首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 464 毫秒
1.
The results of geological interpretation of large fragments of seismic transects SB-1 (Batolit), SB-2, and SB-3 (Altai-Severnaya Zemlya), which cross the western and southern margins of the Siberian Platform and its fold framework, specify substantially the structure and geological history of the sedimentary cover. The most important data have been obtained for the structure of the Baikit Anteclise, the Angara-Lena Terrace, and the Kas Block of the West Siberian Plate. The geological interpretation of the recorded wavefield specifies substantially the genetic features of these structural elements and their mutual relationships, allowing a reliable reconstruction of the western, and partially the southwestern, margins of the Siberian Platform in the Riphean-Early Paleozoic before and after the Baikalian Orogeny.  相似文献   

2.
A new interpretation of the seismic profile series for the Taimyr Orogen and the Yenisei–Khatanga Basin is given in terms of their tectonics and geological history. The tectonics and tectonostratigraphy of the Yenisei–Khatanga and the Khatanga–Lena basins are considered. In the Late Vendian and Early Paleozoic, a passive continental margin and postrift shelf basin existed in Taimyr and the Yenisei–Khatanga Basin. From the Early Carboniferous to the Mid-Permian, the North and Central Taimyr zones were involved in orogeny. The Late Paleozoic foredeep was formed in the contemporary South Taimyr Zone. In the Middle to Late Triassic, a new orogeny took place in the large territory of Taimyr and the Noril’sk district of the Siberian Platform. A synorogenic foredeep has been recognized for the first time close to the Yenisei–Khatanga Basin. In the Jurassic and Early Cretaceous, this basin was subsided under transpressional conditions. Thereby, anticlinal swells were formed from the Callovian to the Aptian. Their growth continued in the Cenozoic. The Taimyr Orogen underwent tectonic reactivation and apparently right-lateral transpression from Carboniferous to Cenozoic.  相似文献   

3.
The tectonic structure of the junction of the eastern Central Asian Fold Belt and the Siberian Platform, along with the deep structure of the Earth's crust and lithosphere in this region, has been described on the basis of new geological and geophysical data (seismic, geoelectric, and space-structural studies as well as new-generation geological maps), combined with new interpretation techniques (processing of the previous data by special software). The data suggest the existence of oblique collision during the convergence of the tectonic plates and, correspondingly, tectonic units composing these plates, when the Mongol–Okhotsk paleobasin closed. Such a scenario within the Aldan–Stanovoi Shield is evidenced by areas of syn- and postcollisional magmatism, with their deep-level and geochemical characteristics, and by the presence of a Late Mesozoic fold–thrust zone. Deep “traces” of these tectonomagmatic events, detected in the course of geological and geophysical modeling, are manifested in inclined deep boundaries between the crustal and lithospheric blocks. On the Earth's surface, they correspond to large fault systems: the Dzheltulak, North and South Tukuringra, Gulyui, and Stanovoi. It has been found that the influence of collision decreases northward with distance from the junction of the eastern Central Asian Fold Belt and the Siberian Platform (Dzheltulak and North Tukuringra transcrustal faults).  相似文献   

4.
M. V. Mints 《Geotectonics》2011,45(4):267-290
The integral 3D model of the deep structure of the Early Precambrian crust in the East European Craton is based on interpretation of the 1-EU, 4B, and TATSEIS seismic CDP profiles in Russia and the adjacent territory of Finland (FIRE project). The geological interpretation of seismic images of the crust is carried out in combination with consideration of geological and geophysical data on the structure of the Fennoscandian Shield and the basement of the East European platform. The model displays tectonically delaminated crust with a predominance of low-angle boundaries between the main tectonic units and the complex structure of the crust-mantle interface, allowing correlation of the deep structure of the Archean Kola, Karelian, and Kursk granite-greenstone terrane with the Volgo-Uralia granulite-gneiss terrane, as well as the Paleoproterozoic intracontinental collision orogens (the Lapland-Mid-Russia-South Baltia orogen and the East Voronezh and Ryazan-Saratov orogens) with the Svecofennian accretionary orogen. The lower crustal “layer” at the base of the Paleoproterozoic orogens and Archean cratons was formed in the Early Paleoproterozoic as a result of underplating and intraplating by mantle-plume mafic magmas and granulite-facies metamorphism. The increase in the thickness of this “layer” was related to hummocking of the lower crustal sheets along with reverse and thrust faulting in the upper crust. The middle crust was distinguished by lower rigidity and affected by ductile deformation. The crust of the Svecofennian Orogen is composed of tectonic sheets plunging to the northeast and consisting of island-arc, backarc, and other types of rocks. These sheets are traced in seismic sections to the crust-mantle interface.  相似文献   

5.
The particularities of the current tectonic structure of the Russian part of the Arctic region are discussed with the division into the Barents–Kara and Laptev–Chukchi continental margins. We demonstrate new geological data for the key structures of the Arctic, which are analyzed with consideration of new geophysical data (gravitational and magnetic), including first seismic tomography models for the Arctic. Special attention is given to the New Siberian Islands block, which includes the De Long Islands, where field work took place in 2011. Based on the analysis of the tectonic structure of key units, of new geological and geophysical information and our paleomagnetic data for these units, we considered a series of paleogeodynamic reconstructions for the arctic structures from Late Precambrian to Late Paleozoic. This paper develops the ideas of L.P. Zonenshain and L.M. Natapov on the Precambrian Arctida paleocontinent. We consider its evolution during the Late Precambrian and the entire Paleozoic and conclude that the blocks that parted in the Late Precambrian (Svalbard, Kara, New Siberian, etc.) formed a Late Paleozoic subcontinent, Arctida II, which again “sutured” the continental masses of Laurentia, Siberia, and Baltica, this time, within Pangea.  相似文献   

6.
This paper considers the results of summarized integrated geophysical investigations that were carried out from 2006 to 2012. The investigations included common depth point (CDP) seismic reflection survey, over water gravity survey, and differential hydromagnetic exploration with a total work scope of 30 000 linear kilometers. The deep structural tectonic plan, the structural and lithofacies features of the sedimentary cover section on the basic reflecting boundaries, and the features of the seismogeological complexes and seismic sections on a depth scale have been studied, and geological oil-and-gas zoning of the Northern Barents shelf has been made. Seventy-nine local anticlinal highs have been revealed, and the zones with potential nonstructural hydrocarbon traps have been determined. Due to the lack of huge anticlinal highs in the northern Barents Sea region, nonstructural traps are of interest in studying and replacing the mineral raw material base of Russia, as well as for arranging marine exploration.  相似文献   

7.
地学断面是指地壳的垂直剖面,主要通过对地质和地球物理资料的综合分析来揭示构造带的性质及其空间关系。横断面的研究所采用的数据基本包括100 km宽区域地质图、上地壳的地质剖面图、重磁图(沿横断面的重磁剖面图)以及地壳的地震波速度、密度和其他地球物理属性的剖面图。这些数据被用于构建综合的数据剖面图(结果图),以展示各种地球动力学条件下(裂谷、海洋、碰撞带、造山盆地、大陆地台和岩浆弧,包括安第斯岛弧、活动大陆边缘、海沟、弧前和弧后盆地)的特定的岩石组构。本项目的研究目标是根据研究区现存的地质和地球物理数据的综合解释,统一图例,建立研究区深部剖面,以确定地体的空间关系及其在板块构造方面的地球动力学性质。 前人已分别对东西伯利亚南部和蒙古境内的多个地体进行了构造划分,并对它们的地球动力学性质和时空关系进行了分析。研究结果显示该系列地体为早古生代、中晚古生代和晚古生代—早中生代的岛弧和微大陆。此外,研究还识别出了中—晚古生代和晚古生代—早中生代安第斯型活动大陆边缘、晚古生代—早中生代被动大陆边缘和早白垩世裂谷。与岛弧和安第斯型活动大陆边缘相关的岩体被推覆至相邻大陆和微陆块上,部分推覆宽度可达150 km。目前已开展泥盆纪到晚侏罗世时期蒙古-鄂霍次克海地区的古地球动力学重建。 “非地槽”型花岗岩类岩浆作用在板块构造方面找到了直接且合理的解释,其中泥盆纪—石炭纪和二叠纪—三叠纪岩浆作用区域对应于安第斯型活动大陆边缘,中—晚侏罗世岩浆作用则与西伯利亚/蒙古-中国大陆板块碰撞有关。碰撞岩浆作用中亚碱性(地幔)元素的存在及其所在的构造区域在很大程度可以说明蒙古-鄂霍次克海闭合后,巨厚大陆岩石圈下曾经发生过持续的大洋裂谷活动(地幔热点)。在早白垩世时期,大陆裂谷活动影响到了同一时期正在发生的大陆汇聚作用。 西伯利亚南部边界大部分具有安第斯型活动大陆边缘性质,这也是蒙古—鄂霍次克缝合线沿线蛇绿岩数量较少的原因。因为当汇聚大陆一个具有安第斯类型的活动边缘,而另一个具有被动边缘时,前者的大陆地壳会最终逆冲到后者之上,并因此破坏掉先前出露的蛇绿杂岩体。部分被破坏的蛇绿岩块是俯冲带保留下来的海山残余,其可能成为增生-俯冲楔体的混沌复合体的一部分。然而,由于快速俯冲作用,这种楔形体在晚二叠世—早侏罗世的积累并不是西伯利亚活动边缘的典型特征。 沿地学断面综合的地质和地球物理资料分析表明,亚洲大陆是在显生宙时期由部分前寒武纪微陆块构造拼贴而成的。前寒武纪地块间存在不同宽度的已变形且剥蚀强烈的显生宙火山弧,它们也被归类为特定地体。  相似文献   

8.
The relationship between the petroleum potential of the West Siberian province and the Mesozoic to Cenozoic tectonic processes is analyzed. The studies were based on structural and isopach maps of seismogeologic megacomplexes compiled from generalized geological and geophysical data on the province at the Trofimuk Institute of Petroleum Geology and Geophysics as well as on the results of interpretation of regional seismic CDP (common depth point) profiles. The main stages of formation of structures of different ranks and faults have been established. It is shown that the petroleum potential of the province was determined mainly by its structure and tectonic processes at the Cenozoic stage of evolution. At that time, the Koltogory–Urengoi megatrench formed, which became the main zone of hydrocarbon generation, as well as large positive structures—petroleum accumulation zones. Also, disjunctions originated, which served as channels for hydrocarbon migration from the oil source rocks of the Bazhenovo Formation to the main Neocomian and Aptian–Albian–Cenomanian petroleum reservoirs of the province.  相似文献   

9.
Mineral exploration drillholes and geoelectric prospecting provide for the first time evidence for thrusting of the South Carpathian Paleozoic basement over northerly adjacent Middle Miocene sediments. Investigations were carried out in two locations, 30 km apart, along the northern margin of the Poiana Rusca Mountains, Romania, southwestern Carpathians. Drill holes in both locations encountered weakly consolidated Middle Miocene clay, sand, and fine gravel below Paleozoic low-grade metamorphic rocks. Intersections from various drill holes demonstrate the presence of low-angle thrusting. Kinematic indicators are so far lacking, but with a thrust direction oriented roughly normal to strike of the Poiana Rusca Mountains, minimum displacement is 1–1.4 km in northwestern or northern direction, respectively. Thrusting occurred most likely during the Late Miocene–Pliocene, whereafter Quaternary regional uplift dissected the thrust plane. In the tectonic framework of Neogene dextral translation of the Tisza–Dacia Block against the southerly adjacent Moesian Platform, transtension appears responsible for Middle Miocene basin formation along the northern margin of the Poiana Rusca region. Proceeding collision of the Tisza–Dacia Block with the East European Craton introduced stronger impingement of the Tisza–Dacia Block against the Moesian Platform, leading to a Late Miocene–Pliocene transpressional regime, in which the northern Poiana Rusca basement was thrust over its adjacent Middle Miocene sediments.  相似文献   

10.
The results of CMP seismic data acquisition along regional deep profiles that cross large tectonic elements in the east of the East European Platform are considered. It has been established that the Zhiguli-Pugachev Arch and the Stavropol Depression (southern part of the Melekess Basin), as well as the Volga-Kama Anteclise and Pericaspian Syneclise, conjugate along reverse-thrust faults extending to the lower crust and Moho discontinuity. The position of the southeastern reverse-thrust boundary of the South Tatar Arch has been substantially specified in plan view and illustrated by seismic sections. Based on the results obtained, it is suggested that reverse-thrust faults of different orders are widespread in petroleum provinces in the east of the East European Platform, and this suggestion should be used in geological exploration. The CMP seismic data acquisition is efficient in studying the junction zones of large tectonic elements. It also provides insights into the deep structure of the Earth’s crust and its relationship to the structure and petroleum potential of the sedimentary cover and localization of oilfields. It is expedient to reprocess and integrate earlier seismic data in order to compile tectonic (tectonodynamic) regional maps on a new methodical basis.  相似文献   

11.
The area of Eurasia and the shelves of the marginal and internal seas have been sufficiently investigated by geological, geophysical, and drilling means to formulate a number of regional conclusions about the association between various types of tectonic structures and distribution of the petroliferous provinces (basins). This problem has been considered against the background of platforms of different age, the ancient pre-Riphean (East European and Siberian) and the epi-Paleozoic types (West Siberian and West European, and also the South Caspian intrageosynclinal basin). There are significant differences in their geological evolution, which exerted a direct effect on the distribution of the petroliferous complexes. Within the Siberian Platform, the fundamental stages in downwarping were associated with the deposition of Vendian and lower Paleozoic sediments. The principal stages in the formation of the sedimentary cover of the East European Platform were associated with the Devonian, Carboniferous, and Permian periods.

For all types of structural zones under consideration, an association has heen established between distribution of oil and gas reserves and episodes of development of major structural elements. They define the overall stratigraphic range of the petroleum occurrences within the young and old platform and the fold regions, and also the concentration of the reserves of hydrocarbons in the complexes corresponding to the principal stages of downwarping of the basins.—Authors  相似文献   

12.
This paper presents relative secular variations of the total intensity of the geomagnetic field against a background of results of magnetic anomaly interpretation along seismic profile P4. Profile P4 crosses a Variscan folding zone in the Paleozoic Platform (PLZ), the Trans-European Suture Zone (TESZ), and the Polish part of the East European Craton (EEC). Secular geomagnetic field variations measured in 1966–2000 along a line adjacent to seismic profile P4 were analysed. The study of secular variations, reduced to the base recordings at the Belsk Magnetic Observatory, showed that the growth of geomagnetic field at the East European Craton was slower than in the Trans-European Suture Zone and the Paleozoic Platform.A 2D crustal magnetic model was interpreted as a result of magnetic modelling, in which seismic, geological and geothermal data were also used. The modelling showed that there were significant differences in the magnetic model for geotectonic units, which had been earlier determined based on deep seismic survey data. It should be noted that a fundamental change of trend of the relative secular variations was observed at the slope of the Precambrian Platform. After analysing the geomagnetic field observed along profile P4, the hypothesis that the contact between Phanerozoic and Precambrian Europe lies in Poland's territory can be proven.  相似文献   

13.
In this paper we consider the results of geological interpretation of 3DV (Tommot–Skovorodino segment) and Tynda–Amurzet geophysical transects crosscutting the Aldan Shield and the Stanovoi Granite–Greenstone Domain of the Siberian Platform; the Selengino–Stanovoi, Mongolia–Okhotsk, and Gobi–Hinggang foldbelts; and the Argun and Mamyn microcontinents with a total extent of sections of about 1000 km and depth of about 40 km. The data of previous studies and follow-up electric conductivity information have been used. The data of geological mapping, subject studies, and insights into the deep-seated structure of the considered territory obtained with a complex of geophysical methods are discussed. It is shown that Mesozoic strike-slip and thrust faults play the leading role in the present-day structure of the territory and in control rifting and mantle diapirism. It is suggested that Californian-type metamorphic nuclei, which are of structure-forming significance for adjacent territories in the west, have also developed in the studied region.  相似文献   

14.
A method for processing of a digital terrain model using a gradient module and the Laplace operator of a Gaussian surface is described, and the results of applying it to small-scale geological-structural demarcation are presented. The studied area (52–61° N, 120–133° E) covers the southern portion of the Siberian Platform (the Aldan-Stanovoi Shield), the southeastern flank of the Early Paleozoic Selenga-Stanovoi orogenic belt, and the western portion of the Mesozoic Mongol-Okhotsk orogenic belt. It has been demonstrated that the interpretation of modified digital terrain models allows confident determinations of the sizes of and relationships between geological features and zones of different types and the identification of faults and tectonic blocks transformed to different extents.  相似文献   

15.
滇西保山地块是东特提斯构造域的主要微陆块之一,但对其物源和古地理位置仍存在较大争议。本文通过对保山地块西缘早古生代地层进行碎屑锆石U-Pb定年来约束其物源及古地理位置,并进一步探讨原特提斯洋早古生代构造演化模式。保山地块西缘早古生代地层具有相似的年龄分布模式,主年龄峰期为-0.95Ga、次级年龄峰期为-1.2Ga和-2.5Ga。寒武系公养河群最小锆石年龄为526Ma,结合其上部年龄为499.2Ma的火山岩夹层,约束其沉积时代为早寒武世早期。对比保山地块不同区域早古生代地层的碎屑锆石年龄数据,它们都具有相似的锆石年龄分布模式和年龄峰值。-0.95Ga主年龄峰期和-2.5Ga的次级年龄峰期指示保山地块早古生代的沉积物主要来自于印度大陆,而-1.2Ga的次级年龄峰期表明有部分沉积物来自于西澳大利亚,其早古生代古地理位置位于印度和西澳大利亚之间。结合沉积学证据及滇西地区广泛发育的早古生代岩浆作用,本文认为早古生代冈瓦纳大陆北缘为活动大陆边缘。  相似文献   

16.
东北亚地区的若干重要基础地质问题   总被引:45,自引:3,他引:42  
吴福元  曹林 《世界地质》1999,18(2):1-13
东北亚地区由南部的华北地块、北部的西伯利亚地块和其间的造山带组成,古生代期间基本完成块体拼贴的造山作用过程,中新生代期间受到东部太平洋板块运动的影响。通过对近10年来新的研究成果的总结,作者对该区的若干重要基础地质问题进行了详细的分析,如古老地块的性质及与冈瓦纳大陆和劳亚大陆的关系、古生代造山作用的特点及地球动力学模型、中新生代东亚大陆边缘的地质演化格局、深部地质与地壳演化等,并讨论了该区在全球地  相似文献   

17.
一直以来,敦煌地块缺少1.6-0.46Ga的地质记录,从而严重制约了对该地块在新元古代和早古生代期间地质构造演化的全面认识。通过1:5万区域地质调查,本次工作在敦煌地块东北缘新发现了寒武纪-早奥陶世小宛山岩体、截山子岩体和小宛南岩体等多个中酸性侵入体,测得其LA-ICP-MS锆石U-Pb年龄分别为517±3Ma、480±3Ma和473±3Ma,由此厘定出敦煌地块目前古生代最古老的侵入岩体及早奥陶世侵入岩体。通过这些岩体的岩石岩相学、岩石地球化学特征、岩石成因及大地构造环境分析,表明它们属于与洋壳俯冲消减作用有关的活动陆缘环境下形成的富钠质I型花岗岩。其中,小宛山花岗闪长质岩体是在低压低温条件下由玄武质地幔楔部分熔融而成,同时受到俯冲流体的强烈交代;截山子岩体和小宛南岩体则是在高压低温富水条件下,由新生镁铁质洋壳发生部分熔融并受到地幔楔强烈混染而形成,虽然它们均属于(类)O型埃达克岩,但其部分熔融的压力及其残留矿物组合不同。上述研究揭示敦煌地块北缘早古生代517Ma就存在俯冲作用,且至少持续了44Myr。结合区域地质资料和以往研究成果,敦煌地块北缘早古生代洋陆转换过程可分为三个阶段:(1)晚震旦世-早寒武世(574-518Ma),敦煌地块北缘被动陆缘演化阶段;(2)寒武纪第二世-早奥陶世(517-471Ma),敦煌地块北缘活动陆缘演化阶段,期间,古亚洲洋南支洋分别向敦煌地块和石板山地块/马鬃山地块发生双向俯冲消减;(3)中奥陶世-早泥盆世(464-412Ma),敦煌地块与石板山地块/马鬃山地块碰撞造山阶段,期间古亚洲洋南支洋闭合。  相似文献   

18.
The paper presents the results of paleomagnetic and geochronological studies of the Late Paleozoic granites of the Angara-Vitim batholith as well as Vendian-Early Cambrian sedimentary rocks and Late Devonian subvolcanic rocks of the Patom margin of the Siberian Platform. Primary and metachronous magnetization in the rocks of the study region was used to calculate an Early Permian (~ 290 Ma) paleomagnetic pole, which is proposed as a reference pole for the Siberian Platform in paleomagnetic reconstructions, plotting of the apparent polar-wander path curve, and other magnetotectonic studies. The published and obtained paleomagnetic data and analysis of the geological data confirm the Late Paleozoic age of the final folding in the Baikal-Patom area. Possible causes of Late Paleozoic deformations and large-scale granite formation in the Baikal-Patom area and Transbaikalia in the Late Paleozoic are discussed.  相似文献   

19.
Lithospheric evolution of the Antarctic shield is one of the keystones for understanding continental growth during the Earth's evolution. Architecture of the East Antarctic craton is characterized by comparison with deep structures of the other Precambrian terrains. In this paper, we review the subsurface structure of the Lower Paleozoic metamorphic complex around the Lützow-Holm area (LHC), East Antarctica, where high-grade metamorphism occurred during the Pan-African orogenic event. LHC is considered to be one of the collision zones in the last stage of the formation of Gondwana. A geoscience program named ‘Structure and Evolution of the East Antarctic Lithosphere (SEAL)’ was carried out since 1996-1997 austral summer season as part of the Japanese Antarctic Research Expedition (JARE). Several geological and geophysical surveys were conducted including a deep seismic refraction/wide-angle reflection survey in the LHC. The main target of the SEAL seismic transect was to obtain lithospheric structure over several geological terrains from the western adjacent Achaean Napier Complex to the eastern Lower Paleozoic Yamato-Belgica Complex. The SEAL program is part of a larger deep seismic profile, LEGENDS (Lithospheric Evolution of Gondwana East iNterdisciplinary Deep Surveys) that will extend across the Pan-African belt in neighboring fragments of Gondwana.  相似文献   

20.
The special seismic tectonic environment and frequent seismicity in the southeastern margin of the Qinghai–Tibet Plateau show that this area is an ideal location to study the present tectonic movement and background of strong earthquakes in mainland China and to predict future strong earthquake risk zones. Studies of the structural environment and physical characteristics of the deep structure in this area are helpful to explore deep dynamic effects and deformation field characteristics, to strengthen our understanding of the roles of anisotropy and tectonic deformation and to study the deep tectonic background of the seismic origin of the block's interior. In this paper, the three-dimensional(3D) P-wave velocity structure of the crust and upper mantle under the southeastern margin of the Qinghai–Tibet Plateau is obtained via observational data from 224 permanent seismic stations in the regional digital seismic network of Yunnan and Sichuan Provinces and from 356 mobile China seismic arrays in the southern section of the north–south seismic belt using a joint inversion method of the regional earthquake and teleseismic data. The results indicate that the spatial distribution of the P-wave velocity anomalies in the shallow upper crust is closely related to the surface geological structure, terrain and lithology. Baoxing and Kangding, with their basic volcanic rocks and volcanic clastic rocks, present obvious high-velocity anomalies. The Chengdu Basin shows low-velocity anomalies associated with the Quaternary sediments. The Xichang Mesozoic Basin and the Butuo Basin are characterised by lowvelocity anomalies related to very thick sedimentary layers. The upper and middle crust beneath the Chuan–Dian and Songpan–Ganzi Blocks has apparent lateral heterogeneities, including low-velocity zones of different sizes. There is a large range of low-velocity layers in the Songpan–Ganzi Block and the sub–block northwest of Sichuan Province, showing that the middle and lower crust is relatively weak. The Sichuan Basin, which is located in the western margin of the Yangtze platform, shows high-velocity characteristics. The results also reveal that there are continuous low-velocity layer distributions in the middle and lower crust of the Daliangshan Block and that the distribution direction of the low-velocity anomaly is nearly SN, which is consistent with the trend of the Daliangshan fault. The existence of the low-velocity layer in the crust also provides a deep source for the deep dynamic deformation and seismic activity of the Daliangshan Block and its boundary faults. The results of the 3D P-wave velocity structure show that an anomalous distribution of high-density, strong-magnetic and high-wave velocity exists inside the crust in the Panxi region. This is likely related to late Paleozoic mantle plume activity that led to a large number of mafic and ultra-mafic intrusions into the crust. In the crustal doming process, the massive intrusion of mantle-derived material enhanced the mechanical strength of the crustal medium. The P-wave velocity structure also revealed that the upper mantle contains a low-velocity layer at a depth of 80–120 km in the Panxi region. The existence of deep faults in the Panxi region, which provide conditions for transporting mantle thermal material into the crust, is the deep tectonic background forthe area's strong earthquake activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号