2)(x k,p k) = are valid at any point of the ray and that they represent the group velocity surface and the slowness surface, respectively. All procedures and derived equations are valid for general anisotropic inhomogeneous media, and for general curvilinear coordinates x i. To make certain procedures and equations more transparent and objective, the simpler cases of isotropic and ellipsoidally anisotropic media are briefly discussed as special cases.  相似文献   

12.
A generalized turbulent diffusion model has been developed which evaluates the time rate of growth of a simulated cloud of particles released into a turbulent (i.e. diffusive) atmosphere. The general model, in the form of second-order differential equations, computes the three-dimensional size of the cloud as a function of time. Parameters which influence the cloud growth, and which are accounted for in the model equations, are: (1) length scales and velocity magnitudes of the diffusive field, (2) rate of viscous dissipation , (3) vertical stability as characterized by the relative adiabatic lapse rate (1/T)(g/C p +T/z), and (4) vertical shear in the mean horizontal winds , and , for a given height and of spatial extent equal to that of the diffusing cloud. Sample results for near ground level and for upper stratospheric heights are given. For the atmospheric boundary layer case, the diffusive field is microscale turbulence. In the upper stratospheric case it is considered to be a field of highly interactive and dispersive gravity waves.  相似文献   

13.
The magnetoconvection problem under the magnetostrophic approximation is investigated as the nonlinear regime is entered. The model consists of a fluid filled sphere, internally heated, and rapidly rotating in the presence of a prescribed, axisymmetric, toroidal magnetic field. For simplicity only a dipole parity and a single azimuthal wavenumber (m = 2) is considered here. The leading order nonlinearity at small amplitude is the geostrophic flow U g which is introduced to the previously linear model (Walker and Barenghi, 1997a, b). Walker and Barenghi (1997c) considered parameter space above critical and found that U g acts as an equilibration mechanism for moderately supercritical solutions. However, for solutions well above critical a Taylor state is approached and the system can no longer equilibrate. More importantly though, in the context of this paper, is that subcritical solutions were found. Here subcritical solutions are considered in more detail. It was found that, at is strongly dependent on . ( is the critical value of the modified Rayleigh number is a measure of the maximum amplitude of the generated geostrophic flow while , the Elsasser number, defines the strength of the prescribed toroidal field.) Rm at proves to be the key measure in determining how far into the subcritical regime the system can advance.  相似文献   

14.
Summary The aim of this paper is to study a problem in which the intermediate layer is non-homogeneous, the rigidity varying exponentially with depth i.e. 2=2 v 0 2 e 2pz , the density being constant, velocity varies also exponentially with depth according to the law =v 0 e pz . The variability ofKH with the change of phase velocity is shown graphically.  相似文献   

15.
Summary This paper studies the propagation of Surface Waves on a spherically aeolotropic shell surrounded by vacuum. The elastic constantsc ij and density of the material of the shell are assumed to be of the form ij r l and o r m respectively, where ij o are constants andl, m are any integers.  相似文献   

16.
Riassunto Si suppone la Terra avvolta da un velo di un fluido perfetto incomprimibile messo in rotazione da un vortice doppio puntiforme. Si calcola l'energia cinetica totale della Terra e del fluido in funzione degli angoli di Eulero , , , che esprimono il moto della Terra rispetto a una terna inerziale, e degli angoli 0, 0 esprimenti il moto del vortice rispetto alla Terra. Si determinano i predetti angoli in funzione del tempo mediante le equazioni di Lagrange; risulta che il moto del vortice è caratterizzato da 0= const., e che la sua influenza sulla polodia è trascurabile.
Summary Supposing the Earth sorrounded by a veil of an incompressible perfect fluid rotationally moved by a point shaped double vortex, the Author calculates the total kinetic energy of the system as a function of the Eulerian angles , , which expres the Earth motion referred to an inertial tern, and of the angles 0, 0 for the vortex motion referred to the Earth. He determines the above said angles as temporal functions by means of the equations of Lagrange. It results that the vortex motion is determined by 0= const., and that its influence on the rate of rotation of the Earth is negligeable.


Comunicazione presentata alla 2a. Assemblea annuale della «Società Italiana di Geofisica e Meteorologia» (Genova, 23–25 Aprile 1954).  相似文献   

17.
We estimate (/T) P of the lower mantle at seismic frequencies using two distinct approaches by combining ambient laboratory measurements on lower mantle minerals with seismic data. In the first approach, an upper bound is estimated for |(/T) P | by comparing the shear modulus () profile of PREM with laboratory room-temperature data of extrapolated to high pressures. The second approach employs a seismic tomography constraint ( lnV S / lnV P ) P =1.8–2, which directly relates (/T) P with (K S /T) P . An average (K S /T) P can be obtained by comparing the well-established room-temperature compression data for lower mantle minerals with theK S profile of PREM along several possible adiabats. Both (K S /T) and (/T) depend on silicon content [or (Mg+Fe)/Sil of the model. For various compositions, the two approaches predict rather distinct (/T) P vs. (K S /T) P curves, which intersect at a composition similar to pyrolite with (/T) P =–0.02 to –0.035 and (K S /T) P =–0.015 to –0.020 GPa/K. The pure perovskite model, on the other hand, yields grossly inconsistent results using the two approaches. We conclude that both vertical and lateral variations in seismic velocities are consistent with variation due to pressure, temperature, and phase transformations of a uniform composition. Additional physical properties of a pyrolite lower mantle are further predicted. Lateral temperature variations are predicted to be about 100–250 K, and the ratio of ( lnp/ lnV S ) P around 0.13 and 0.26. All of these parameters increase slightly with depth if the ratio of ( lnV S / lnV P ) P remains constant throughout the lower mantle. These predicted values are in excellent agreement with geodynamic analyses, in which the ratios ( ln / lnV S ) P and ( / lnV S ) P are free parameters arbitrarily adjusted to fit the tomography and geoid data.  相似文献   

18.
An electrically conducting viscous fluid-filled spherical shell is permeated by an axisymmetric strong potential magnetic field with large Elssaser number 2 1. We describe analytically the steady flow driven by a slightly faster rotation of the conducting inner boundary of the shell. The main flow is controlled by Ekman-Hartmann boundary layers with a small thickness /, where 2 is the Ekman number. Asymptotics based on small –1 1 reveal the nature of a free shear layer O((/)1/2) and a super-rotation that allows a part of the fluid to rotate faster than the inner sphere. The free shear is following an imposed field line that is tangent to the inner or outer sphere. Meridional flux is concentrated in the shear and boundary layers. Fluid tends to rotate with the inner sphere and to expel azimuthal magnetic field from an -region restricted by the free shear in the spherical shell. For an imposed axial uniform magnetic field, this -region is outside the cylinder tangent to the inner sphere and rotates with the outer sphere. Weak differential rotation O(/) is inside the cylinder, while almost all difference in rotation rates between spheres is accommodated in the thin O((/)1/2) free shear. For an imposed dipole magnet, the region has a shape of a lobe touching the outer equator. Inside a super-rotation exists; this is the common case for such when the source of the imposed field is inside.  相似文献   

19.
Summary The geopotential scale factor R 0 =GM/W 0 has been determined on the basis of satellite altimetry as R 0=(6 363 672·5±0·3) m and/or the geopotential value on the geoid W 0 =(62 636 256·5±3) m 2 s –2 . It has been stated that R 0 and/or W 0 is independent of the tidal distortion of surface W=W 0 due to the zero frequency tide.
¶rt;a nmu amumuu u ama amnmuaa R 0 =GM/W 0 =(6 363 672,5±0,3) m u/uu aunmuaa a nmuu¶rt;a W 0 =(62 636 256,5±3) m2 s–2. m, m R 0 u/uu W 0 auum m nm amu a a nuu ¶rt;au nmu W=W 0 .
  相似文献   

20.
Summary An explicit solution is obtained for the system of equations describing the spheroidal motion in a homogeneous, isotropic, gravitating, elastic medium possessing spherical symmetry. This solution is used to derive the Green's dyad for a homogeneous gravitating sphere. The Green's dyad is then employed to obtain the displacement field induced by tangential and tensile dislocations of arbitrary orientation and depth within the sphere.Notation G Gravitational constant - a Radius of the earth - A o =4/3 G - Perturbation of the gravitational potential - Circular frequency - V p ,V s Compressional and shear wave velocities - k p =/V p - k s =/V s - k p [(2.8)] - , [(2.17)] - f l + Spherical Bessel function of the first kind - f l Spherical Hankel function of the second kind - x =r - y =r - x o =r o - y o =ro - x =r k s - y =r k p - x o =r o k s - y o =r o k p - =a - =a - [(5.17)] - m, l   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号