首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Massive stars     
We describe the present state of massive star research seen from the viewpoint of stellar evolution, with special emphasis on close binaries. Statistics of massive close binaries are reasonably complete for the Solar neighbourhood. We defend the thesis that within our knowledge, many scientific results where the effects of binaries are not included, have an academic value, but may be far from reality. In chapter I, we summarize general observations of massive stars where we focus on the HR diagram, stellar wind mass loss rates, the stellar surface chemistry, rotation, circumstellar environments, supernovae. Close binaries can not be studied separately from single stars and vice versa. First, the evolution of single stars is discussed (chapter I). We refer to new calculations with updated stellar wind mass loss rate formalisms and conclusions are proposed resulting from a comparison with representative observations. Massive binaries are considered in chapter II. Basic processes are briefly described, i.e. the Roche lobe overflow and mass transfer, the common envelope process, the spiral-in process in binaries with extreme mass ratio, the effects of mass accretion and the merging process, the implications of the (asymmetric) supernova explosion of one of the components on the orbital parameters of the binary. Evolutionary computations of interacting close binaries are discussed and general conclusions are drawn. The enormous amount of observational data of massive binaries is summarized. We separately consider the non-evolved and evolved systems. The latter class includes the semi-detached and contact binaries, the WR binaries, the X-ray binaries, the runaways, the single and binary pulsars. A general comparison between theoretical evolution and observations is combined with a discussion of specially interesting binaries: the evolved binaries HD 163181, HD 12323, HD 14633, HD 193516, HD 25638, HD 209481, Per and Sgr; the WR+OB binary V444 Cyg; the high mass X-ray binaries Vela X-1, Wray 977, Cyg X-1; the low mass X-ray binaries Her X-1 and those with a black hole candidate; the runaway Pup, the WR+compact companion candidates Cyg X-3, HD 50896 and HD 197406. We finally propose an overall evolutionary model of massive close binaries as a function of primary mass, mass ratio and orbital period. Chapter III deals with massive star population synthesis with a realistic population of binaries. We discuss the massive close binary frequency, mass ratio and period distribution, the observations that allow to constrain possible asymmetries during the supernova explosion of a massive star. We focuss on the comparison between observed star numbers (as a function of metallicity) and theoretically predicted numbers of stellar populations in regions of continuous star formation and in starburst regions. Special attention is given to the O-type star/WR star/red supergiant star population, the pulsar and binary pulsar population, the supernova rates. Received 17 July 1998  相似文献   

2.
We investigate the formation of binary stellar systems. We consider a model where a 'seed' protobinary system forms, via fragmentation, within a collapsing molecular cloud core and evolves to its final mass by accreting material from an infalling gaseous envelope. This accretion alters the mass ratio and orbit of the binary, and is largely responsible for forming the circumstellar and/or circumbinary discs.
Given this model for binary formation, we predict the properties of binary systems and how they depend on the initial conditions within the molecular cloud core. We predict that there should be a continuous trend such that closer binaries are more likely to have equal-mass components and are more likely to have circumbinary discs than wider systems. Comparing our results with observations, we find that the observed mass-ratio distributions of binaries and the frequency of circumbinary discs as a function of separation are most easily reproduced if the progenitor molecular cloud cores have radial density profiles between uniform and 1/ r (e.g., Gaussian) with near-uniform rotation. This is in good agreement with the observed properties of pre-stellar cores. Conversely, we find that the observed properties of binaries cannot be reproduced if the cloud cores are in solid-body rotation and have initial density profiles which are strongly centrally condensed. Finally, in agreement with the radial-velocity searches for extrasolar planets, we find that it is very difficult to form a brown dwarf companion to a solar-type star with a separation ≲10 au, but that the frequency of brown dwarf companions should increase with larger separations or lower mass primaries.  相似文献   

3.
Some massive binaries should contain energetic pulsars which inject relativistic leptons from their inner magnetospheres and/or pulsar wind regions. If the binary system is compact enough, then these leptons can initiate inverse Compton (IC) e± pair cascades in the anisotropic radiation field of a massive star. γ-rays can be produced in the IC cascade during its development in a pulsar wind region and above a shock in a massive star wind region where the propagation of leptons is determined by the structure of a magnetic field around the massive star. For a binary system with specific parameters, we calculate phase-dependent spectra and fluxes of γ-rays escaping as a function of the inclination angle of the system and for different assumptions on injection conditions of the primary leptons (their initial spectra and location of the shock inside the binary). We conclude that the features of γ-ray emission from such massive binaries containing energetic pulsars should allow us to obtain important information on the acceleration of particles by the pulsars, and on interactions of a compact object with the massive star wind. Predicted γ-ray light curves and spectra in the GeV and TeV energy ranges from such binary systems within our Galaxy and Magellanic Clouds should be observed by future AGILE and GLAST satellites and low-threshold Cherenkov telescopes, such as MAGIC, HESS, VERITAS or CANGAROO III.  相似文献   

4.
We show how the second sequence seen lying above the main sequence in cluster colour–magnitude diagrams results from binaries with a large range of mass ratios and not just from those with equal masses. We conclude that the presence of a densely populated second sequence, with only sparse filling in between it and the single star main sequence, does not necessarily imply that binary mass ratios are close to unity.  相似文献   

5.
Tomographic techniques of different flavour offer enormous diagnostic power for the analysis of magnetic cataclysmic binaries, particularly those of AM Herculis type, the so‐called polars. The three main ingredients of such systems, the donor star, the accretor and the accretion stream between the two stars, are investigated by Doppler tomography, Roche tomography and eclipse mapping methods. The indirect imaging methods reveal the structure, extent and ionization conditions in the accretion stream, they reveal the extent of the irradiation zone on the secondary star and constrain the mass ratio and the orbital inclination of the binary. We describe a new code for Roche tomography, the achievements and limitations of straight Doppler tomography and a new mapping technique tentatively called curtain tomography. This new technique will map emission line profiles to an accretion curtain making full use of the velocity and the photometric information. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
钡星系统轨道根数分布及丰度的Monte-Carlo模拟计算   总被引:3,自引:0,他引:3  
采用星风质量吸积的角动量守恒模型,用Monte—Carlo方法研究了普通红巨星双星系统和钡星的轨道根数的变化规律,由于钡星系统是由普通红巨星双星系统演化而来,因此钡星系统的轨道偏心率及周期的分布显示了经过质量吸积后双星系统的最终轨道特征。计算结果表明,随着星风吸积过程的进行,在星风质量损失阶段系统轨道半长轴将增大,导致轨道周期增大,而偏心率变化不大,由此可以解释普通红巨星双星系统和钡星系统的轨道根数的分布规律和变化情况以及钡星重元素丰度分布特征。  相似文献   

7.
We present the results of a long-term high-resolution spectroscopy campaign on the O-type stars in NGC 6231. We revise the spectral classification and multiplicity of these objects and we constrain the fundamental properties of the O-star population. Almost three quarters of the O-type stars in the cluster are members of a binary system. The minimum binary fraction is 0.63, with half the O-type binaries having an orbital period of the order of a few days. The eccentricities of all the short-period binaries are revised downward, and henceforth match a normal period–eccentricity distribution. The mass ratio distribution shows a large preference for O + OB binaries, ruling out the possibility that, in NGC 6231, the companion of an O-type star is randomly drawn from a standard initial mass function. Obtained from a complete and homogeneous population of O-type stars, our conclusions provide interesting observational constraints to be confronted with the formation and early evolution theories of O-stars.  相似文献   

8.
X-ray binaries     
Summary The various types and classes of X-ray binary are reviewed high-lighting recent results. The high mass X-ray binaries (HMXRBs) can be used to probe the nature of the mass loss from the OB star in these systems. Absorption measurements through one orbital cycle of the supergiant system X1700-37 are well modelled by a radiation driven wind and also require a gas stream trailing behind the X-ray source. In Cen X-3 the gas stream is accreted by the X-ray source via an accretion disk. Changes in the gas stream can cause the disk to thicken and the disk to obscure the X-ray source. How close the supergiant is to corotation seems to be as much a critical factor in these systems as how close it is to filling its Roche lobe. In the Be star X-ray binaries a strong correlation between the neutron stars rotation period and its orbital period has been explained as due to the neutron star being immersed in a dense, slow moving equatorial wind from the Be star. For the X-ray pulsars in the transient Be X-ray binaries a centrifugal barrier to accretion is important in determining the X-ray lightcurve and the spin evolution. The X-ray orbital modulations from the low mass X-ray binaries, LMXRBs, include eclipses by the companion and/or periodic dipping behaviour from structure at the edge of the disk. The corresponding optical modulations show a smooth sinusoidal like component and in some cases a sharp eclipse by the companion. The orbital period of the LMXRB XB1916-05 is 1% longer in the optical compared to that given by the X-ray dip period. The optical period has been interpreted as the orbital period, but this seems inconsistent with the well established view of the origin of the X-ray modulations in LMXRB. A new model is presented that assumes the X-ray dip period is the true orbital period. The 5.2 h eclipsing LMXRB XB2129+47 recently entered a low state and optical observations unexpectedly reveal an F star which is too big to fit into the binary. This is probably the first direct evidence that an X-ray binary is part of a hierarchical triple. Finally the class of X-ray binaries containing black hole candidates is reviewed focusing on the value of using X-ray signatures to identify new candidates.  相似文献   

9.
共生星双星是一颗有强大星风物质损失的红巨星与一颗早型热星组成的特殊双星系统。由于早型热星在充满红巨星的星风物质的空间中环绕运行,可以产生P—Cygni型谱线,通过对P—Cygni型谱线的理论分析可以精确测定共生星双星的星风物质损失率。文章介绍了国际上比较有代表意义的一些共生星双星的工作,其中的方法几乎都是近十年中发展起来的。同时,文章还介绍了作者的一些工作。在谱线形成计算中考虑了较多的因素,如氢—氦混合气体的多能级跃迁问题、轨道运动引起的密度非径向分布问题等,并在轨道形状方面做了一些简化。反映了共生星双星谱线形成关键的周期性相位变化的特征,取得了比较满意的结果,对这个方法存在的问题和改进方向进行了一些简要讨论,此外,还介绍了作者在线性化分离法求解Non-LTE大气模型中所做的工作。  相似文献   

10.
On the formation and evolution of black hole binaries   总被引:1,自引:0,他引:1  
We present the results of a systematic study of the formation and evolution of binaries containing black holes and normal-star companions with a wide range of masses. We first reexamine the standard formation scenario for close black hole binaries, where the progenitor system, a binary with at least one massive component, experienced a common-envelope phase and where the spiral-in of the companion in the envelope of the massive star caused the ejection of the envelope. We estimate the formation rates for different companion masses and different assumptions about the common-envelope structure and other model parameters. We find that black hole binaries with intermediate- and high-mass secondaries can form for a wide range of assumptions, while black hole binaries with low-mass secondaries can only form with apparently unrealistic assumptions (in agreement with previous studies).
We then present detailed binary evolution sequences for black hole binaries with secondaries of 2 to 17 M and demonstrate that in these systems the black hole can accrete appreciably even if accretion is Eddington-limited (up to 7 M for an initial black hole mass of 10 M) and that the black holes can be spun up significantly in the process. We discuss the implications of these calculations for well-studied black hole binaries (in particular GRS 1915+105) and ultraluminous X-ray sources of which GRS 1915+105 appears to represent a typical Galactic counterpart. We also present a detailed evolutionary model for Cygnus X-1, a massive black hole binary, which suggests that at present the system is most likely in a wind mass-transfer phase following an earlier Roche-lobe overflow phase. Finally, we discuss how some of the assumptions in the standard model could be relaxed to allow the formation of low-mass, short-period black hole binaries, which appear to be very abundant in nature.  相似文献   

11.
We present light curves of four binary subdwarf B stars (sdB), Ton 245, Feige 11, PG 1432+159 and PG 1017−086. We also present new spectroscopic data for PG 1017−086 from which we derive its orbital period,   P =0.073 d  , and the mass function,   f m=0.0010±0.0002 M.  This is the shortest period for an sdB binary measured to date. The values of P and f m for the other sdB binaries have been published elsewhere. We are able to exclude the possibility that the unseen companion stars to Ton 245, Feige 11 and PG 1432+159 are main-sequence stars or subgiant stars from the absence of a sinusoidal signal, which would be caused by the irradiation of such a companion star, i.e. they show no reflection effect. The unseen companion stars in these binaries are likely to be white dwarf stars. In contrast, the reflection effect in PG 1017−086 is clearly seen. The lack of eclipses in this binary combined with other data suggests that the companion is a low-mass M-dwarf or, perhaps, a brown dwarf.  相似文献   

12.
We investigate the conditions by which neutron star retention in globular clusters is favoured. We find that neutron stars formed in massive binaries are far more likely to be retained. Such binaries are likely to then evolve into contact before encountering other stars, possibly producing a single neutron star after a common envelope phase. A large fraction of the single neutron stars in globular clusters are then likely to exchange into binaries containing moderate-mass main-sequence stars, replacing the lower-mass components of the original systems. These binaries will become intermediate-mass X-ray binaries (IMXBs), once the moderate-mass star evolves off the main sequence, as mass is transferred on to the neutron star, possibly spinning it up in the process. Such systems may be responsible for the population of millisecond pulsars (MSPs) that has been observed in globular clusters. Additionally, the period of mass-transfer (and thus X-ray visibility) in the vast majority of such systems will have occurred 5–10 Gyr ago, thus explaining the observed relative paucity of X-ray binaries today, given the MSP population.  相似文献   

13.
A close high‐mass binary system consisting of a neutron star (NS) and a massive OB supergiant companion is expected to lead to a Thorne‐Żytkow object (TZO) structure, which consists of a NS core and a stellar envelope. We use the scenario machine program to calculate the formation tracks of TZOs in close high‐mass NS binaries and their subsequent evolution. We propose and demonstrate that the explosion and instant contraction of a TZO structure leave its stellar remnant as a soft gamma‐ray repeater and an anomalous X‐ray pulsar respectively. (© 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Carbon-enhanced metal-poor (CEMP) stars are considered to be related to the first generation of stars, and responsible for the chemical evolution of the early Galaxy. More than half of them are in binaries, and could be explained by the binary evolution, but the formation channel of them is still not fully understood. Among the hundreds of CEMP stars, there are nine CEMP RR Lyrae stars identified, and at least seven of which are very likely not binaries. The usual binary star evolution channel is difficult to produce such a single star, particularly that of carbon enrichment. One way in which such a single star might be produced is the merger of a helium white dwarf with a Hertzsprung gap (HG) star. We use a stellar evolution program to calculate the models of the merger remnants, and find that the models can reproduce the observed distribution of these CEMP single RR Lyrae stars in terms of surface temperature, gravity, and carbon abundance. Hence, it is extremely possible that the helium white dwarf and HG star merger model is one of the formation channels of the metal-poor carbon-rich RR Lyrae stars.  相似文献   

15.
We investigate whether the recently observed population of high-velocity white dwarfs can be derived from a population of binaries residing initially within the thin disc of the Galaxy. In particular, we consider binaries where the primary is sufficiently massive to explode as a Type II supernova. A large fraction of such binaries are broken up when the primary then explodes as a supernova, owing to the combined effects of the mass loss from the primary and the kick received by the neutron star on its formation. For binaries where the primary evolves to fill its Roche lobe, mass transfer from the primary leads to the onset of a common envelope phase during which the secondary and the core of the primary spiral together as the envelope is ejected. Such binaries are the progenitors of X-ray binaries if they are not broken up when the primary explodes. For those systems that are broken up, a large number of the secondaries receive kick velocities ∼100–200 km s−1 and subsequently evolve into white dwarfs. We compute trajectories within the Galactic potential for this population of stars and relate the birth rate of these stars over the entire Galaxy to those seen locally with high velocities relative to the local standard of rest (LSR) . We show that for a reasonable set of assumptions concerning the Galactic supernova rate and the binary population, our model produces a local number density of high-velocity white dwarfs compatible with that inferred from observations. We therefore propose that a population of white dwarfs originating in the thin disc may make a significant contribution to the observed population of high-velocity white dwarfs.  相似文献   

16.
We discuss the observed orbital period modulations in close binaries, and focus on the mechanism proposed by Applegate relating the changes of the stellar internal rotation associated with a magnetic activity cycle with the variation of the gravitational quadrupole moment of the active component; the variation of this quadrupole moment in turn forces the orbital motion of the binary stars to follow the activity level of the active star. We generalize this approach by considering the details of this interaction, and develop some illustrative examples in which the problem can be easily solved in analytical form. Starting from such results, we consider the interplay between rotation and magnetic field generation in the framework of different types of dynamo models, which have been proposed to explain solar and stellar activity. We show how the observed orbital period modulation in active binaries may provide new constraints for discriminating between such models. In particular, we study the case of the prototype active binary RS Canum Venaticorum, and suggest that torsional oscillations — driven by a stellar magnetic dynamo — may account for the observed behaviour of this star. Further possible applications of the relationship between magnetic activity and orbital period modulation, related to the recent discovery of binary systems containing a radio pulsar and a convecting upper main-sequence or a late-type low-mass companion, are discussed.  相似文献   

17.
We consider how the tidal potential of a stellar cluster or a dense molecular cloud affects the fragmentation of gravitationally unstable molecular cloud cores. We find that molecular cloud cores which would collapse to form a single star in the absence of tidal shear, can be forced to fragment if they are subjected to tides. This may enhance the frequency of binaries in star-forming regions such as Ophiuchus and the frequency of binaries with separations ≲100 au in the Orion Trapezium Cluster. We also find that clouds which collapse to form binary systems in the absence of a tidal potential will form bound binary systems if exposed to weak tidal shear. However, if the tidal shear is sufficiently strong, even though the cloud still collapses to form two fragments, the fragments are pulled apart while they are forming by the tidal shear and two single stars are formed. This sets an upper limit for the separation of binaries that form near dense molecular clouds or in stellar clusters.  相似文献   

18.
The stars that populate the solar neighbourhood were formed in stellar clusters. Through N -body simulations of these clusters, we measure the rate of close encounters between stars. By monitoring the interaction histories of each star, we investigate the singleton fraction in the solar neighbourhood. A singleton is a star which formed as a single star, has never experienced any close encounters with other stars or binaries, or undergone an exchange encounter with a binary. We find that, of the stars which formed as single stars, a significant fraction is not singletons once the clusters have dispersed. If some of these stars had planetary systems, with properties similar to those of the Solar System, the planets' orbits may have been perturbed by the effects of close encounters with other stars or the effects of a companion star within a binary. Such perturbations can lead to strong planet–planet interactions which eject several planets, leaving the remaining planets on eccentric orbits. Some of the single stars exchange into binaries. Most of these binaries are broken up via subsequent interactions within the cluster, but some remain intact beyond the lifetime of the cluster. The properties of these binaries are similar to those of the observed binary systems containing extrasolar planets. Thus, dynamical processes in young stellar clusters will alter significantly any population of Solar System-like planetary systems. In addition, beginning with a population of planetary systems exactly resembling the Solar System around single stars, dynamical encounters in young stellar clusters may produce at least some of the extrasolar planetary systems observed in the solar neighbourhood.  相似文献   

19.
具有不同质量的恒星在耗尽其热核能源后,最终可能会坍缩成为性质完全不同的致密天体,如白矮星、中子星或者黑洞。从20世纪30年代起,黑洞的观测及其证认一直是天体物理学的研究热点之一。首先简要地回顾了恒星级黑洞的形成及其候选天体的研究历史;然后介绍了如何从观测上证认恒星级黑洞:接着详细讨论了恒星级黑洞的质量和自转参数的测量方法;最后介绍恒星级黑洞观测及其证认的最新研究进展,并做出结论:目前已经有充分的证据宣告在部分吸积X射线双星中存在恒星级黑洞。  相似文献   

20.
Orbital period changes of ten contact binary systems (S Ant, ε CrA, EF Dra, UZ Leo, XZ Leo, TY Men, V566 Oph, TY Pup, RZ Tau and AG Vir) are studied based on the analysis of their     curves. It is discovered that the periods of the six systems, S Ant, ε CrA, EF Dra, XZ Leo, TY Men and TY Pup, show secular increases. For UZ Leo, its secular period increase rate is revised. For the three systems, V566 Oph, RZ Tau and AG Vir, weak evidence is presented that a periodic oscillation (with periods of 20.4, 28.5 and 40.9 yr respectively) is superimposed on a secular period increase. The cyclic period changes can be explained by the presence of an unseen third body in the three systems. All the sample stars studied are contact binaries with     .
Furthermore, orbital period changes of 27 hot contact binaries have been checked. It is found that, apart from AW UMa with the lowest mass ratio     , none shows an orbital period decrease. The relatively weak magnetic activity in the hotter contact binaries means little angular momentum loss (AML) from the systems via magnetic stellar winds. The period increases of these W UMa binaries can be explained by mass transfer from the secondary to the primary components, which is in agreement with the prediction of the thermal relaxation oscillation (TRO) models. This suggests that the evolution of a hotter W UMa star is mainly controlled by TRO. On the other hand, for a cooler W UMa star     , its evolution may be TRO plus AML, which coincides with the recent results of Qian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号