首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
N. Shuto 《Natural Hazards》1991,4(2-3):171-191
Hindcasting of a tsunami by numerical simulations is a process of lengthy and complicated deductions, knowing only the final results such as run-up heights and tide records, both of which are possibly biased due to an insufficient number of records and due to hydraulic and mechanical limitation of tide gauges. There are many sources of error. The initial profile, determined with seismic data, can even be different from the actual tsunami profile. The numerical scheme introduces errors. Nonlinearity near and on land requires an appropriate selection of equations. Taking these facts into account, it should be noted that numerical simulations produce satisfactory information for practical use, because the final error is usually within 15% as far as the maximum run-up height is concerned.The state-of-the-art of tsunami numerical simulations is critically summarized from generation to run-up. Problems in the near future are also stated. Fruitful application of computer graphics is suggested.  相似文献   

2.
钻探工程中实时掌握钻头钻进过程且能实时诊断地层是提高钻探效率的关键因素之一。基于钻头在不同介质层激发的振动信号特点,提出互相关-小波变换分析法,将互相关用于提取预判层或目标层的时延信息,并利用小波变换对互相关域进行多分辨率分析,提取凸显成分时频特征,据此快速识别地层。仿真分析和试验均表明:互相关-小波变换分析能准确地表征时延信息和时频特征,能实时地预测钻头钻进情况并获取地层信息,具有很强的实时性和准确率,在提高现场钻探效率中有一定的实用价值。   相似文献   

3.
The minimal set of conditions is found under which a primitive genetic code can be formed in the chemical world in which polypeptides and polynucleotides can be produced. Molecular modeling demonstrates that multiple cycles of synthesis and thermal destruction of biopolymers result in spontaneous complication of their structure. This evolutionary progressive complication of polypeptides and polynucleotides coding them results in certain specific functions of the polypeptides, which are similar to properties of enzymes. Computer simulations confirm the internal logical consistency of the simplified scenario suggested for the origin of a genetic code as a process of transferring information on the structure of biomolecules to the historical future, in spite of the continuous thermal decomposition of these structures.  相似文献   

4.
It is well accepted that there is a transition of failure mode from ductile to brittle with increasing depth of cut during rock cutting process. Rock failure modes affect cutting efficiency, and knowledge of the failure transition is essential to the determination of optimum cutting parameters. The critical transition depth can be linked with rock properties. In this study, an attempt was made to model rock cutting process and to check the dependence of the critical failure mode transition depth on the brittleness of rock. For this purpose, dimensional analysis was first performed to establish the correlations between rock macro‐properties and micro‐parameters for discrete element simulations. Following the specimen calibration procedure, two types of synthetic rocks having approximately the same uniaxial compressive strength were generated as the synthetic specimens for simulating the rock cutting process. The first specimen was created using conventional model construction method with identical bond strengths between particles, giving rise to undesirably high indirect tensile strength. The second specimen was created using a proposed clustering algorithm such that the ratio between the tensile and compressive strength matches reasonably well with that of real rocks. The results of rock cutting simulations demonstrate that failure mode transition took place in both models, but for the clustered model the transition emerged at a shallower cutting depth. A further exploration was made to derive the critical depth for this transition based on the simulations performed on the clustered models. The derived relationship indicates that the critical transition depth decreases as strength ratio or brittleness of the rock increases. This provides a very useful tool for predicting the critical depth which can be used to help cutting tool design and cutting parameter optimisations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
A preliminary problem to solve in the set-up of a mathematical model simulating a geophysical process is the choice of a suitable discrete scheme to approximate the governing differential equations. This paper presents a simple technique to test finite difference schemes used in the modeling of geophysical processes occurring in a geological structure. This technique consists in generating analytical solutions similar to the ones characterizing a geophysical process, given general information on some relevant parameters. Useful information for the choice of the discrete scheme to employ in the mathematical model simulating the original geophysical process can be obtained from the comparison between the analytical solution and the approximated numerical solutions generated by means of different discrete schemes. Two classes of numerical examples approximating the differential equation that governs the steady state earth's heat flow have been treated using three different finite differences schemes. The first class of examples deals with media whose phenomenological parameters vary as continuous space functions; the second class, instead, deals with media whose phenomenological parameters vary as discontinuous space functions. The finite difference schemes that have been utilized are: Centered Finite Difference Scheme (CDS), Arithmetic Mean Scheme (AMS), and Harmonic Mean Scheme (HMS).The numerical simulations showed that: the CDS may yield physically inconsistent solutions if the lattice internodal distance is too large, but in case of phenomenological parameters varying as a continuous function, this pitfall can be avoided increasing the lattice node refinement. In case of phenomenological parameters varying as a discontinuous function, instead, the CDS may yield physically inconsistent solutions for any lattice-node refinement. The HMS produced good results for both classes of examples showing to be a scheme suitable to model situations like these.  相似文献   

6.
Field tests are widely used for soil characterization in geotechnical applications in spite of implementation difficulties. The light penetrometer is a well-known testing tool for fine soils, but the physical interpretation of the output data in the case of coarse granular materials is far less evident. Indeed, the data are considerably more sensitive in this case to various parameters such as fabric structure, particle shapes or the applied impact energy. In order to achieve a better understanding of the penetration process into a coarse granular material, a numerical study was performed by means of contact dynamics simulations. The penetration of a moving tip in a sample composed of irregular grain shapes was studied and the influence of the driving velocity and input energy on the penetration strength was analyzed. The results show that the latter grows with both the penetration rate and energy, despite the strong fluctuations occur due to a jamming–unjamming process in which the contact network connectivity evolves intermittently in correlation with the penetration strength. This analysis suggests that the time-averaged data provided by a penetrometer is reliable information from which the bulk strength properties of coarse granular materials can be evaluated.  相似文献   

7.
地质材料结构与功能射线成像是采用射线对地球自然物质进行结构与功能成像,是研究地质材料物质组分、结构、特性与功能的重要手段,是认知地质现象、过程与动因的重要途径。在分析射线成像方法的基础上,分别梳理地质材料表面结构成像、三维结构成像与原位结构成像方法技术及适用条件,提出了地质材料功能成像方法与技术,并指出了地质材料结构与功能射线成像适用条件与发展趋势:(1)可见光、红外射线束和电子束射线等可实现地质材料表面的高精度成像;(2)X射线、γ射线和中子射线能量较高,可穿透地质材料实现三维成像;(3)地质材料的颗粒、矿物与基质等三维内部结构的静态成像研究已经比较成熟;地质材料原位(温度、应力和空隙压力等物理场)条件下的结构进行成像,是近年来地质材料结构成像的发展趋势;对地质材料的生成富集、储集、渗流等功能及过程进行射线成像是未来地质资源能源开发的重大需求,目前仍处于初步探索阶段。  相似文献   

8.
Subsurface flow models can exhibit strong full-tensor anisotropy due to either permeability or grid nonorthogonality effects. Upscaling procedures, for example, generate full-tensor effects on the coarse scale even for cases in which the underlying fine-scale permeability is isotropic. A multipoint flux approximation (MPFA) is often needed to accurately simulate flow for such systems. In this paper, we present and apply a different approach, nonlinear two-point flux approximation (NTPFA), for modeling systems with full-tensor effects. In NTPFA, transmissibility (which provides interblock connections) is determined from reference global flux and pressure fields for a specific flow problem. These fields can be generated using either fully resolved or approximate global simulations. The use of fully resolved simulations leads to an NTPFA method that corresponds to global upscaling procedures, while the use of approximate simulations gives a method corresponding to recently developed local–global techniques. For both approaches, NTPFA algorithms applicable to both single-scale full-tensor permeability systems and two-scale systems are described. A unified framework is introduced, which enables single-scale and two-scale problems to be viewed in a consistent manner. Extensive numerical results demonstrate that the global and local–global NTPFA techniques provide accurate flow predictions over wide parameter ranges for both single-scale and two-scale systems, though the global procedure is more accurate overall. The applicability of NTPFA to the simulation of two-phase flow in upscaled models is also demonstrated.  相似文献   

9.
高光谱遥感水文地质应用新进展   总被引:1,自引:0,他引:1       下载免费PDF全文
高光谱遥感是一种利用成像光谱仪同时获取地物目标辐射、光谱和空间等多重信息遥感的技术,水文地质是高光谱遥感重要的应用领域之一,通过高光谱遥感图像分析,能够提取大区域包气带及含水系统的水文地质信息,可为水文地质环境的识别及实时监测、地下水资源高效管理、地下水数值模型构建等提供科学数据。通过调研凝练了高光谱遥感基本原理方法及其在水文地质方面的应用研究,重点总结了地下水环境污染和水文信息反演方面的高光谱遥感应用研究进展,分析了高光谱遥感水文地质应用所面临的挑战,并展望了高光谱遥感水文地质应用研究的发展趋势,主要包括:通过土壤和植被的光谱信息实现对研究区包气带土壤重金属污染状况的大面积、短周期连续快速监测;在高光谱图像中提取构造、地层岩性等地质和水文地质特征,以环境指示因子(如植被)为有效补充,获取饱和带地下水环境信息;通过高光谱图像识别植被类型、计算植被覆盖度、分析叶片反射光谱特征并建立模型反演土壤含水量和地下水位,为研究和保护缺水地区生态环境提供数据支撑。  相似文献   

10.
The use of limited global information in multiscale simulations is needed when there is no scale separation. Previous approaches entail fine-scale simulations in the computation of the global information. The computation of the global information is expensive. In this paper, we propose the use of approximate global information based on partial upscaling. A requirement for partial homogenization is to capture long-range (non-local) effects present in the fine-scale solution, while homogenizing some of the smallest scales. The local information at these smallest scales is captured in the computation of basis functions. Thus, the proposed approach allows us to avoid the computations at the scales that can be homogenized. This results in coarser problems for the computation of global fields. We analyze the convergence of the proposed method. Mathematical formalism is introduced, which allows estimating the errors due to small scales that are homogenized. The proposed method is applied to simulate two-phase flows in heterogeneous porous media. Numerical results are presented for various permeability fields, including those generated using two-point correlation functions and channelized permeability fields from the SPE Comparative Project (Christie and Blunt, SPE Reserv Evalu Eng 4:308–317, 2001). We consider simple cases where one can identify the scales that can be homogenized. For more general cases, we suggest the use of upscaling on the coarse grid with the size smaller than the target coarse grid where multiscale basis functions are constructed. This intermediate coarse grid renders a partially upscaled solution that contains essential non-local information. Numerical examples demonstrate that the use of approximate global information provides better accuracy than purely local multiscale methods.  相似文献   

11.

Upscaling methods such as the dual porosity/dual permeability (DPDP) model provide a robust means for numerical simulation of fractured reservoirs. In order to close the DPDP model, one needs to provide the upscaled fracture permeabilities and the parameters of the matrix-fracture mass transfer for every fractured coarse block in the domain. Obtaining these model closures from fine-scale discrete fracture-matrix (DFM) simulations is a lengthy and computationally expensive process. We alleviate these difficulties by pixelating the fracture geometries and predicting the upscaled parameters using a convolutional neural network (CNN), trained on precomputed fine-scale results. We demonstrate that once a trained CNN is available, it can provide the DPDP model closures for a wide range of modeling parameters, not only those for which the training dataset has been obtained. The performance of the DPDP model with both reference and predicted closures is compared to the reference DFM simulations of two-phase flows using a synthetic and a realistic fracture geometries. While the both DPDP solutions underestimate the matrix-fracture transfer rate, they agree well with each other and demonstrate a significant speedup as compared to the reference fine-scale solution.

  相似文献   

12.
冲积扇储层具有典型的非平稳分布特征,传统的基于平稳假设的地质统计建模方法无法准确模拟其沉积微相。在充 分分析其沉积微相分布特征的基础上,以克拉玛依油田三叠系克下组冲积扇储层为例,综合现代沉积、密井网、露头等信 息,应用基于地质矢量信息的多点地质统计学方法建立了精细、合理的储层沉积微相三维模型。首先,综合现代沉积特征 与地下储层沉积微相解剖成果,应用“模式指导、规模约束”的方法,建立符合研究区沉积模式和定量规模的训练图像和 基于冲积扇沉积体系的矢量坐标系统,表征了训练图像的地质矢量信息,提出基于预模拟实现的模拟域地质矢量信息表征 方法,建立了待模拟地质体的三维矢量信息模型;最后,采用基于矢量信息的多点地质统计方法建立了冲积扇储层沉积微 相模型,并采用多种标准对模拟实现进行可靠性分析。模拟结果表明冲积扇相带分布符合地质认识,沉积微相的形态、展 布特征、组合样式、规模与训练图像、地下沉积微相解剖认识相符。  相似文献   

13.
The fine-scale heterogeneity of porous media affects the large-scale transport of solutes and contaminants in groundwater and it can be reproduced by means of several geostatistical simulation tools. However, including the available geological information in these tools is often cumbersome. A hierarchical simulation procedure based on a binary tree is proposed and tested on two real-world blocks of alluvial sediments, of a few cubic meters volume, that represent small-scale aquifer analogs. The procedure is implemented using the sequential indicator simulation, but it is so general that it can be adapted to various geostatistical simulation tools, improving their capability to incorporate geological information, i.e., the sedimentological and architectural characterization of heterogeneity. When compared with a standard sequential indicator approach on bi-dimensional simulations, in terms of proportions and connectivity indicators, the proposed procedure yields reliable results, closer to the reference observations. Different ensembles of three-dimensional simulations based on different hierarchical sequences are used to perform numerical experiments of conservative solute transport and to obtain ensembles of equivalent pore velocity and dispersion coefficient at the scale length of the blocks (meter). Their statistics are used to estimate the impact of the variability of the transport properties of the simulated blocks on contaminant transport modeled on bigger domains (hectometer). This is investigated with a one-dimensional transport modeling based on the Kolmogorov-Dmitriev theory of branching stochastic processes. Applying the proposed approach with diverse binary trees and different simulation settings provides a great flexibility, which is revealed by the differences in the breakthrough curves.  相似文献   

14.
The inverse problem of seawater intrusion (SWI) is reviewed. It represents a challenge because of both conceptual and computational difficulties and because coastal aquifer models display many singularities: (1) head measurements need to be complemented with density information; (2) salinity concentration data are very sensitive to flow within the borehole. Data problems can be reduced by incorporating the measurement process within model calibration; (3) SWI models are extremely sensitive to aquifer bottom topography; (4) the initial conditions may be far from steady state and depend on the location and type of sea-aquifer connection. Problems with aquifer geometry and initial conditions can be addressed by parameterization, which allows for modification during inversion. The four sets of difficulties can be partly overcome by using tidal response and electrical conductivity data, which are highly informative and provide extensive coverage. Still, SWI inversion is extremely demanding from a computation point of view. Computational improvements are discussed.  相似文献   

15.
Control-volume multipoint flux approximations (MPFA) are discussed for the simulation of complex near-well flow using geometrically flexible grids. Due to the strong non-linearity of the near-well flow, a linear model will, in general, be inefficient. Instead, a model accounting for the logarithmic pressure behavior in the well vicinity is advocated. This involves a non-uniform refinement of the grid in the radial direction. The model accounts for both near-well anisotropies and heterogeneities. For a full simulation involving multiple wells, this single-well approach can easily be coupled with the reservoir model. Numerical simulations demonstrate the convergence behavior of this model using various MPFA schemes under different near-well conditions for single-phase flow regimes. Two-phase simulations support the results of the single-phase simulations.  相似文献   

16.
Subsurface dissolution (subrosion) of evaporites such as halite and gypsum can lead to extensive land subsidence. Recent land subsidences have been surveyed at six separate locations in northwestern Switzerland. The diameters of the affected surface areas range from 100 to 1,500 m, and corresponding subsidence rates reached more than 100 mm/year. Based on a geometrical model, three sites could be outlined where land subsidence can likely be attributed to salt solution mining. The effects of increased hydrostatic gradient due to both groundwater withdrawal and fluid density contrasts were evaluated in more detail for the remaining sites with a series of 2D density-coupled solute-transport simulations along an approximately 1,000-m-long and 150-m-deep 2D cross section. Simulation results indicate that the upconing process of saline groundwater into the main aquifer occurs under different distributions of subsurface parameters and hydraulic boundary conditions. For the presented setup, the simulations also revealed that the most sensitive factor for the dissolution rate is the structure or dip of the halite formation, which leads to an increase of dissolution rate with increasing dip. Due to the increased density of the brine, an intrinsic flow dynamic develops which follows the direction of the dip.  相似文献   

17.
空间信息技术的发展及其在地球科学中的应用   总被引:35,自引:1,他引:34  
李裕伟 《地学前缘》1998,5(2):335-341
空间信息技术有两个分支:其一是空间图形信息技术,即地理信息系统(GIS);其二是地质统计学。两种技术在本质上是相通的。GIS的核心是建立图形元素的拓扑关系与建立空间数据库与属性数据库的联动关系。正是立足于这两个重要关系,使对千变万化的地学图形信息进行灵活高效的编辑、检索与显示成为可能。在迄今为止所有的计算机应用系统中,GIS无疑将在地学中产生最重要的影响。地质统计学是一种空间数字处理技术,它是传统统计学的空间版本。用包含多元统计学的传统统计方法研究地质问题存在严重的缺陷,因为传统统计学忽略变量的空间存在,而地质过程具有强烈的空间性。地质统计学恰恰是立足于变量的空间关系发展起来的统计科学,因此它特别适用于地球科学。正如空间图形与空间数字可以相互转换一样,两种空间信息技术也存在内在的关系。利用GIS与地质统计学这两种空间信息技术,使我们能不断地在空间图形与空间数字这两种状态间穿越。空间信息技术为地质学家在进行矿产资源预测、物化遥数据分析、地质环境评价、地质灾害评价与矿产资源管理等方面提供了强有力的工具。空间信息技术特别适合于地球科学,它不仅能大幅度地提高地球科学对图形的编制和研究的效率和水平,而且也将转变传统的?  相似文献   

18.
Waterflooding is a common secondary oil recovery process. Performance of waterfloods in mature fields with a significant number of wells can be improved with minimal infrastructure investment by optimizing injection/production rates of individual wells. However, a major bottleneck in the optimization framework is the large number of reservoir flow simulations often required. In this work, we propose a new method based on streamline-derived information that significantly reduces these computational costs in addition to making use of the computational efficiency of streamline simulation itself. We seek to maximize the long-term net present value of a waterflood by determining optimal individual well rates, given an expected albeit uncertain oil price and a total fluid injection volume. We approach the optimization problem by decomposing it into two stages which can be implemented in a computationally efficient manner. We show that the two-stage streamline-based optimization approach can be an effective technique when applied to reservoirs with a large number of wells in need of an efficient waterflooding strategy over a 5 to 15-year period.  相似文献   

19.
Inverse modeling involves repeated evaluations of forward models, which can be computationally prohibitive for large numerical models. To reduce the overall computational burden of these simulations, we study the use of reduced order models (ROMs) as numerical surrogates. These ROMs usually involve using solutions to high-fidelity models at different sample points within the parameter space to construct an approximate solution at any point within the parameter space. This paper examines an input–output relational approach based on Gaussian process regression (GPR). We show that these ROMs are more accurate than the linear lookup tables with the same number of high-fidelity simulations. We describe an adaptive sampling procedure that automatically selects optimal sample points and demonstrate the use of GPR to a smooth response surface and a response surface with abrupt changes. We also describe how GPR can be used to construct ROMs for models with heterogeneous material properties. Finally, we demonstrate how the use of a GPR-based ROM in two many-query applications—uncertainty quantification and global sensitivity analysis—significantly reduces the total computational effort.  相似文献   

20.
We perform numerical simulations using the discrete element method (DEM) to determine yield surfaces for large samples of randomly packed uniform spheres with constant normal and tangential contact stiffnesses (linear spring model) and uniform inter-particle friction coefficient μ, for a large range of values of the inter-particle friction coefficient μ. The beauty of DEM is that the micromechanical properties of the spheres, especially the inter-particle friction coefficient μ, are known exactly. Further, simulations can be performed with particle rotation either prohibited or unrestrained, which provides an effective means for evaluating analytical models that employ these assumptions. We compare the resulting yield surfaces to the Mohr–Coulomb, Matsuoka–Nakai, Lade–Duncan, and Drucker–Prager yield surfaces, and determine the relationship between the resulting material friction angle ? on the macroscale and the inter-particle friction coefficient μ (or the inter-particle friction angle ? μ ) on the microscale. We find the Lade–Duncan yield surface provides the best agreement, by far, with the simulations in all cases. We also monitor inter-particle friction work and particle rotation within each specimen during the DEM simulations, both globally and on a particle-by-particle basis, and we compare the results obtained from DEM simulations in which the spheres were allowed full three-dimensional translational and rotational freedom of motion and DEM simulations in which particle rotation was prohibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号