首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
适应气候变化问题的研究大致可分为四个发展阶段,即气候变化的影响评价、第一代脆弱性评价、第二代脆弱性评价和适应政策评价。从适应气候变化的基本概念和涉及的主要变量出发,分析并综合比较了四个发展阶段的概念模型及其不同特点,反映了人们对适应问题的认识不断深化和发展的规律,试图给未来适应气候变化的研究提供一些启示。  相似文献   

2.
Human agency has been viewed as a problem for climate change assessments because of its contribution to uncertainty. In this editorial, I outline the advantages of agency in managing climate change risks, describing how those advantages can be placed within a probabilistic framework.  相似文献   

3.
4.
农业对气候变化的脆弱性   总被引:5,自引:0,他引:5       下载免费PDF全文
随着对气候变化研究的不断深入,气候变化脆弱性问题也得到了更多的关注。相对于水资源、森林等其他自然生态系统,农业受气候变化的影响最大,科学地评价其对气候变化的脆弱性,对于制定合理有效的适应对策具有重要意义。从气候变化脆弱性与农业对气候变化脆弱性的定义、研究内容和评价方法等角度综述了研究进展,在此基础上分析了目前该领域存在的问题,包括情景应用、方法和不确定性等方面,并展望了未来脆弱性评价的发展方向。  相似文献   

5.
本文试图从经典的大众传播学基本理论和模式入手,梳理现有气候变化知识产品的编制方式、主要传播途径和相关实践经验,以期为未来气候变化信息传播研究和实践提供参考。分析表明,气候变化知识传播过程应遵循信息传播的基本规律,并充分考虑气候变化知识自身所具有的复杂性和交叉性特点;在信息采集方面,应注重知识的科学性、系统性、准确性和权威性;在展示方式方面,应注重内容的可读性、趣味性、精练性和通俗性;在传播途径方面,除传统的大众媒介外,还需要注重利用新兴的互联网、社交媒体等平台,发挥人际关系网络作用;在国家经济社会发展的新形势下,需要进一步加强气候变化知识传播的理论、模式和实践等方面的创新性研究。  相似文献   

6.
Vulnerability of the Asian Typical Steppe to Grazing and Climate Change   总被引:1,自引:0,他引:1  
The vulnerability of grassland vegetation in Inner Mongolia to climate change and grazing was examined using an ecosystem model. Grazing is an important form of land use in this region, yet there are uncertainties as to how it will be affected by climate change. A sensitivity analysis was conducted to study the effects of increased minimum and maximum temperatures, ambient and elevated CO2, increased or decreased precipitation, and grazing on vegetation production. Simulations showed that herbaceous above ground net primary production was most sensitive to changes in precipitation levels. Combinations of increased precipitation, temperature, and CO2 had synergistic effects on herbaceous production, however drastic increases in these climate scenarios left the system vulnerable to shifts from herbaceous to shrub-dominated vegetation when grazed. Reduced precipitation had a negative effect on vegetation growth rates, thus herbaceous growth was not sustainable with moderate grazing. Shifts in temporal biomass patterns due to changed climate have potentially significant implications for grazing management, which will need to be altered under changing climate to maintain system stability.  相似文献   

7.
Gary Yohe 《Climatic change》2000,46(3):371-390
Three types of adaptation can influence significantly a system's prospective longevity in the face of climate change. The ability to cope with variation in its current environment can help a system adapt to changes over the longer term. The ability to take advantage of beneficial changes that might coincide with potentially harmful ones can play an even larger role; and focusing attention on maximizing a system's sustainable lifetime can highlight the potential for extending that time horizon and increasing the likelihood that an alternative structure might be created. A specific economic approach to adaptation demonstrates that research can serve two functions in this regard. Research can play an important role in diminishing future harm suggested by standard impact analyses by focusing attention on systems where adaptation can buy the most time. It can help societies learn how to become more robust under current conditions; and it can lead them to explore mechanisms by which they can exploit potentially beneficial change. Research can also play a critical role in assessing the need for mitigating long-term change by focusing attention on systems where potential adaptation in both the short and long runs is so limited that it is almost impossible to buy any time at all. In these areas, switching to an alternative system or investing in the protection of existing ones are the last lines of defense. Real "windows" of tolerable climate change can be defined only by working in areas where these sorts of adaptive alternatives cannot be uncovered.  相似文献   

8.
We discuss approaches to the assessment of vulnerability to climatevariability and change andattempt to clarify the relationship between the concepts of vulnerability andadaptation. In searchof a robust, policy-relevant framework, we define vulnerability in terms ofthe capacity ofindividuals and social groups to respond to, that is, to cope with, recoverfrom or adapt to, anyexternal stress placed on their livelihoods and well-being. The approach thatwe develop placesthe social and economic well-being of society at the centre of the analysis,focussing on thesocio-economic and institutional constraints that limit the capacity torespond. From thisperspective, the vulnerability or security of any group is determined byresource availability andby the entitlement of individuals and groups to call on these resources. Weillustrate theapplication of this approach through the results of field research in coastalVietnam, highlightingshifting patterns of vulnerability to tropical storm impacts at the household-and community-levelin response to the current process of economic renovation and drawingconclusions concerningmeans of supporting the adaptive response to climate stress. Four prioritiesfor action areidentified that would improve the situation of the most exposed members ofmany communities:poverty reduction; risk-spreading through income diversification; respectingcommon propertymanagement rights; and promoting collective security. A sustainable response,we argue, mustalso address the underlying causes of social vulnerability, including theinequitable distributionof resources.  相似文献   

9.
黄土高原地区农业生产对气候变化的脆弱性分析   总被引:17,自引:0,他引:17  
根据IPCC定义和实地考察、文献、问卷调查等结果确定了评价黄土高原地区农业生产对气候变化的脆弱性判别指标体系及其权重分配结果,并对几个代表站点做了脆弱性现状评估,为进一步完成黄土高原地区农业生产对气候变化的脆弱性地区分布和对策研究提供了一定的基础和方法。  相似文献   

10.
农业生产对气候变化的脆弱性研究方法初探   总被引:13,自引:1,他引:13  
在总结脆弱性的定义与介绍相关研究方法的基础上,提出了农业生产对气候变化的脆弱性的初步定义、研究思路、指标体系及计算方法,并讨论了区域农业生产对气候变化影响的适应对策应遵循的有关原则。  相似文献   

11.
不断变化的气候可导致前所未有的极端天气和气候事件。这些事件能否构成灾害,在很大程度上取决于脆弱性和暴露度水平。虽然无法完全消除各种灾害风险,但灾害风险管理和气候变化适应的重点是减少脆弱性和暴露度,并提高对各种潜在极端事件不利影响的恢复力,从而促进社会和经济的可持续发展。全面的灾害风险管理要求更加合理地分配对减灾、灾害管理等方面所付出的努力。过去的主流是强调灾害管理,但目前减灾成为关注焦点和挑战。这种主动积极的灾害风险管理与适应有助于避免未来的风险和灾害,而不仅仅是减少已有的风险和灾害,同时这也是灾害风险管理和气候变化适应更加紧密联系的一个背景。灾害风险管理促进气候变化适应从应对当前的影响中汲取经验,而气候变化适应帮助灾害风险管理更加有效地应对未来变化的条件。  相似文献   

12.
This study examines the sensitivity of maize and sorghum crops to global warming in Botswana, a country with arid climatic conditions and shortfalls in locally produced grain. The vulnerability of the maize and sorghum crops to climate change were studied using crop simulation models while climate change scenarios were generated from Global Circulation Models. Simulated yields indicated that rain-fed crop production under the observed climate was a small fraction of what could be produced under optimal conditions. The gap was attributed to both physical (especially lack of rain) and socio-economic constraints. Using the southern African core climate change scenario, simulated yields declined by 36% in the case of maize and 31% for sorghum in the sand veldt region. Yield reductions from thehard veldt region were in the order of 10% for both maize and sorghum. The growing season became shorter, the average reduction in days in the sand veldt region being 5 and 8 days for maize and sorghum respectively, and correspondingly, 3 and 4 days over the hard veldt region. The food security option currently followed in Botswana was found to be a good adaptive strategy under a changed climate.  相似文献   

13.
气候变化背景下水资源脆弱性研究与展望   总被引:4,自引:0,他引:4  
论述了气候变化背景下水资源脆弱性概念、内涵及其与适应性管理的联系;综述了水资源脆弱性定量评估方法,包括指标权重法、函数及综合指标法等;介绍了减少水资源脆弱性的适应对策研究。分析表明,联系水资源供需矛盾的水资源脆弱性既有自然变化脆弱性的一面,又有气候变化影响导致水资源供需关系发生变化以及旱涝灾害影响加剧水资源脆弱性的问题。关键是要识别影响水资源脆弱性变化的主要调控变量,通过应对气候变化的适应性对策研究,最大限度地减少水资源脆弱性。未来气候变化背景下水资源脆弱性研究,将在进一步发展脆弱性影响与评估基础上,逐步转到适应性水资源管理与对策的研究。  相似文献   

14.
Storms occasionally bring havoc to Northwest Europe. At present, a single storm may cause damage of up to 7 billion U.S.$, of which a substantial part is insured. One scenario of climate change indicates that storm intensity in Northwest Europe could increase by 1–9% because of the doubling of CO2 concentrations in the atmosphere. A geographic-explicit, statistical model, based on recent storms and storm damage data for the Netherlands, shows that an increase of 2% in wind intensity by the year 2015 could lead to a 50% increase in storm damage to houses and businesses. Only 20% of the increase is due to population and economic growth. A 6% increase could even triple the damage. A simpler model – based on national average data and combined with a stochastic storm generator – shows that the average annual damage could increase by 80% with a 2% increase in wind intensity. A 6% wind intensity increase could lead to an average annual damage increase of 500%. The damage in Northwest Europe is about a factor 6 higher than the damage in the Netherlands. Little potential seems to exist for reducing the vulnerability to storms in the Netherlands. More attention should be given to planning at the government level for disaster relief and to the development of coping strategies.  相似文献   

15.
综合分析了哥本哈根联合国气候变化大会的主要成果,对近期国际气候变化谈判的焦点问题进行了展望,还分析了我国应对气候变化面临的新形势和新任务。提出我国应进一步加强应对气候变化工作,把应对气候变化工作纳入法制化轨道,大力研发和推广气候友好技术,加强薄弱领域基础建设,提高适应气候变化的综合能力,积极探索符合我国国情的应对气候变化市场体制和机制,加强气候变化的科学研究,提高我国应对气候变化的科技软实力,增强全社会应对气候变化的意识。  相似文献   

16.
The vulnerability of India and Indian states to climate change was assessed using the Vulnerability-Resilience Indicator Prototype (VRIP). The model was adapted from the global/country version to account for Indian dietary practices and data availability with regard to freshwater resources. Results (scaled to world values) show nine Indian states to be moderately resilient to climate change, principally because of low sulfur emissions and a relatively large percentage of unmanaged land. Six states are more vulnerable than India as a whole, attributable largely to sensitivity to sea storm surges. Analyses of results at the state level (Orissa, and comparisons between Maharashtra and Kerala, and Andhra Pradesh and Himachal Pradesh) demonstrate the value of VRIP analyses used in conjunction with other socio-economic information to address initial questions about the sources of vulnerability in particular places. The modeling framework allows analysts and stakeholders to systematically evaluate individual and sets of indicators and to indicate where the likely vulnerabilities are in the area being assessed.  相似文献   

17.
The International Workshop on Reducing Vulnerability of Agriculture and Forestry to Climate Variability and Climate Change held in Ljubljana, Solvenia, from 7 to 9 October 2002 addressed a range of important issues relating to climate variability, climate change, agriculture, and forestry including the state of agriculture and forestry and agrometeological information, and potential adaptation strategies for agriculture and forestry to changing climate conditions and other pressures. There is evidence that global warming over the last millennium has already resulted in increased global average annual temperature and changes in rainfall, with the 1990s being likely the warmest decade in the Northern Hemisphere at least. During the past century, changes in temperature patterns have, for example, had a direct impact on the number of frost days and the length of growing seasons with significant implications for agriculture and forestry. Land cover changes, changes in global ocean circulation and sea surface temperature patterns, and changes in the composition of the global atmosphere are leading to changes in rainfall. These changes may be more pronounced in the tropics. For example, crop varieties grown in the Sahel may not be able to withstand the projected warming trends and will certainly be at risk due to projected lower amounts of rainfall as well. Seasonal to interannual climate forecasts will definitely improve in the future with a better understanding of dynamic relationships. However, the main issue at present is how to make better use of the existing information and dispersion of knowledge to the farm level. Direct participation by the farming communities in pilot projects on agrometeorological services will be essential to determine the actual value of forecasts and to better identify the specific user needs. Old (visits, extension radio) and new (internet) communication techniques, when adapted to local applications, may assist in the dissemination of useful information to the farmers and decision makers. Some farming systems with an inherent resilience may adapt more readily to climate pressures, making long-term adjustments to varying and changing conditions. Other systems will need interventions for adaptation that should be more strongly supported by agrometeorological services for agricultural producers. This applies, among others, to systems where pests and diseases play an important role. Scientists have to guide policy makers in fostering an environment in which adaptation strategies can be effected. There is a clear need for integrating preparedness for climate variability and climate change. In developed countries, a trend of higher yields, but with greater annual fluctuations and changes in cropping patterns and crop calendars can be expected with changing climate scenarios. Shifts in projected cropping patterns can be disruptive to rural societies in general. However, developed countries have the technology to adapt more readily to the projected climate changes. In many developing countries, the present conditions of agriculture and forestry are already marginal, due to degradation of natural resources, the use of inappropriate technologies and other stresses. For these reasons, the ability to adapt will be more difficult in the tropics and subtropics and in countries in transition. Food security will remain a problem in many developing countries. Nevertheless, there are many examples of traditional knowledge, indigenous technologies and local innovations that can be used effectively as a foundation for improved farming systems. Before developing adaptation strategies, it is essential to learn from the actual difficulties faced by farmers to cope with risk management at the farm level. Agrometeorologists must play an important role in assisting farmers with the development of feasible strategies to adapt to climate variability and climate change. Agrometeorologists should also advise national policy makers on the urgent need to cope with the vulnerabilities of agriculture and forestry to climate variability and climate change. The workshop recommendations were largely limited to adaptation. Adaptation to the adverse effects of climate variability and climate change is of high priority for nearly all countries, but developing countries are particularly vulnerable. Effective measures to cope with vulnerability and adaptation need to be developed at all levels. Capacity building must be integrated into adaptation measures for sustainable agricultural development strategies. Consequently, nations must develop strategies that effectively focus on specific regional issues to promote sustainable development.  相似文献   

18.
在气候变化影响的诸环境系统中,冰冻圈首当其冲。冰冻圈不仅对全球变暖的敏感性最高、变化最快、最明显,而且人类对它的变化很难采取有效的防范措施,因此,它被认为是最容蝗受到气候变化损害的脆弱环,尤其是山地冰川,其进退这变化就是对气候变化的响应,正因如此,对冰川及其与气候变化的关系研究越来越为人们所关注。  相似文献   

19.
A regional database containing historical time series and climate change scenarios for the Southeastern United States was developed for the U.S.D.A. Forest Service Southern Global Change Program (SGCP). Daily historical values of maximum temperature, minimum temperature and precipitation and empirically derived estimates of vapor pressure deficit and solar radiation across a uniform 1° latitude × 1° longitude grid were obtained. Climate change scenarios of temperature, precipitation, vapor pressure deficit and solar radiation were generated using semi-empirical techniques which combined historical time series and simulation field summaries from GISS, GFDL, OSU and UKMO General Circulation Model (GCM) experiments. An internally consistent 1° latitude × 1° longitude climate change scenario database was produced in which vapor pressure deficit and solar radiation conditions were driven by the GCM temperature projections, but were not constrained to agree with GCM calculated radiation and humidity fields. Some of the unique characteristics of the database were illustrated through a case study featuring growing season and annual potential evapotranspiration (ETp) estimates. Overall, the unconstrained scenarios produced smaller median ETp changes from historical baseline conditions, with a smaller range of outcomes than those driven by GCM-directed scenarios. Collectively, the range of annual and growing season ET changes from baseline estimates in response to the unconstrained climate scenarios was +10% to +40%. No outlier responses were identified. ETp changes driven by GCM-directed (constrained) UKMO radiation and humidity scenarios were on the order of +100%, resulting in the identification of some ETp responses as statistical outliers. These response differences were attributed to differences between the constrained and unconstrained humidity scenarios.  相似文献   

20.
A physically based conceptual framework is put forward that explains why an increase in heavy precipitation events should be a primary manifestation of the climate change that accompanies increases in greenhouse gases in the atmosphere. Increased concentrations of greenhouse gases in the atmosphere increase downwelling infrared radiation, and this global heating at the surface not only acts to increase temperatures but also increases evaporation which enhances the atmospheric moisture content. Consequently all weather systems, ranging from individual clouds and thunderstorms to extratropical cyclones, which feed on the available moisture through storm-scale moisture convergence, are likely to produce correspondingly enhanced precipitation rates. Increases in heavy rainfall at the expense of more moderate rainfall are the consequence along with increased runoff and risk of flooding. However, because of constraints in the surface energy budget, there are also implications for the frequency and/or efficiency of precipitation. It follows that increased attention should be given to trends in atmospheric moisture content, and datasets on hourly precipitation rates and frequency need to be developed and analyzed as well as total accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号