首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
We report δ7Li, Li abundance ([Li]), and other trace elements measured by ion probe in igneous zircons from TTG (tonalite, trondhjemite, and granodiorite) and sanukitoid plutons from the Superior Province (Canada) in order to characterize Li in zircons from typical Archean continental crust. These data are compared with detrital zircons from the Jack Hills (Western Australia) with U–Pb ages greater than 3.9 Ga for which parent rock type is not known. Most of the TTG and sanukitoid zircon domains preserve typical igneous REE patterns and CL zoning. [Li] ranges from 0.5 to 79 ppm, typical of [Li] in continental zircons. Atomic ratios of (Y + REE)/(Li + P) average 1.0 ± 0.7 (2SD) for zircons with magmatic composition preserved, supporting the hypothesis that Li is interstitial and charge compensates substitution of trivalent cations. This substitution results in a relatively slow rate of Li diffusion. The δ7Li and trace element data constrain the genesis of TTGs and sanukitoids. [Li] in zircons from granitoids is significantly higher than from zircons in primitive magmas in oceanic crust. TTG zircons have δ7Li (3 ± 8‰) and δ18O in the range of primitive mantle-derived magmas. Sanukitoid zircons have average δ7Li (7 ± 8‰) and δ18O higher than those of TTGs supporting genesis by melting of fluid-metasomatized mantle wedge. The Li systematics in sanukitoid and TTG zircons indicate that high [Li] in pre-3.9-Ga Jack Hills detrital zircons is a primary igneous composition and suggests the growth in proto-continental crust in magmas similar to Archean granitoids.  相似文献   

2.
Spinel lherzolite and pyroxenite xenoliths from the Rio Puerco Volcanic Field, New Mexico, were analyzed for oxygen isotope ratios by laser fluorination. In lherzolites, olivine δ18O values are high (+5.5‰), whereas δ18O values for pyroxenes are low (cpx=+5.1‰; opx=+5.4‰) compared to average mantle values. Pyroxenite δ18O values (cpx=+5.0‰; opx=+5.3‰) are similar to those of the lherzolites and are also lower than typical mantle oxygen isotope compositions. Texturally and chemically primary calcite in pyroxenite xenoliths is far from isotopic equilibrium with other phases, with δ18O values of +21‰. The isotopic characteristics of the pyroxenite xenoliths are consistent with a petrogenetic origin from mixing of lherzolitic mantle with slab-derived silicate and carbonatite melts. The anomalously low δ18O in the pyroxenes reflects metasomatism by a silicate melt from subducted altered oceanic crust, and high δ18O calcite is interpreted to have crystallized from a high δ18O carbonatitic melt derived from subducted ophicarbonate. Similar isotopic signatures of metasomatism are seen throughout the Rio Puerco xenolith suite and at Kilbourne Hole in the southern Rio Grande rift. The discrete metasomatic components likely originated from the subducted Farallon slab but were not mobilized until heating associated with Rio Grande rifting occurred. Oxygen diffusion modeling requires that metasomatism leading to the isotopic disequilibrium between calcite and pyroxene in the pyroxenites occurred immediately prior to entrainment. Melt infiltration into spinel-facies mantle (xenoliths) prior to eruption was thus likely connected to garnet-facies melting that resulted in eruption of the host alkali basalt.  相似文献   

3.
The fractionation of lithium isotopes between synthetic spodumene as representative of Li-bearing clinopyroxene and Cl- and OH-bearing aqueous fluids was experimentally determined between 500 and 900°C at 2.0 GPa. In all the experiments, 7Li was preferentially partitioned into the fluid. The fractionation is temperature dependent and approximated by the equation Δ7Li(clinopyroxene–fluid)=−4.61×(1,000/T [K]) + 2.48; R 2=0.86. Significant Li isotopic fractionation of about 1.0‰ exists even at high temperatures of 900°C. Using neutral and weakly basic fluids revealed that the amount of fractionation is not different. The Li isotopic fractionation between altered basalt and hot spring water (350°C) in natural samples is in good agreement with our experimentally determined fractionation curve. The data confirm earlier speculations drawn from the Li isotopic record of dehydrated metamorphic rocks that fluids expelled from a dehydrating slab carry heavier Li into the mantle wedge, and that a light Li component is introduced into the deeper mantle. Li and Li isotopes are redistributed among wedge minerals as fluids travel across the wedge into hotter regions of arc magma production. This modifies the Li isotopic characteristics of slab-derived fluids erasing their source memory, and explains the absence of cross-arc variations of Li isotopes in arc basalts.  相似文献   

4.
Li contents and its isotopes of minerals in mantle peridotite xenoliths from late Cretaceous mafic dikes, analyzed in situ by Cameca IMS-1280, reveal the existence of melt/rock interaction in remains of refertilized Archean lithospheric mantle in Qingdao, Jiaodong Peninsula, North China Craton. Two groups of peridotites exist, i.e., low-Mg# lherzolite and high-Mg# harzburgites. The low-Mg# lherzolite has a relatively homogeneous Li concentration (ol: 2.01–2.11 ppm; opx: 1.77–1.88 ppm; cpx: 1.75–1.93 ppm) and Li isotopic composition (δ7Li in ol: 4.2–7.6‰; in opx: 6.0–8.3‰; in cpx: 5.3–8.4‰). The similarity in δ7Li value to the fresh MORB provides further evidence for the argument that the low-Mg# lherzolite could be the fragment of the newly accreted lithospheric mantle. The high-Mg# harzburgites have heterogeneous Li abundances (ol: 0.83–2.09 ppm; opx: 0.92–1.94 ppm; cpx: 1.12–4.89 ppm) and Li isotopic compositions (δ7Li in ol: −0.5 to +11.5‰; in opx: −6.2 to +11.1‰; in cpx: −34.3 to +10.1‰), showing strong disequilibrium in Li partitioning and Li isotope fractionation between samples. The cores of most minerals in these high-Mg# harzburgites have relatively homogeneous δ7Li values, which are higher than those of fresh MORB, but similar to those previously reported for arc lavas. These harzburgites have enriched trace elemental and Sr–Nd isotopic compositions. These observations indicate that in the early Mesozoic the lithospheric mantle beneath the southeastern North China Craton was similar to that in arc settings, which is metasomatized by subducted crustal materials. Extremely low δ7Li preserved in cpxs requires diffusive fractionation of Li isotopes from later-stage melt into the minerals. Thus, the Li data provide further evidence that the Archean refractory lithospheric mantle represented by the high-Mg# harzburgites was refertilized through melt/rock interaction and transformed to the Mesozoic less refractory and incompatible element and Sr–Nd isotopes enriched lithospheric mantle.  相似文献   

5.
Elemental and Li–Sr–Nd isotopic data of minerals in spinel peridotites hosted by Cenozoic basalts allow us to refine the existing models for Li isotopic fractionation in mantle peridotites and constrain the melt/fluid-peridotite interaction in the lithospheric mantle beneath the North China Craton. Highly elevated Li concentrations in cpx (up to 24 ppm) relative to coexisting opx and olivine (<4 ppm) indicate that the peridotites experienced metasomatism by mafic silicate melts and/or fluids. The mineral δ7Li vary greatly, with olivine (+0.7 to +5.4‰) being isotopically heavier than coexisting opx (−4.4 to −25.9‰) and cpx (−3.3 to −21.4‰) in most samples. The δ7Li in pyroxenes are considerably lower than the normal mantle values and show negative correlation with their Li abundances, likely due to recent Li ingress attended by diffusive fractionation of Li isotopes. Two exceptional samples have olivine δ7Li of −3.0 and −7.9‰, indicating the existence of low δ7Li domains in the mantle, which could be transient and generated by meter-scale diffusion of Li during melt/fluid-peridotite interaction. The 143Nd/144Nd (0.5123–0.5139) and 87Sr/86Sr (0.7018–0.7062) in the pyroxenes also show a large variation, in which the cpx are apparently lower in 87Sr/86Sr and slightly higher in 143Nd/144Nd than coexisting opx, implying an intermineral Sr–Nd isotopic disequilibrium. This is observed more apparently in peridotites having low 87Sr/86Sr and high 143Nd/144Nd ratios than in those with high 87Sr/86Sr and low 143Nd/144Nd, suggesting that a relatively recent interaction existed between an ancient metasomatized lithospheric mantle and asthenospheric melt, which transformed the refractory peridotites with highly radiogenic Sr and unradiogenic Nd isotopic compositions to the fertile lherzolites with unradiogenic Sr and radiogenic Nd isotopic compositions. Therefore, we argue that the lithospheric mantle represented by the peridotites has been heterogeneously refertilized by multistage melt/fluid-peridotite interactions.  相似文献   

6.
We studied the elemental and isotopic (Pb, B and Li isotopes) composition of melt inclusions hosted in highly forsteritic (Fo83–91) olivines that were collected from San Bartolo lava and pumice (ST79p, ST82p and ST531p) samples erupted by Stromboli in historical times. The studied melt inclusions have primitive calcalkaline to shoshonitic basaltic compositions. They cover a compositional range far wider than that exhibited by the whole-rocks and differ in key trace element ratios. San Bartolo melt inclusions are characterized by lower incompatible trace element abundances, higher ratios between fluid-mobile (B, Pb, U and LILE) and less fluid-mobile (REE, Th, HFSE) elements and lower La/Yb ratios relative to the pumice-hosted melt inclusions and pumiceous melts erupted during paroxysmal events. Trace elements, along with different Pb, B and Li isotopic signatures, attest to source heterogeneity on the small scale and provide new insights into subducted components beneath Stromboli. Results of a mixing model suggest that metasomatism of the mantle source of pumice-hosted melt inclusions was driven by solute-rich high-pressure fluids (<20%) expelled from the deep portion of the slab. Heterogeneous Pb isotopic composition together with light δ11B (−8.6 to −13.7‰) and δ7Li (+2.3 to −1.7‰) indicates that high-pressure liquids were released in variable proportions from highly dehydrated metabasalts and metasediments. On the other hand, the elemental and isotopic (δ11B ~ −1.9 to −5.9‰) composition of San Bartolo melt inclusions is better explained by the addition of a prevalent aqueous component (~2 to 4%) escaped at shallower depths from sediments and altered basaltic crust in almost equivalent proportions, with a smaller contribution by high-pressure fluids. Owing to the high-angle dip of the subducted cold Ionian slab, aqueous fluids and high-pressure fluids would rise through the mantle wedge and locally superimpose on each other, thus giving origin to variously metasomatized mantle domains.  相似文献   

7.
High-pressure, low-temperature (HP-LT) rocks from a Cretaceous age subduction complex occur as tectonic blocks in serpentinite mélange along the Motagua Fault (MF) in central Guatemala. Eclogite and jadeitite among these are characterized by trace element patterns with enrichments in fluid mobile elements, similar to arc lavas. Eclogite is recrystallized from MORB-like altered oceanic crust, presumably at the boundary between the down-going plate and overlying mantle wedge. Eclogite geochemistry, mineralogy and petrography suggest a two step petrogenesis of (1) dehydration during prograde metamorphism at low temperatures (<500 °C) followed by (2) partial rehydration/fertilization at even lower T during exhumation. In contrast, Guatemalan jadeitites are crystallized directly from low-T aqueous fluid as veins in serpentinizing mantle during both subduction and exhumation. The overall chemistry and mineralogy of Guatemalan eclogites are similar to those from the Franciscan Complex, California, implying similar P-T-x paths.Li concentrations (?90 ppm) in mineral separates and whole rocks (WR) from Guatemalan and Franciscan HP-LT rocks are significantly higher than MORB (4-6 ppm), but similar to HP-LT rocks globally. Li isotopic compositions range from −5‰ to +5‰ for Guatemalan HP-LT rocks, and −4‰ to +1‰ for Franciscan eclogites, overlapping previous findings for other HP-LT suites. The combination of Li concentrations greater than MORB, and Li isotopic values lighter than MORB are inconsistent with a simple dehydration model. We prefer a model in which Li systematics in Guatemalan and Franciscan eclogites reflect reequilibration with subduction fluids during exhumation. Roughly 5-10% of the Li in these fluids is derived from sediments.Model results predict that the dehydrated bulk ocean crust is isotopically lighter (δ7Li ? +1 ± 3‰) than the depleted mantle (∼+3.5 ± 0.5‰), while the mantle wedge beneath the arc is the isotopic complement of the bulk crust. A subduction fluid with an AOC-GLOSS composition over the full range of model temperatures (50-600 °C) gives an average fluid δ7Li (∼+7 ± 5‰ 1σ) that is isotopically heavier than the depleted mantle. If the lowest temperature steps are excluded (50-260 °C) as too cold to participate in circulation of the mantle wedge, then the average subduction fluid (δ7Li = +4 ± 2.3‰ 1σ, is indistinguishable from depleted mantle. Because of the relatively compatible nature of Li in metamorphic minerals, the most altered part of the crust (uppermost extrusives), may retain a Li isotopic signature (∼+5 ± 3‰) heavier than the bulk crust. The range of Li isotopic values for OIB, IAB and MORB overlap, making it is difficult to resolve which of these components may contribute to the recycled component in the mantle using δ7Li alone.  相似文献   

8.
Li concentrations and isotopic compositions of coexisting minerals (ol, opx, and cpx) from peridotite xenoliths entrained in the Hannuoba Tertiary basalts, North China Craton, provide insight into Li isotopic fractionation between mantle minerals during melt-rock interaction in the considerably thinned lithospheric mantle. Bulk analyses of mineral separates show significant enrichment of Li in cpx (2.4-3.6 ppm) relative to olivine (1.2-1.8 ppm), indicating that these peridotites have been affected by mantle metasomatism with mafic silicate melts. Bulk olivine separates (δ7Li ∼ +3.3‰ to +6.4‰) are isotopically heavier than coexisting pyroxenes (δ7Li ∼ −3.3‰ to −8.2‰ in cpx, and −4.0‰ to −6.7‰ in opx). Such large variation suggests Li elemental and isotopic disequilibrium. This conclusion is supported by results from in situ SIMS analyses of mineral grains where significant Li elemental and isotopic zonations exist. The olivine and opx have lower Li concentrations and heavier Li isotopes in the rims than in the cores. This reverse correlation of δ7Li with Li concentrations indicates diffusive fractionation of Li isotopes. However, the zoning patterns in coexisting cpx show isotopically heavier rims with higher Li abundances. This positive correlation between δ7Li and Li concentrations suggests a melt mixing trend. We attribute Li concentration and isotope zonation in minerals to the effects of two-stage diffusive fractionation coupled with melt-rock interaction. The earliest melts may have been derived from the subducted oceanic slab with low δ7Li values produced by isotopic fractionation during the dehydration of the seawater-altered slab. Melts at later stages were derived from the asthenosphere and interacted with the peridotites, producing the Li elemental and isotopic zoning in mineral grains. These data thus provide evidence for multiple-stage peridotite-melt interaction in the lithospheric mantle beneath the northern North China Craton.  相似文献   

9.
Li isotope fractionation in peridotites and mafic melts   总被引:4,自引:0,他引:4  
We have measured the Li isotope ratios of a range of co-existing phases from peridotites and mafic magmas to investigate high-temperature fractionations of 7Li/6Li. The Li isotopic compositions of seven mantle peridotites, reconstructed from analyses of mineral separates, show little variation (δ7Li 3.2-4.9‰) despite a wide range in fertility and radiogenic isotopic compositions. The most fertile samples yield a best estimate of δ7Li ∼ 3.5‰ for the upper mantle. Bulk analyses of olivine separates from the xenoliths are typically ∼1.5‰ isotopically lighter than co-existing orthopyroxenes, suggestive of a small, high-temperature equilibrium isotope fractionation. On the other hand, bulk analyses of olivine phenocrysts and their host melts are isotopically indistinguishable. Given these observations, equilibrium mantle melting should generate melts with δ7Li little different from their sources (<0.5‰ lighter). In contrast to olivine and orthopyroxene, that dominate peridotite Li budgets, bulk clinopyroxene analyses are highly variable (δ7Li = 6.6‰ to −8.1‰). Phlogopite separated from a modally metasomatised xenolith yielded an extreme δ7Li of −18.9‰. Such large Li isotope variability is indicative of isotopic disequilibrium. This inference is strongly reinforced by in situ, secondary ion mass-spectrometry analyses which show Li isotope zonation in peridotite minerals. The simplest zoning patterns show isotopically light rims. This style of zoning is also observed in the phenocrysts of holocrystalline Hawaiian lavas. More dramatically, a single orthopyroxene crystal from a San Carlos xenolith shows a W-shaped Li isotope profile with a 40‰ range in δ7Li, close to the isotope variability seen in all terrestrial whole rock analyses. We attribute Li isotope zonation in mineral phases to diffusive fractionation of Li isotopes, within mineral phases and along melt pathways that pervade xenoliths. Given the high diffusivity of Li, the Li isotope profiles we observe can persist, at most, only a few years at magmatic temperatures. Our results thus highlight the potential of Li isotopes as a high-resolution geospeedometer of the final phases of magmatic activity and cooling.  相似文献   

10.
Lithium concentrations and isotopic compositions of olivine and 87Sr/86Sr and 143Nd/144Nd of coexisting clinopyroxene from peridotite xenoliths from the Quaternary Labait volcano, Tanzania, document the influence of rift-related metasomatism on the ancient cratonic mantle. Olivines show negative correlations between Fo content and both δ7Li and Li concentrations. Olivines in iron-rich peridotites (Fo85–87) have high Li concentrations (3.2–4.8 ppm) and heavy δ7Li (+5.2 to +6.6). In contrast, olivines in ancient, refractory peridotites have lower Li concentrations (∼2 ppm) and relatively light δ7Li (+2.6 to +3.5). This reflects mixing between ancient, refractory cratonic lithosphere and asthenosphere-derived rift magmas. A uniquely fertile, deformed, high-temperature garnet lherzolite, interpreted to be from the base of the lithosphere, has a 87Sr/86Sr of 0.7029 and 143Nd/144Nd of 0.51286, similar to HIMU oceanic basalts. It provides the best estimate of the Sr–Nd isotope composition of the upwelling mantle (i.e., plume, sensu lato) underlying this portion of the East African Rift, and is slightly less radiogenic compared to previous estimates of the plume that were based on rift basalts. Although elevated δ7Li are not exclusive to HIMU source regions, the data collectively indicate that the plume beneath Labait has HIMU characteristics in Sr, Nd and Li isotope composition. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
Ion-microprobe was used to measure Li abundances and isotopic compositions in pyroxenes from three Martian meteorites belonging to the nakhlite family. The profiles performed across augite crystals from Northwest Africa 817 show a large isotopic zoning from crystal cores (δ7Li ∼ 0‰) to rims (δ7Li ∼ +20‰) while Li abundances are almost constant (∼9.2 μg/g). Unlike NWA 817, the pyroxene studied in the Miller Range 03346 nakhlite shows a zoning in Li abundance, with concentrations increasing from ∼2.5 μg/g in the core to ∼9 μg/g in the rim. The augite rim (δ7Li = +7‰) is slightly enriched in 7Li with regard to the core (δ7Li = +4‰), but most of the isotopic variations observed occur at an intermediate position along the profile, where δ7Li falls down to ∼−11‰. In the case of Nakhla, Li concentrations in augite increase from cores (∼3.5 μg/g) to rims (∼6.5 μg/g), while the δ7Li variation is restricted (i.e., between δ7Li = +6.0 and +12.6‰). For the three meteorites the Li abundances were also measured in the groundmass, which was found to be enriched in lithium (∼10 μg/g). Conventional magmatic and post-magmatic processes such as alteration and fractional crystallization, fail to explain the dataset obtained on nakhlites. Degassing processes, which were previously proposed to explain the Li distribution in shergottite crystals, cannot result in the strong decoupling between Li abundances and isotopic composition observed in nakhlites. We suggest that the original magmatic Li distributions (concentrations and isotopic compositions) in nakhlites have been modified by diffusion of Li from the Li-rich groundmass towards the pyroxene crystals during sub-solidus cooling. Diffusion appears to have been efficient for NWA 817 and MIL 03346 but, apparently, did not produce a significant migration of Li in Nakhla, possibly because of the lower abundance of groundmass in the latter. Diffusion induced Li redistributions may also affect terrestrial porphyric rocks but very specific cooling rates are required to quench the diffusion profiles as observed in two of the present nakhlites.  相似文献   

12.
Ultramafic xenoliths from a veined mantle wedge beneath the Kamchatka arc have non-chondritic, fractionated chondrite-normalized platinum-group element (PGE) patterns. Depleted (e.g., low bulk-rock Al2O3 and CaO contents) mantle harzburgites show clear enrichment in the Pd group relative to the Ir group PGEs and, in most samples, Pt relative to Rh and Pd. These PGE signatures most likely reflect multi-stage melting which selectively concentrates Pt in Pt–Fe alloys while strongly depleting the sub-arc mantle wedge in incompatible elements. Elevated gold concentrations and enrichment of strongly incompatible enrichment (e.g., Ba and Th) in some harzburgites suggest a late-stage metasomatism by slab-derived, saline hydrous fluids. Positive Pt, Pd, and Au anomalies coupled with Ir depletions in heavily metasomatized pyroxenite xenoliths probably reflect the relative mobility of the Pd and Ir groups (especially Os) during sub-arc metasomatism which is consistent with Os systematics in arc mantle nodules. Positive correlations between Pt, Pd, and Au and various incompatible elements (Hf, U, Ta, and Sr) also suggest that both slab-derived hydrous fluids and siliceous melts were involved in the sub-arc mantle metasomatism beneath the Kamchatka arc.  相似文献   

13.
The intraplate volcanic suite of the Chaîne des Puys (French Massif Central) shows a complete petrologic range, from alkali basalts to trachytes. The significant variations of trace elements and radiogenic isotopes along the series strongly support the occurrence of crustal assimilation associated with fractional crystallization (AFC). The least contaminated basalts are clearly related to a HIMU-type reservoir (206Pb/204Pb > 19.6; 87Sr/86Sr < 0.7037; εNd > + 4). The behavior of radiogenic isotopes suggests that the most likely crustal contaminants are meta-sediments located in the lower crust.The Li isotopic compositions of the lavas range from high δ7Li (> + 7‰) in basalts to lighter values in more evolved lavas (down to δ7Li ≈ 0‰). The mantle component, expressed in the least evolved lavas, has a heavy Li isotopic signature, in good agreement with previous δ7Li measurements of OIB lavas with HIMU affinities. The evolution of Li isotopic compositions throughout the volcanic series is in agreement with the AFC model suggested by the Sr–Nd–Pb isotopic systems. Although the behavior of Li isotopes during assimilation processes is currently poorly constrained, our calculations suggest that at least a portion of the lower crust beneath the Chaîne des Puys is characterized by a light Li isotopic composition (δ7Li < − 5‰).  相似文献   

14.
We present whole rock Li and Mg isotope analyses of 33 ultramafic xenoliths from the terrestrial mantle, which we compare with analyses of 30 (mostly chondritic) meteorites. The accuracy of our new Mg isotope ratio measurement protocol is substantiated by a combination of standard addition experiments, the absence of mass independent effects in terrestrial samples and our obtaining identical values for rock standards using two different separation chemistries and three different mass-spectrometric introduction systems. Carbonaceous, ordinary and enstatite chondrites have irresolvable mean stable Mg isotopic compositions (δ25Mg = −0.14 ± 0.06; δ26Mg = −0.27 ± 0.12‰, 2SD), but our enstatite chondrite samples have lighter δ7Li (by up to ∼3‰) than our mean carbonaceous and ordinary chondrites (3.0 ± 1.5‰, 2SD), possibly as a result of spallation in the early solar system. Measurements of equilibrated, fertile peridotites give mean values of δ7Li = 3.5 ± 0.5‰, δ25Mg = −0.10 ± 0.03‰ and δ26Mg = −0.21 ± 0.07‰. We believe these values provide a useful estimate of the primitive mantle and they are within error of our average of bulk carbonaceous and ordinary chondrites. A fuller range of fresh, terrestrial, ultramafic samples, covering a variety of geological histories, show a broad positive correlation between bulk δ7Li and δ26Mg, which vary from −3.7‰ to +14.5‰, and −0.36‰ to + 0.06‰, respectively. Values of δ7Li and δ26Mg lower than our estimate of primitive mantle are strongly linked to kinetic isotope fractionation, occurring during transport of the mantle xenoliths. We suggest Mg and Li diffusion into the xenoliths is coupled to H loss from nominally anhydrous minerals following degassing. Diffusion models suggest that the co-variation of Mg and Li isotopes requires comparable diffusivities of Li and Mg in olivine. The isotopically lightest samples require ∼5-10 years of diffusive ingress, which we interpret as a time since volatile loss in the host magma. Xenoliths erupted in pyroclastic flows appear to have retained their mantle isotope ratios, likely as a result of little prior degassing in these explosive events. High δ7Li, coupled with high [Li], in rapidly cooled arc peridotites may indicate that these samples represent fragments of mantle wedge that has been metasomatised by heavy, slab-derived fluids. If such material is typically stirred back into the convecting mantle, it may account for the heavy δ7Li seen in some oceanic basalts.  相似文献   

15.
We report the oxygen isotope composition of olivine and orthopyroxene phenocrysts in lavas from the main magma types at Mt Shasta and Medicine Lake Volcanoes: primitive high-alumina olivine tholeiite (HAOT), basaltic andesites (BA), primitive magnesian andesites (PMA), and dacites. The most primitive HAOT (MgO > 9 wt%) from Mt. Shasta has olivine δ18O (δ18OOl) values of 5.9–6.1‰, which are about 1‰ higher than those observed in olivine from normal mantle-derived magmas. In contrast, HAOT lavas from Medicine Lake have δ18OOl values ranging from 4.7 to 5.5‰, which are similar to or lower than values for olivine in equilibrium with mantle-derived magmas. Other magma types from both volcanoes show intermediate δ18OOl values. The oxygen isotope composition of the most magnesian lavas cannot be explained by crustal contamination and the trace element composition of olivine phenocrysts precludes a pyroxenitic mantle source. Therefore, the high and variable δ18OOl signature of the most magnesian samples studied (HAOT and BA) comes from the peridotitic mantle wedge itself. As HAOT magma is generated by anhydrous adiabatic partial melting of the shallow mantle, its 1.4‰ range in δ18OOl reflects a heterogeneous composition of the shallow mantle source that has been influenced by subduction fluids and/or melts sometime in the past. Magmas generated in the mantle wedge by flux melting due to modern subduction fluids, as exemplified by BA and probably PMA, display more homogeneous composition with only 0.5‰ variation. The high-δ18O values observed in magnesian lavas, and principally in the HAOT, are difficult to explain by a single-stage flux-melting process in the mantle wedge above the modern subduction zone and require a mantle source enriched in 18O. It is here explained by flow of older, pre-enriched portions of the mantle through the slab window beneath the South Cascades.  相似文献   

16.
The Tabar–Lihir–Tanga–Feni (TLTF) islands of Papua New Guinea mainly comprise high-K calc-alkaline and silica undersaturated alkaline rocks that have geochemical features typical for subduction-related magmatism. Numerous sedimentary, mafic, and ultramafic xenoliths recovered from Tubaf seamount, located on the flank of Lihir Island, provide a unique opportunity to study the elemental and isotopic composition of the crust and mantle wedge beneath the arc and to evaluate their relationships to the arc magmatism in the region. The sedimentary and mafic xenoliths show that the crust under the islands is composed of sedimentary sequences and oceanic crust with Pacific affinity. A majority of the ultramafic xenoliths contain features indicating wide spread metasomatism in the mantle wedge under the TLTF arc. Leaching experiments reveal that the metasomatized ultramafic xenoliths contain discrete labile phases that can account for up to 50% or more of elements such as Cu, Zn, Rb, U, Pb, and light REE (rare-earth elements), most likely introduced in the xenoliths via hydrous fluids released from a subducted slab. The leaching experiments demonstrated that the light REE enrichment pattern can be more or less removed from the metasomatized xenoliths and the residual phases exhibit REE patterns that range from flat to light REE depleted. Sr–Nd isotopic data for the ultramafic residues show a coupled behavior of increasing 87Sr/86Sr with decreasing 143Nd/144Nd ratios. The labile phases in the ultramafic xenoliths, represented by the leachates, show decoupling between Sr and Nd with distinctly more radiogenic 87Sr/86Sr than the residues. Both leachates and residues exhibit very wide range in their Pb isotopic compositions, indicating the involvement of three components in the mantle wedge under the TLTF islands. Two of the components can be identified as Pacific Oceanic mantle and Pacific sediments. Some of the ultramafic samples and clinopyroxene separates, however, exhibit relatively low 206Pb/204Pb at elevated 207Pb/204Pb suggesting that the third component is either Indian Ocean-type mantle or Australian subcontinental lithospheric mantle. Geochemical data from the ultramafic xenoliths indicate that although the mantle wedge in the area was extensively metasomatized, it did not significantly contribute to the isotopic and incompatible trace element compositions of TLTF lavas. Compared to the mantle samples, the TLTF lavas have very restricted Pb isotopic compositions that lie within the Pacific MORB range, indicating that magma compositions were dominated by melts released from a stalled subducted slab with Pacific MORB affinity. Interaction of slab melts with depleted peridotitic component in the mantle wedge, followed by crystal fractionation most likely generated the geochemical characteristics of the lavas in the area. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The relationships between the δ18O of quartz veins and veinlets pertaining to the main stage of gold mineralization at the Sukhoi Log deposit and metasomatically altered host slates are estimated. The oxygen isotopic composition of veined quartz and host slates is not uniform. The δ18O of quartz veins from the Western, Central, and Sukhoi Log areas of the deposit vary from +16 to + 18 ‰. The δ18O range of metasomatically altered slates in the Western and Sukhoi Log areas attains 6 ‰. The δ18O of quartz veins are always higher than those of host slates by 3–7‰. The regular difference in the δ18O between quartz veins and host slates indicates that the oxygen isotopic composition of the ore-bearing fluid forming the system of quartz veins and veinlets at the Sukhoi Log deposit could have formed as a result of interaction with silicate rocks, for instance, terrigenous slates enriched in δ18O. Such interaction, however, took place at deeper levels of the Sukhoi Log deposit. It is suggested that the fluid phase participating in the formation of the vein and veinlet system had initially high δ18O(>+10‰) due to interaction with the rocks enriched in δ18O at a low fluid/rock ratio. The oxygen isotope data indicate that the fluid participating in the formation of gold mineralization at the Sukhoi Log deposit was not in equilibrium with igneous rocks at high temperatures.  相似文献   

18.
Lherzolite xenoliths containing fluid inclusions from the Ichinomegata volcano, located on the rear-arc side of the Northeast Japan arc, may be considered as samples of the uppermost mantle above the melting region in the mantle wedge. Thus, these fluid inclusions provide valuable information on the nature of fluids present in the sub-arc mantle. The inclusions in the Ichinomegata amphibole-bearing spinel–plagioclase lherzolite xenoliths were found to be composed mainly of CO2–H2O–Cl–S fluids. At equilibrium temperature of 920 °C, the fluid inclusions preserve pressures of 0.66–0.78 GPa, which correspond to depths of 23–28 km. The molar fraction of H2O and the salinity of fluid inclusions are 0.18–0.35 and 3.71 ± 0.78 wt% NaCl equivalent, respectively. These fluid inclusions are not believed to be fluids derived directly from the subducting slab, but rather fluids exsolved from sub-arc basaltic magmas that are formed through partial melting of mantle wedge triggered by slab-derived fluids.  相似文献   

19.
Laboratory experiments on natural, hydrous basalts at 1–4 GPa constrain the composition of “unadulterated” partial melts of eclogitized oceanic crust within downgoing lithospheric slabs in subduction zones. We complement the “slab melting” experiments with another set of experiments in which these same “adakite” melts are allowed to infiltrate and react with an overlying layer of peridotite, simulating melt:rock reaction at the slab–mantle wedge interface. In subduction zones, the effects of reaction between slab-derived, adakite melts and peridotitic mantle conceivably range from hybridization of the melt, to modal or cryptic metasomatism of the sub-arc mantle, depending upon the “effective” melt:rock ratio. In experiments at 3.8 GPa, assimilation of either fertile or depleted peridotite by slab melts at a melt:rock ratio 2:1 produces Mg-rich, high-silica liquids in reactions which form pyrope-rich garnet and low-Mg# orthopyroxene, and fully consume olivine. Analysis of both the pristine and hybridized slab melts for a range of trace elements indicates that, although abundances of most trace elements in the melt increase during assimilation (because melt is consumed), trace element ratios remain relatively constant. In their compositional range, the experimental liquids closely resemble adakite lavas in island-arc and continental margin settings, and adakite veins and melt inclusions in metasomatized peridotite xenoliths from the sub-arc mantle. At slightly lower melt:rock ratios (1:1), slab melts are fully consumed, along with peridotitic olivine, in modal metasomatic reactions that form sodic amphibole and high-Mg# orthopyroxene.  相似文献   

20.
Subduction zones involve many complex geological processes, including the release of slab-derived fluids, fluid/rock interactions, partial melting, isotopic fractionations, elemental transporting, and crust/mantle interactions. Lithium (Li) isotopes (6Li and 7Li) have relative mass difference up to 16%, being the largest among metal elements. Thus, Li isotopes have advantage to interprete trace various geological processes. Most importantly, during crust/mantle interactions in deep subduction zones, surface materials and mantle rocks usually have distinct Li isotopic compositions. Li isotopes can be potential tracer for subduction processes, from the onset of subduction to the release of Li from subducted slabs and interaction with mantle wedge, as well as the fate of Li in slab-derived fluids and residual slabs. Moreover, the Li isotopic composition of subducting output materials can provide useful information for understanding global Li circulation. With developments in measurement and expansion of Li isotopic database, Li isotopic geochemistry will provide more inference and be a powerful tracer for understanding subduction-related processes. This work retrospected the application of Li isotopes in tracing successive subduction processes, and made some prospects for further studies of Li isotopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号