首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
南黄海中西部表层沉积物粒度特征分析   总被引:3,自引:0,他引:3  
对南黄海中西部海域316个表层沉积物进行了粒度分析、粒度参数计算和多元统计分析,探讨了沉积物的粒度分布特征、搬运方式和沉积环境。结果表明,粉砂是南黄海中西部海域表层沉积物的优势粒级,含量高达47%,主要粒级范围是1.14~10.13Ф,核心粒级范围是3.92~7.44Ф,底质类型主要是砂质粉砂、粉砂质砂、砂质泥和粉砂。粒度R型聚类分析得出4类,第1类由5.5~10.5Ф粒级组成,第2类由-0.84~-3.2Ф粒级组成,即粗、细两端元粒级组分,第3类是3.5~4.5Ф,第4类为1.5~2.5Ф,分别对应于粉砂质砂(或泥质砂)和砂;Q型聚类分析根据不同的阈值可分为4类、6类或8类,各类归类良好,图形清晰。典型站位的分析表明,研究区的主控因素是黄海沿岸流、潮流沙脊区往复流及苏北沿岸流,各粒级组分的分布、粒度参数特征、搬运方式与海流的强弱和方向有着密切的相关性。  相似文献   

2.
基于中国渤黄海120个表层沉积物粒度分析,研究了其表层沉积物分布特征与物源和水动力的关系。结果表明,研究区底质类型主要有黏土质粉砂、粉砂、砂质粉砂、粉砂质砂、砂和砂-粉砂-黏土6种类型,以砂质粉砂和黏土质粉砂为主,整体粒度较细、分选较差,在老铁山水道、莱州湾、北黄海北部等水动力较强区域分选相对较好且沉积物粒径相对偏粗。根据沉积物粒度参数、物源、输运路径将研究区划为5个沉积区,分别为渤海湾、滦河口粉砂沉积区,黄河口、莱州湾砂质沉积区,渤海中部粉砂质沉积区,北黄海西部黏土质粉砂沉积区,北黄海北部砂质沉积区。物源和水动力条件控制了研究区沉积物粒度分布。  相似文献   

3.
谢帕德(Shepard,1954)和福克(Folk)等(1970)的沉积物结构分类是较为常用的两种分类方法。尽管都是基于沉积物粒度组成的三元分类,但分类的出发点和基本思路有很大的不同。Shepard分类是三端元等价的纯描述性分类,不反映沉积物粒度组成的水动力学属性,砾质沉积物未考虑在内。Folk分类虽然也是三端元分类,但三个端元是不等价,首先按砂/泥比划分基本类型,然后再按粉砂/黏土比进一步分类,砂/泥比反映动力强度的大小,粉砂/黏土比反映介质的混浊度,具有明显的动力学意义。鉴于粒度分异与搬运距离的成因联系,Folk分类也是分析物源区的工具。笔者用两种分类研究了南黄海的表层沉积物,发现按照Folk分类,南黄海的表层沉积物分布可以分为两个沉积系列。在南黄海西部,沉积物由西向东依次为砂-粉砂质砂-砂质粉砂-粉砂;而在东部,由东向西依次为砂-泥质砂-砂质泥-泥组成。由岸及海随着沉积水动力由强变弱,沉积物粒度变细,大致与由东西两侧的强潮流作用区到中部的静水涡流作用区的动力学格局相一致,在一定程度上反映了沉积环境的变化、沉积物的物源和输运方向。实践证明,Folk分类的应用效果明显优于Shepard分类,可以较好地满足海洋地质研究的需要,应当在我国海洋沉积物的研究中予以推广。  相似文献   

4.
渤海东部和黄海北部表层沉积物粒度组成分析揭示,沉积物主要由砂、粉砂、粉砂质砂和砂质粉砂组成,部分海域出现含砾沉积物。总体分布表现为南细北粗、东西分带的特点,形成以平行岸线的条带状分布格局为主体的南北不同的镶嵌形态,由岸及海、由北向南呈现由粗到细的分布特征。沉积物分布主要受物质来源、地形以及海洋环流控制,根据沉积物成因划分出老铁山水道-辽东-渤中浅滩砂质沉积区、山东半岛沿岸流泥质沉积区、北黄海中部泥质沉积、南黄海中部泥质沉积区、西朝鲜湾潮流沙脊沉积区、渤海中部泥质沉积区,并讨论了不同沉积区的沉积环境。  相似文献   

5.
中国东部陆架表层沉积物粒度特征及其沉积环境浅析   总被引:2,自引:0,他引:2  
对取自中国东部陆架海的209个表层沉积物样品进行了粒度分析及沉积物类型划分,探讨细颗粒沉积区分布格局与物源和环流体系的关系。结果表明,研究区底质类型主要有砂、粉砂质砂、泥质砂、砂质粉砂、砂质泥、粉砂和泥,个别站位含砾石。表层沉积物以粗颗粒砂质沉积为主,其主要分布在东海中北部、苏北浅滩、北黄海北部,其粒度特征主要为:平均粒径2~4Φ,分选差(分选系数>2),偏态极正偏(2~2.80),峰态很宽至宽(1.60~3.50);细颗粒泥质沉积主要分布在浙江沿岸至长江口外、苏北老黄河口外、南黄海中部、北黄海西南部及黄河口外的渤海海域,其粒度特征主要为:平均粒径6~7Φ,分选差至较差(分选系数1~2.5),偏态负偏(-1.50~-0.33)至近于对称(-0.33~+0.33),峰态很宽(>2.75)。从环流的流向与路径及邻近的河流物源角度,初步探讨了河流输入物质及环流体系对细颗粒沉积物沉积分布格局的影响,并初步推断了细颗粒沉积物的物源及基本输移路径。  相似文献   

6.
对2002年采自苏鲁交界海域的466个表层沉积物样品作了粒度分析和粒度参数计算,并进行了沉积物分类和分布特征的研究,结果表明:(1)研究海域的表层沉积物类型主要为砂、粉砂质砂、砂质粉砂、粘土质粉砂和砂-粉砂-粘土5种。(2)研究海域的表层沉积物主体是砂,随着离岸距离的增大,砂含量将逐渐增加然后又逐渐减少。砂含量的经、纬向分带性不明显。粉砂与砂的平面分布特征正好相反,粘土含量的平面分布特征与粉砂相似。(3)研究海域表层沉积物的平均粒径为0.34~7.30,平均为4.09,沉积物颗粒的直径总体上为细砂粒径;分选系数为0.34~4.26,平均为2.10,分选差;偏态为-0.41~0.75,平均为0.29;峰态为0.66~3.69,平均为1.34。(4)根据沉积物中各组分含量、粒度参数、水深、沉积物类型的平面变化特征等,由西向东将研究区分成西部、中部和东部3个分区。由岸向海,西部分区沉积物由粗到细地变化,平均粒径等值线呈NE向与岸线平行分布;东部和中部分区,沉积物粒度变化的规律不明显。  相似文献   

7.
北黄海表层沉积物粒度分布特征及其沉积环境分析   总被引:12,自引:0,他引:12  
对北黄海1140个表层沉积物样品的粒度进行分析,探讨其分布特征与物源和水动力环境的关系。结果表明,研究区底质类型主要有泥、粉砂、砂质粉砂、粉砂质砂、砂五种类型,少数站位含有砾石。研究区东部沉积作用的主控因素是潮流,西部主要是山东半岛沿岸流。经过本区的黄海暖流限制了山东半岛沿岸流携带的细粒物质向东运移。研究区西部细粒沉积物的粒度分布是不均匀的,南北是不对称的,其形成受控于山东半岛沿岸流、黄海暖流和潮流。  相似文献   

8.
山东半岛东北部滨浅海区表层沉积物粒度及矿物成分   总被引:4,自引:3,他引:1  
对山东半岛东北部滨浅海区海底表层沉积物的粒度和矿物组分进行了分析,探讨了其物源及其粒度分布特征与沉积动力条件的关系。结果表明,本区表层沉积物主要来源于现代黄河物质,底质类型主要有黏土质粉砂、砂质粉砂和粉砂质砂3种类型,其中黏土质粉砂约占该区沉积物分布面积的60%以上,呈“Y”形由西北向东南展布。研究区沉积作用的主控因素是黄海沿岸流,各粒级组分的分布和粒度参数特征与海流的方向和强弱有明显的相关性。  相似文献   

9.
文章依据山东省近岸海域表层沉积物调查资料,分析了沉积物粒度的时空变化特征及其影响因素。结果显示:2020年,山东省近岸海域表层沉积物粒径总体呈由近岸向远海逐渐变小的趋势,其中,粉砂含量最高,平均66.45%;砂次之,平均26.78%;黏土含量较低,平均6.77%。沉积物不同粒级组分具有明显的空间分布差异性,类型包含粉砂、砂质粉砂、粉砂质砂和砂,以粉砂为主,占调查站位的61.9%。2016—2020年,山东省近岸海域表层沉积物整体呈现粗化的趋势,其中,日照、青岛、潍坊和滨州近岸海域粗化趋势较为明显,东营次之,烟台和威海粗化程度最低。沉积物粒度时空特征的主要影响因素包含物源、区域水动力条件(如,渤海和黄海海流、山东省沿岸流等)及沿海海岸工程建设情况,具体的影响机制仍需进一步调查研究。本研究成果可以为山东省近岸海域底质类型变化分析和海岸带保护与利用提供参考。  相似文献   

10.
对渤海、黄海海域冬、夏两季表层沉积物取样,通过激光粒度仪得出粒度参数,进而分析讨论冬季强的沿岸流的作用、黄海暖流、夏季冷水团的影响以及地形、海底地貌特征、物源特征等对表层沉积物分布造成的影响。结果表明,冬、夏两季渤黄海表层沉积物粒度特征总体上相差不大,但部分海域如渤海中北部、渤海中南部、北黄海西北部近渤海海峡北部海域、山东半岛东北部海域、南黄海中部沉积物粒度特征存在明显季节性差异。表层沉积物粒度特征季节性差异与地形地貌、沿岸流、黄海暖流、黄海冷水团及物源密切相关。本研究对于探讨渤黄海不同季节表层沉积物沉积特征的影响机制、了解渤黄海区海洋动力过程的季节差异有积极意义。  相似文献   

11.
Recent advances in ocean-circulation research on the Yellow Sea and East China Sea shelves are summarized. Observations using acoustic Doppler current profilers (ADCPs) suggest that the connectivity of mean-volume-transports is incomplete between the Tsushima (2.6 Sverdrups; 1 Sv = 106 m3/s) and Taiwan Straits (1.2 Sv). The remaining 1.4-Sv transport must be supplied by onshore Kuroshio intrusion across the East China Sea shelf break. The Yellow Sea Warm Current is not a persistent ocean current, but an episodic event forced by northerly winter monsoon winds. Nevertheless, the Cheju Warm Current is detected clearly regardless of season. In addition, the throughflow in the Taiwan Strait may be episodic in winter when northeasterly winds prevail. The throughflow strengthens (vanishes) under moderate (severe) northeasterly wind conditions. Using all published ADCP-derived estimates, the throughflow transport (V) in the Taiwan Strait is approximated as
where V 0, V 1, K are 1.2 Sv, 1.3 Sv, and 157 days, respectively, t is yearday, and T is 365.2422 days (i.e., 1 year). The difference between the throughflow transports in the Tsushima and Taiwan Straits suggests that the onshore Kuroshio intrusion across the shelf break increases from autumn to winter. The China Coastal Current has been observed in winter, but shelf currents are obscure in summer.  相似文献   

12.
冬季青岛-石岛近海中尺度涡旋数值模拟   总被引:1,自引:0,他引:1  
利用二维全流水动力方程组,在考虑了海面风应力,潮余流和一开边界入流等条件下,首次模拟出了石了石岛附近的中尺度反旋式涡旋海水运动,并对南黄海西部冬季环流的特征作了初步探讨。数值模拟结果和实测吻合良好,数值模拟表明:冬季南黄海西部环流形式主要决定因子是海面风应力、潮余流及从开边界的流入该海域的黄海暖流及黄海沿岸流。黄海暖流在偏北风作用下沿西北方向可直达山东半岛近岸,后分为两支:一支向南汇入黄海沿岸流流  相似文献   

13.
The monthly water mass variations in the Yellow Sea and the East China Sea are investigated using over 40 years of historical temperature and salinity observations via a cluster analysis that incorporates geographical distance and depth separation in addition to the temperature and salinity. Results delineate monthly variations in the major water masses and provide some insight into formation mechanisms and intermixing. The major water masses include the Kuroshio-East China Sea water (KE), the Yellow Sea surface water (YSS) and bottom cold water (YSB), mixed water (MW), and coastal water (CW). The distribution of the KE water mass reveals the intrusion pattern into the area west of Cheju. A separate mixed water type appears between the KE water mass and the Yellow Sea water masses during winter. The formation mechanism of the YSB appears to be the surface cooling and active mixing in winter. In the East China Sea, during summer, surface water is differentiated from the subsurface water while there is no differentiation during winter. In the Yellow Sea, a three layer system exists in the summer and fall (May–November) while a two layer system exists during the rest of the year. A fresh water mass generated by Yangtze River discharge (YD) is present over the northern East China Sea and the southern Yellow Sea during summer. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
末次冰消期以来黄海海平面变化与黄海暖流的形成   总被引:28,自引:5,他引:28  
YSDP102孔和YSDP103孔位于南黄海东南侧冷涡所对应的泥质沉积区,它们揭示了自末次冰消期以来的海侵沉积序列:海侵滞留沉积→潮流砂脊/潮坪~海滩沉积→陆架泥质沉积。该沉积序列上部的陆架泥质沉积厚度可达50余米,在浅地震剖面上其内部存在一个明显的反射界面,从而将泥质沉积体分为上、下两个单元。泥质沉积体呈灰绿色调,含少量自生黄铁矿,但其内反射界面以上的沉积物含水量高。根据两个钻孔岩心中有孔虫的分布规律、泥质沉积层的化学组分、沉积磁组构特征以及现有测年数据,得到如下结论:(1)黄海暖流形成于大约6kaB.P.,(2)泥质沉积层内反射界面以上的沉积物是与黄海暖流伴生的冷涡沉积,(3)黄海地区末次冰消期海侵自略早于14kaB.P.之前开始,至约6kaB.P.海平面达到最高位置。从6kaB.P.至今,海平面经历了几次波动,即在6~4kaB.P.和3~1.9kaB.P.海平面超过现今海平面位置;在4~3kaB.P.和1.9kaB.P.~现代,海平面有所降低,可能与现今海平面高度相当。  相似文献   

15.
Four sources of surface heat flux (SHF) and the satellite remote sensing sea surface temperature (SST) data are combined to investigate the heat budget closure of the Huanghai Sea (HS) in winter. It is found that heat loss occurs all over the HS during winter and the area averaged heat content change decreases with a rate of -106 W/m2. Comparing with the area averaged SHF of -150 W/m-2 from the four SHF data sets, it can be concluded that the SHF plays a dominant role in the HS heat budget during winter. In contrast, the heat advection transported by the Huanghai Warm Current (Yellow Sea Warm Current, HWC) accounted for up to 29% of the HS heat content change. Close correlation, especially in February, between the storm events and the SST increase demonstrates that the HWC behaves strongly as a wind-driven compensation current.  相似文献   

16.
采用ECOMSED三维水动力模式,诊断计算了冬季渤海、黄海和东海的近海环流状况,重点分析了黄海暖流的演变过程及其垂直结构,并探讨了黄海暖流的形成机理。结果表明,黄海暖流于12月初步形成,次年2月发展最强盛,3月开始衰退。黄海暖流在表层和次表层(0-30m)并不是一支持续稳定的流,其持续稳定性仅在近底层得到很好的体现。对黄海暖流形成机理的分析表明,压强梯度力、垂向摩擦力和柯氏力占主要地位。在表层及次表层,主要表现为风的正压作用,而在近底层,则由海平面起伏造成的正压梯度力和密度场引起的斜压梯度力形成的总压强梯度力与柯氏力基本平衡,因而黄海暖流可基本认为是准地转流。  相似文献   

17.
南黄海中部悬浮体浓度垂直分布及其季节变化对该海域泥质区的生成有重要意义,为研究黄东海物质交换、南黄海中部泥质区生成机制,利用2006年至2009年四季节的温度、盐度数据,结合水样抽滤获得的悬浮体质量浓度数据和LISST观测到的悬浮体体积浓度数据分析南黄海中部断面悬浮体浓度垂直分布及其季节变化。结果表明,悬浮体LISST体积浓度和抽滤质量浓度具有较好的相关性,并将夏冬两季悬浮体体积浓度转换为质量浓度。四季节悬浮体浓度整体上表层低于底层,潮流是控制南黄海悬浮体分布的重要动力因素,秋季大潮期悬浮体浓度高于冬季小潮期,冬春两季悬浮体浓度分布相类似;受到强台风影响,夏季悬浮体浓度高于秋冬季,以温跃层为界,底层悬浮体浓度较高,最高达26.9mg/L,以细粉砂粒级为主,上层悬浮体浓度低于2mg/L,悬浮颗粒粒径大于31.6μm。夏季,黄海冷水团西边界锋面处为粉砂为主的高悬浮体浓度区,与南黄海中部泥质区西侧厚沉积带位置对应。冬季,黄海西部沿岸流流经区域悬浮体以极细砂粒级为主,黄海暖流海域各个粒级悬浮体浓度都比较高,以粉砂粒级以上为主,整个断面中较粗颗粒的悬浮体含量较多。  相似文献   

18.
In order to satisfy the increasing demand for the marine forecasting capacity, the Bohai Sea, the Yellow Sea and the East China Sea Operational Oceanography Forecasting System (BYEOFS) has been upgraded and improved to Version 2.0. Based on the Regional Ocean Modeling System (ROMS), a series of comparative experiments were conducted during the improvement process, including correcting topography, changing sea surface atmospheric forcing mode, adjusting open boundary conditions, and considering atmospheric pressure correction. (1) After the topography correction, the volume transport and meridional velocity maximum of Yellow Sea Warm Current increase obviously and the unreasonable bending of its axis around 36.1°N, 123.5°E disappears. (2) After the change of sea surface forcing mode, an effective negative feedback mechanism is formed between predicted sea surface temperature (SST) by the ocean model and sea surface radiation fluxes fields. The simulation errors of SST decreased significantly, and the annual average of root-mean-square error (RMSE) decreased by about 18%. (3) The change of the eastern lateral boundary condition of baroclinic velocity from mixed Radiation-Nudging to Clamped makes the unreasonable westward current in Tsushima Strait disappear. (4) The adding of mean sea level pressure correction option which forms the mean sea level gradient from the Bohai Sea and the Yellow Sea to the western Pacific in winter and autumn is helpful to increasing the fluctuation of SLA and outflow of the Yellow Sea when the cold high air pressure system controls the Yellow Sea area.  相似文献   

19.
冬季黄海暖流区的空间变化和年际变化特征   总被引:3,自引:0,他引:3  
利用了多年连续的冬季水文调查数据,以黄海暖水舌作为黄海暖流的示性指标,采用经验函数正交分解及相关分析的方法,探讨了黄海暖流的年际变化特征,结果表明:1)黄海暖流的强弱存在4~7 a的年际变化周期,并与冬季局地季风的经向分量具有较好的相关关系;2)黄海暖流的流轴存在一个3~6 a的变化周期,而且其流轴的摆动明显受冬季季风纬向分量的影响;3)季风增强,黄海暖流增强且流轴西移.  相似文献   

20.
The Current System in the Yellow and East China Seas   总被引:18,自引:1,他引:18  
During the 1990s, our knowledge and understanding of the current system in the Yellow and East China Seas have grown significantly due primarily to new technologies for measuring surface currents and making high-resolution three-dimensional numerical model calculations. One of the most important new findings in this decade is direct evidence of the northward current west of Kyushu provided by satellite-tracked surface drifters. In the East China Sea shelf region, these recent studies indicate that in winter the Tsushima Warm Current has a single source, the Kuroshio Branch Current in the west of Kyushu, which transports a mixture of Kuroshio Water and Changjiang River Diluted Water northward. In summer the surface Tsushima Warm Current has multiple sources, i.e., the Taiwan Warm Current, the Kuroshio Branch Current to the north of Taiwan, and the Kuroshio Branch Current west of Kyushu. The summer surface circulation pattern in the East China Sea shelf region changes year-to-year corresponding to interannual variations in Changjiang River discharge. Questions concerning the Yellow Sea Warm Current, the Chinese Coastal Current in the Yellow Sea, the current field southwest of Kyushu, and the deep circulation in the Okinawa Trough remain to be addressed in the next decade. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号