首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study the interplay of clumping at small scales with the collapse and relaxation of perturbations at much larger scales. We present results of our analysis when the large-scale perturbation is modelled as a plane wave. We find that in the absence of substructure, collapse leads to formation of a pancake with multistream regions. Dynamical relaxation of the plane wave is faster in the presence of substructure. Scattering of substructures and the resulting enhancement of transverse motions of haloes in the multistream region lead to a thinner pancake. In turn, collapse of the plane wave leads to formation of more massive collapsed haloes as compared to the collapse of substructure in the absence of the plane wave. The formation of more massive haloes happens without any increase in the total mass in collapsed haloes. A comparison with the Burgers equation approach in the absence of any substructure suggests that the preferred value of effective viscosity depends primarily on the number of streams in a region.  相似文献   

2.
3.
4.
We investigate the evolution of non-linear density perturbations by taking into account the effects of deviations from spherical symmetry of a system. Starting from the standard spherical top hat model in which these effects are ignored, we introduce a physically motivated closure condition which specifies the dependence of the additional terms on the density contrast, δ . The modified equation can be used to model the behaviour of an overdense region over a sufficiently large range of δ . The key new idea is a Taylor series expansion in (1/ δ ) to model the non-linear epoch. We show that the modified equations quite generically lead to the formation of stable structures in which the gravitational collapse is halted at around the virial radius. The analysis also allows us to connect up the behaviour of individual overdense regions with the non-linear scaling relations satisfied by the two-point correlation function.  相似文献   

5.
6.
7.
We derive the asymptotic mass profile near the collapse centre of an initial spherical density perturbation, δ ∝ M − ε , of collisionless particles with non-radial motions. We show that angular momenta introduced at the initial time do not affect the mass profile. Alternatively, we consider a scheme in which a particle moves on a radial orbit until it reaches its turnaround radius, r ∗. At turnaround the particle acquires an angular momentum L =ℒ√ GM * r * per unit mass, where M ∗ is the mass interior to r ∗. In this scheme, the mass profile is M ∝ r 3/(1+3 ε ) for all ε >0 , in the region r / r t ≪ℒ , where r t is the current turnaround radius. If ℒ≪1 then the profile in the region ℒ≪ r / r t ≪1 is M ∝ r for ε <2/3 , and remains M ∝ r 3/(1+3 ε ) for ε ≥2/3 . The derivation relies on a general property of non-radial orbits which is that the ratio of the pericentre to apocentre is constant in a force field k ( t ) r n with k ( t ) varying adiabatically.  相似文献   

8.
9.
10.
11.
We present extensive tests of the fast action method (FAM) for recovering the past orbits of mass tracers in an expanding universe from their redshift-space coordinates at the present epoch. The tests focus on the reconstruction of present-day peculiar velocities using mock catalogues extracted from high-resolution N -body simulations. The method allows for a self-consistent treatment of redshift-space distortions by direct minimization of a modified action for a cosmological gravitating system. When applied to ideal, volume-limited catalogues, FAM recovers unbiased peculiar velocities with a one-dimensional, 1σ error of ∼220 km  s−1  , if velocities are smoothed on a scale of  5 h −1  Mpc. Alternatively, when no smoothing is applied, FAM predicts nearly unbiased velocities for objects residing outside the highest density regions. In this second case the 1σ error decreases to a level of ∼150 km  s−1  . The correlation properties of the peculiar velocity fields are also correctly recovered on scales larger than  5 h −1  Mpc. Similar results are obtained when FAM is applied to flux-limited catalogues mimicking the IRAS PSC z survey. In this case FAM reconstructs peculiar velocities with similar intrinsic random errors, while velocity–velocity correlation properties are well reproduced beyond scales of  ∼8 h −1  Mpc. We also show that FAM provides better velocity predictions than other, competing methods based on linear theory or the Zel'dovich approximation. These results indicate that FAM can be successfully applied to presently available galaxy redshift surveys such as IRAS PSC z .  相似文献   

12.
Given the present distribution of mass tracing objects in an expanding universe, we develop and test a fast method for recovering their past orbits using the least action principle. In this method, termed FAM for fast action minimization, the orbits are expanded in a set of orthogonal time basis functions satisfying the appropriate boundary conditions at the initial and final times. The conjugate gradient method is applied to locate the extremum of the action in the space of the expansion coefficients of the orbits. The treecode gravity solver routine is used for computing the gravitational field appearing in the action and the potential field appearing in the gradient of the action. The time integration of the Lagrangian is done using Gaussian quadratures. FAM allows us to increase the number of galaxies over previous numerical action principle implementations by more than one order of magnitude. For example, orbits for the 15 000 IRAS PSC z galaxies can be recovered in 12 000 CPU seconds on a 400-MHz DEC-Alpha machine. FAM can recover the present peculiar velocities of particles and the initial fluctuations field. It successfully recovers the flow field down to cluster scales, where deviations of the flow from the Zel'dovich solution are significant. We also show how to recover orbits from the present distribution of objects in redshift space by direct minimization of a modified action, without iterating the solution between real and redshift spaces.  相似文献   

13.
14.
15.
We place additional constraints on the three parameters of the dark matter halo merger rate function recently proposed by Parkinson, Cole & Helly by utilizing Smoluchowski's coagulation equation, which must be obeyed by any binary merging process which conserves mass. We find that the constraints from Smoluchowski's equation are degenerate, limiting to a thin plane in the three-dimensional parameter space. This constraint is consistent with those obtained from fitting to N -body measures of progenitor mass functions, and provides a better match to the evolution of the overall dark matter halo mass function, particularly for the most massive haloes. We demonstrate that the proposed merger rate function does not permit an exact solution of Smoluchowski's equation and, therefore, the choice of parameters must reflect a compromise between fitting various parts of the mass function. The techniques described herein are applicable to more general merger rate functions, which may permit a more accurate solution of Smoluchowski's equation. The current merger rate solutions are most probably sufficiently accurate for the vast majority of applications.  相似文献   

16.
17.
We investigate the cross-talk between the two key components of tidal-torque theory, the inertia ( I ) and shear ( T ) tensors, using a cosmological N -body simulation with thousands of well-resolved haloes. We find that the principal axes of I and T are strongly aligned , even though I characterizes the protohalo locally while T is determined by the large-scale structure. Thus, the resultant galactic spin, which plays a key role in galaxy formation, is only a residual due to ∼10 per cent deviations from the perfect alignment of T and I . The   T – I   correlation induces a weak tendency for the protohalo spin to be perpendicular to the major axes of T and I , but this correlation is erased by non-linear effects at late times, making the observed spins poor indicators of the initial shear field.
However, the   T – I   correlation implies that the shear tensor can be used for identifying the positions and boundaries of protohaloes in cosmological initial conditions – a missing piece in galaxy formation theory. The typical configuration is of a prolate protohalo lying perpendicular to a large-scale high-density ridge, with the surrounding voids inducing compression along the major and intermediate inertia axes of the protohalo. This leads to a transient sub-halo filament along the large-scale ridge, whose subclumps then flow along the filament and merge into the final halo.
The centres of protohaloes tend to lie in ∼1 σ overdensity regions, but their association with linear density maxima smoothed on galactic scales is vague: only ∼40 per cent of the protohaloes contain peaks. Several other characteristics distinguish protohaloes from density peaks, e.g. they tend to compress along two principal axes while many peaks compress along three axes.  相似文献   

18.
19.
We investigate how strong gravitational lensing in the concordance ΛCDM cosmology is affected by the stellar mass in galaxies. We extend our previous studies, based on ray tracing through the Millennium Simulation, by including the stellar components predicted by galaxy formation models. We find that the inclusion of these components greatly enhances the probability for strong lensing compared to a 'dark matter only' universe. The identification of the 'lenses' associated with strong-lensing events reveals that the stellar mass of galaxies (i) significantly enhances the strong-lensing cross-sections of group and cluster haloes and (ii) gives rise to strong lensing in smaller haloes, which would not produce noticeable effects in the absence of the stars. Even if we consider only image splittings ≳10 arcsec, the luminous matter can enhance the strong-lensing optical depths by up to a factor of 2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号