首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
With the Hamilton echelle spectrograph at the Lick Observatory, emission-rich spectral lines of the planetary nebula NGC 6543 were secured in the wavelength range from 3550 to 10 100 Å. We chose two bright regions, ∼8 arcsec east and ∼13 arcsec north of the central star, the physical conditions and chemical abundances of which may differ as a result of the different physical characteristics involving the mass ejection of different epochs. By combining Hamilton echelle observations with archive UV data secured with the International Ultraviolet Explorer ( IUE ), we obtain improved diagnostics and chemical compositions for the two observed regions. The diagnostic diagram gives the average value of T e=8000∼8300 K, and the electron number density near N e∼5000 cm−3 for most ions, while some low-excitation lines indicate much higher temperatures, i.e. T e∼10 000 K. With the construction of a photoionization model, we try to fit the observed spectra in a self-consistent way: thus, for most elements, we employ the same chemical abundances in the nebular shell; and we adopt an improved Sobolev approximation model atmosphere for the hydrogen-deficient Wolf–Rayet type central star. Within the observational errors, the chemical abundances do not seem to show any positional variation except for helium. The chemical abundances of NGC 6543 appear to be the same as in average planetary nebulae. The progenitor star may have been an object of one solar mass, most of the heavier elements of which were less plentiful than in the Sun.  相似文献   

3.
4.
We present a detailed kinematical analysis of the young compact hourglass-shaped planetary nebula Hb 12. We performed optical imaging and long-slit spectroscopy of Hb 12 using the Manchester echelle spectrometer with the 2.1-m San Pedro Mártir telescope. We reveal, for the first time, the presence of end caps (or knots) aligned with the bipolar lobes of the planetary nebula shell in a deep [N  ii ]λ6584 image of Hb 12. We measured from our spectroscopy radial velocities of  ∼120 km s−1  for these knots.
We have derived the inclination angle of the hourglass-shaped nebular shell to be ∼65° to the line of sight. It has been suggested that Hb 12's central star system is an eclipsing binary which would imply a binary inclination of at least 80°. However, if the central binary has been the major shaping influence on the nebula, then both nebula and binary would be expected to share a common inclination angle.
Finally, we report the discovery of high-velocity knots with Hubble-type velocities, close to the core of Hb 12, observed in Hα and oriented in the same direction as the end caps. Very different velocities and kinematical ages were calculated for the outer and inner knots showing that they may originate from different outburst events.  相似文献   

5.
High-resolution, spatially-resolved profiles of H α , He  ii λ 6560 and [O  iii ] λ 5007 and deep narrow-band CCD images in the H α and [O  iii ] λ 5007 emission lines have been obtained of the planetary nebula (PN) NGC 4361. In addition, VLA-DnC λ 3.6-cm continuum observations are presented. This material allows one to explore in unprecedented detail the morphology and kinematics of this PN. The morphology of this object is complex given the highly filamentary structure of the envelope, which is confirmed to possess a low mass. The halo has a high expansion velocity that yields incompatible kinematic and evolutionary ages, unless previous acceleration of the nebular expansion is considered. However, the most remarkable result from the present observations is the detection of a bipolar outflow in NGC 4361, which is unexpected in a PN with a Population II low-mass-core progenitor. It is shown that shocks resulting from the interaction of the bipolar outflow with the outer shell are able to provide an additional heating source in this nebula.  相似文献   

6.
7.
8.
9.
10.
11.
12.
We present H α , [N  ii ] and [O  iii ] ground-based and HST archive images, VLA–A 3.6-cm continuum and H92 α emission-line data and high-resolution long-slit [N  ii ] spectra of the planetary nebula Hu 2-1. A large number of structural components are identified in the nebula: an outer bipolar and an inner shell, two pairs of collimated bipolar structures at different directions, monopolar bow-shock-like structures, and an extended equatorial structure within a halo. The formation of Hu 2-1 appears to be dominated by anisotropic mass ejection during the late-AGB stage of the progenitor and by variable, 'precessing' collimated bipolar outflows during the protoplanetary nebula and/or early planetary nebula phases. Different observational results strongly support the existence of a binary central star in Hu 2-1, among them (1) the observed point-symmetry of the bipolar lobes and inner shell, and the departures from axial symmetry of the bipolar lobes, (2) the off-centre position of the central star, (3) the detection of mass ejection towards the equatorial plane, and (4) the presence of 'precessing' collimated outflows. In addition, (5) an analysis of the kinematics shows that the systemic velocity of the bipolar outflows does not coincide with the systemic velocity of the bipolar shell. We propose that this velocity difference is a direct evidence of orbital motion of the ejection source in a binary system. From a deduced orbital velocity of ∼10 km s−1, a semimajor axis of ∼ 9–27 au and period of ∼ 25–80 yr are obtained, assuming a reasonable range of masses. These parameters are used to analyse the formation of Hu 2-1 within current scenarios of planetary nebulae with binary central stars.  相似文献   

13.
14.
We calculate the X-ray emission from both constant and time-evolving shocked fast winds blown by the central stars of planetary nebulae (PNe) and compare our calculations with observations. Using spherically symmetric numerical simulations with radiative cooling, we calculate the flow structure and the X-ray temperature and luminosity of the hot bubble formed by the shocked fast wind. We find that a constant fast wind gives results that are very close to those obtained from the self-similar solution. We show that in order for a fast shocked wind to explain the observed X-ray properties of PNe, rapid evolution of the wind is essential. More specifically, the mass-loss rate of the fast wind should be high early on when the speed is  ∼300–700 km s−1  , and then it needs to drop drastically by the time the PN age reaches ∼1000 yr. This implies that the central star has a very short pre-PN (post-asymptotic giant branch) phase.  相似文献   

15.
We present [N  ii ] and H α images and high-resolution long-slit spectra of the planetary nebula IC 4846, which reveal, for the first time, its complex structure and the existence of collimated outflows. The object consists of a moderately elongated shell, two (and probably three) pairs of collimated bipolar outflows at different orientations, and an attached circular shell. One of the collimated pairs is constituted by two curved, extended filaments the properties of which indicate a high-velocity, bipolar precessing jet. A difference of ≃10 km s−1 is found between the systemic velocity of the precessing jets and the centroid velocity of the nebula, as recently reported for Hu 2-1. We propose that this difference is as a result of orbital motion of the ejection source in a binary central star. The orbital separation of 30 au and period 100 yr estimated for the binary are similar to those in Hu 2-1, linking the central stars of both planetary nebulae to interacting binaries. Extraordinary similarities also exist between IC 4846 and the bewildering planetary nebula NGC 6543, suggesting a similar formation history for both objects.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号