首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three intrusive systems of detection and quantification of coastal erosion events (using thermocouples and thermal pins) were developed and tested from 2005 to 2008 in different regions of the Gulf and maritime estuary of the St Lawrence (Quebec, Canada). The 3‐m‐long thermal pins inserted inside unconsolidated deposits allow the monitoring of erosion for a time period sometimes extending over several seasons. The thermocouple or thermocable method allows not only the instrumentation of unconsolidated deposits but also of rocky and cohesive substrate to a depth of 85 cm. An autonomous microclimatic station located near the experimental sites simultaneously samples temperature parameters, precipitation, snow cover, wind speed and direction as well as global radiation. The differential analysis of cliff thermal regime performed simultaneously with an analysis of air temperature makes it possible to determine the activation periods of coastal erosion processes. The results also make it possible to establish with precision the actual influence of rapid variations of certain climatic and microclimatic parameters (radiation, presence of snow cover, precipitation, etc.) on the physical state of surfaces and also on the activation of certain physical processes connected to coastal erosion events. The automated thermal erosion pin system (ATEPS) allows high temporal resolution (i.e. continuous) monitoring, enabling a real coupling of coastal erosion rates and climatic parameters. Preliminary results with the ATEPS system indicate that mild winter temperature and direct solar radiation are significant factors controlling cliff retreat rates. Moreover, the melting of segregation ice during the spring thaw contributed for more than 70% of cliff retreat against only 30% for frost shattering. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The hydraulic integrity of aquitards is generally assumed and relies on a few core-scale permeability measurements, drill-stem tests, or textbook values. This approach is because hydraulic data across the full aquitard thickness is generally lacking. Proper assessment of aquitard integrity should be studied at the formation (spanning its entire thickness at a single point) or regional (formation properties at multiple locations throughout the basin) scale. One formation-scale approach uses environmental tracers and advection-dispersion modeling to constrain fluid flow rates. This study demonstrates the use of helium concentrations in quartz as a method of constraining the rate of fluid flow in a 520-m thick aquitard in the Gunnedah Basin, NSW, Australia. Quartz was separated from existing core samples in the Watermark and Porcupine Formations at depths from 750 to 1200 m. The helium was released from these samples by heating and select samples were impregnated with helium to determine the rate of helium diffusion through the quartz. One-dimensional advection-dispersion modeling of the helium profile accounting for diffusive helium exchange between quartz and pore water revealed, that (1) vertical fluid velocity has been on the order of 0.02 mm/year or less for tens to thousands of years, (2) helium is in equilibrium between quartz and pore water, and (3) the helium profile is transient indicating that helium concentrations in the underlying Maules Creek Formation has varied over geological time. Further modeling identified aquitard conditions (thickness and temperature) for which equilibrium exists, a precondition for deriving formation-scale permeability.  相似文献   

3.
The experimental setup is described, which makes it possible to simulate the quartz sand samples, containing methane hydrates, and to measure their thermal conductivity, using a needle probe of constant power. The method and results of measurements at different temperatures and pressures are considered. It is established that under the P-T-conditions close to the equilibrium for methane hydrate, the measurements result in the essential overestimation of the thermal conductivity the samples, i.e., to an anomalous increase in its calculated values. This is because of the dissociation (with the heat consumption) of the part of hydrates near the needle probe under the action of its heater. It is possible to conclude that this feature (the anomalous increase in the calculated values of thermal conductivity) is certain evidence for the presence of a noticeable quantity of hydrates in the sediments. This observation offers a new possibility of utilization of the geothermal method for prospecting the subsea gas hydrate accumulations. Our conclusions are confirmed by the results of measurements in situ of the thermal conductivity of the bottom sediment of the Black Sea [Kutas et al., 2005].  相似文献   

4.
Methods for estimating the parameter distributions necessary for modeling fluid flow and contaminant transport in the shallow subsurface are in great demand. Soil properties such as permeability, porosity, and water retention are typically estimated through the inversion of hydrological data (e.g., measurements of capillary pressure and water saturation). However, ill-posedness and non-uniqueness commonly arise in such non-linear inverse problems making their solutions elusive. Incorporating additional types of data, such as from geophysical methods, may greatly improve the success of inverse modeling. In particular, ground-penetrating radar (GPR) methods have proven sensitive to subsurface fluid flow processes and appear promising for such applications. In the present work, an inverse technique is presented which allows for the estimation of flow parameter distributions and the prediction of flow phenomena using GPR and hydrological measurements collected during a transient flow experiment. Specifically, concepts from the pilot point method were implemented in a maximum a posteriori (MAP) framework to allow for the generation of permeability distributions that are conditional to permeability point measurements, that maintain specified patterns of spatial correlation, and that are consistent with geophysical and hydrological data. The current implementation of the approach allows for additional flow parameters to be estimated concurrently if they are assumed uniform and uncorrelated with the permeability distribution. (The method itself allows for heterogeneity in these parameters to be considered, and it allows for parameters of the petrophysical and semivariogram models to be estimated as well.) Through a synthetic example, performance of the method is evaluated under various conditions, and some conclusions are made regarding the joint use of transient GPR and hydrological measurements in estimating fluid flow parameters in the vadose zone.  相似文献   

5.
岩石激发极化弛豫时间谱与孔隙结构、渗透率的关系   总被引:11,自引:0,他引:11       下载免费PDF全文
激发极化衰减曲线包含丰富的地层信息,且由多个指数衰减叠加而成.本文采用奇异值分解法对泥质砂岩的激发极化衰减谱进行多指数反演,得到光滑连续的激发极化弛豫时间谱,合适的弛豫时间分布点数为32~64.激发极化弛豫时间谱能够表征饱和NaCl溶液的岩石孔隙结构.结合孔隙度和弛豫时间几何平均值,能够显著提高渗透率的求取精度.  相似文献   

6.
— Analytical expressions to predict the enhancement of permeability due to stress-induced microcracking in initially low porosity rock are presented. A fracture mechanical microcrack model is employed to derive integrated effective hydraulic variables as a function of stress, which are then used to calculate the evolution of permeability using the statistically-based Dienes model. The model enables determination of permeability enhancement as a function of two loading parameters and three material parameters. Results are in reasonable agreement with experimental measurements and indicate that appreciable increases in permeability can be anticipated during brittle failure. The analytical nature of the model makes it easily incorporatable into numerical models that require quantification of the permeability evolution as a function of stress, for which there is currently no law.  相似文献   

7.
We present a method to determine equivalent permeability of fractured porous media. Inspired by the previous flow-based upscaling methods, we use a multi-boundary integration approach to compute flow rates within fractures. We apply a recently developed multi-point flux approximation Finite Volume method for discrete fracture model simulation. The method is verified by upscaling an arbitrarily oriented fracture which is crossing a Cartesian grid. We demonstrate the method by applying it to a long fracture, a fracture network and the fracture network with different matrix permeabilities. The equivalent permeability tensors of a long fracture crossing Cartesian grids are symmetric, and have identical values. The application to the fracture network case with increasing matrix permeabilities shows that the matrix permeability influences more the diagonal terms of the equivalent permeability tensor than the off-diagonal terms, but the off-diagonal terms remain important to correctly assess the flow field.  相似文献   

8.
A recently developed laboratory method allows for simultaneous imaging of fluid distribution and measurements of acoustic‐wave velocities during flooding experiments. Using a specially developed acoustic sample holder that combines high pressure capacity with good transparency for X‐rays, it becomes possible to investigate relationships between velocity and fluid saturation at reservoir stress levels. High‐resolution 3D images can be constructed from thin slices of cross‐sectional computer‐tomography scans (CT scans) covering the entire rock‐core volume, and from imaging the distribution of fluid at different saturation levels. The X‐ray imaging clearly adds a new dimension to rock‐physics measurements; it can be used in the explanation of variations in measured velocities from core‐scale heterogeneities. Computer tomography gives a detailed visualization of density regimes in reservoir rocks within a core. This allows an examination of the interior of core samples, revealing inhomogeneities, porosity and fluid distribution. This mapping will not only lead to an explanation of acoustic‐velocity measurements; it may also contribute to an increased understanding of the fluid‐flow process and gas/liquid mixing mechanisms in rock. Immiscible and miscible flow in core plugs can be mapped simultaneously with acoustic measurements. The effects of core heterogeneity and experimentally introduced effects can be separated, to clarify the validity of measured velocity relationships.  相似文献   

9.
液相渗透率描述了岩石的渗流特性,是评价储层与预测油气产能的重要参数.液相渗透率是指盐水溶液在岩石孔隙中流动且与岩石孔隙表面黏土矿物发生物理化学作用时所测得的渗透率;液相渗透率的实验测量条件更加接近实际地层泥质砂岩的条件,使得液相渗透率更能反映地层条件下泥质砂岩的渗流特性;然而,现有的液相渗透率评价模型较少,且模型未能揭示液相渗透率与溶液矿化度之间的关系.基于此,开展了液相渗透模型推导与计算方法研究;文中首先将岩石等效为毛管束模型,推导建立了液相渗透率与比表面、喉道曲折度、总孔隙度、黏土束缚水孔隙度等参数之间的关系;其次,根据岩石物理体积模型,推导建立了黏土束缚水孔隙度与阳离子交换容量、溶液矿化度等参数的关系;最终,将黏土束缚水孔隙度引入液相渗透率计算公式,建立了基于总孔隙度、阳离子交换容量、溶液矿化度、比表面、喉道曲折度等参数的液相渗透率理论计算模型.液相渗透率计算模型与两组实验数据均表明,液相渗透率随阳离子交换容量的增大而降低,随溶液矿化度的增大而增大.然而,液相渗透率理论计算模型的实际应用中喉道曲折度、比表面等参数求取困难,直接利用理论模型计算液相渗透率受到限制.在分析液相渗透率与孔隙渗透率模型的基础上,建立了液相渗透率与空气渗透率之间的转换模型,形成了利用转化模型计算液相渗透率的新方法.为进一步验证液相渗透率与空气渗透率转化模型的准确性,基于两组实验数据,利用转换模型计算了液相渗透率;液相渗透率计算结果与岩心测量液相渗透率实验结果对比显示,液相渗透率计算结果与实际岩心测量结果吻合较好,文中建立的液相渗透率与空气渗透率转化模型合理可靠.  相似文献   

10.
In theory, the streaming potential coefficient depends not only on the zeta potential but also on the permeability of the rocks that partially determines the surface conductivity of the rocks. However, in practice, it is hard to show the permeability dependence of streaming potential coefficients because of the variation of zeta potential from sample to sample. To study permeability dependence of streaming potential, including the effects of the variation of the zeta potential and surface conductance due to the difference in mineral compositions between samples, we perform measurements on 12 consolidated samples, including natural and artificial samples saturated with 7 different NaCl solutions to determine the streaming potential coefficients. The results have shown that the streaming potential coefficients strongly depend on the permeability of the samples for low fluid conductivity. When the fluid conductivity is larger than than 0.50 S/m for the natural samples or 0.25 S/m for the artificial ceramic samples, the streaming potential coefficient is independent of permeability. This behavior is quantitatively explained by a theoretical model.  相似文献   

11.
Modeling flow and solute transport in the unsaturated zone on the basis of the Richards equation requires specifying values for unsaturated hydraulic conductivity and water potential as a function of saturation. The objectives of the paper are to evaluate the design of a transient, radial, multi-step outflow experiment, and to determine unsaturated hydraulic parameters using inverse modeling. We conducted numerical simulations, sensitivity analyses, and synthetic data inversions to assess the suitability of the proposed experiment for concurrently estimating the parameters of interest. We calibrated different conceptual models against transient flow and pressure data from a multi-step, radial desaturation experiment to obtain estimates of absolute permeability, as well as the parameters of the relative permeability and capillary pressure functions. We discuss the differences in the estimated parameter values and illustrate the impact of the underlying model on the estimates. We demonstrate that a small error in absolute permeability, if determined in an independent experiment, leads to biased estimates of unsaturated hydraulic properties. Therefore, we perform a joint inversion of pressure and flow rate data for the simultaneous determination of permeability and retention parameters, and analyze the correlations between these parameters. We conclude that the proposed combination of a radial desaturation experiment and inverse modeling is suitable for simultaneously determining the unsaturated hydraulic properties of a single soil sample, and that the inverse modeling technique provides the opportunity to analyze data from nonstandard experimental designs.  相似文献   

12.
The relationship between the directions of polar acoustic gravity waves and a wind at 250–350 km altitudes has been studied based on an analysis of the Dynamics Explorer 2 satellite measurements. A method, which makes it possible to determine the direction of these waves relative to the satellite velocity vector based on one-point measurements of different neutral atmosphere parameters, is presented. It has been established that acoustic gravity waves observed over the polar caps systematically propagate upwind, which argues for their spatial wind filtering. In the polar regions, waves mainly propagate in two directions: toward magnetic noon and 15–16 MLT. Waves tend to move counterclockwise and clockwise over the northern and southern polar caps, respectively.  相似文献   

13.
Presented is an analytical method which enables a quick determination of the total cation content in water. In this method, total alkalinity is determined before passage, and mineral acidity after passage through the ion exchange bed. The sum of the two parameter values gives the total cation content in the water. Verification was carried out with model solution and natural water samples. The method makes it possible to verify the ion balance of the electrolytes, as well as to determine the salinity level (i.e. the concentration of dissolved substances) in the sample.  相似文献   

14.
Large-scale variations in the interplanetary magnetic field (IMF) are studied using its measurements by the Advanced Composition Explorer (ACE) spacecraft. To reveal the sector structure, an algorithm for estimating trends of long time series is proposed. The algorithm makes it possible to determine the sectors as well as to trace the tendencies in changes in the “long-lived” IMF structures for various degrees of initial data smoothing.  相似文献   

15.
An artificial neural network method is proposed as a computationally economic alternative to numerical simulation by the Biot theory for predicting borehole seismoelectric measurements given a set of formation properties. Borehole seismoelectric measurements are simulated using a finite element forward model, which solves the Biot equations together with an equation for the streaming potential. The results show that the neural network method successfully predicts the streaming potentials at each detector, even when the input pressures are contaminated with 10% Gaussian noise. A fast inversion methodology is subsequently developed in order to predict subsurface material properties such as porosity and permeability from streaming potential measurements. The predicted permeability and porosity results indicate that the method predictions are more accurate for the permeability predictions, with the inverted permeabilities being in excellent agreement with the actual permeabilities. This approach was finally verified by using data from a field experiment. The predicted permeability results seem to predict the basic trends in permeabilities from a packer test. As expected from synthetic results, the predicted porosity is less accurate. Investigations are also carried out to predict the zeta potential. The predicted zeta potentials are in agreement with values obtained through experimental self potential measurements.  相似文献   

16.
One of the main concerns of geological carbon storage (GCS) systems is the risk of leakage through “weak” permeable areas of the sealing formation or caprock. Since the fluid pressure pulse travels faster than the carbon dioxide (CO2) plume across the storage reservoir, the fluid overpressure transmitted into overlying permeable formations through caprock discontinuities is potentially detectable sooner than actual CO2 leakage occurs. In this work, an inverse modeling method based on fluid pressure measurements collected in strata above the target CO2 storage formation is proposed, which aims at identifying the presence, the location, and the extent of possible leakage pathways through the caprock. We combine a three-dimensional subsurface multiphase flow model with ensemble-based data assimilation algorithms to recognize potential caprock discontinuities that could undermine the long-term safety of GCS. The goal of this work is to examine and compare the capabilities of data assimilation algorithms such as the ensemble smoother (ES) and the restart ensemble Kalman filter (REnKF) to detect the presence of brine and/or CO2 leakage pathways, potentially in real-time during GCS operations. For the purpose of this study, changes in fluid pressure in the brine aquifer overlying to CO2 storage formation aquifer are hypothetically observed in monitoring boreholes, or provided by time-lapse seismic surveys. Caprock discontinuities are typically characterized locally by higher values of permeability, so that the permeability distribution tends to fit to a non-Gaussian bimodal process, which hardly complies with the requirements of the ES and REnKF algorithms. Here, issues related to the non-Gaussianity of the caprock permeability field are investigated by developing and applying a normal score transform procedure. Results suggest that the REnKF is more effective than the ES in characterizing caprock discontinuities.  相似文献   

17.
One of the variants of the global survey method developed and used for many years at the Institute of Terrestrial Magnetism, Ionosphere, and Radio Wave Propagation of the Russian Academy of Sciences is described. Data from the world network of neutron monitors for every hour from July 1957 to the present has been processed by this method. A consistent continuous series of hourly characteristics of variation of the density and vector anisotropy of cosmic rays with a rigidity of 10 GV is obtained. A database of Forbush decreases in galactic cosmic rays caused by large-scale disturbances of the interplanetary medium for more than half a century has been created based on this series. The capabilities of the database make it possible to perform a correlation analysis of various parameters of the space environment (characteristics of the Sun, solar wind, and interplanetary magnetic field) with the parameters of cosmic rays and to study their interrelationships in the solar–terrestrial space. The features of reception coefficients for different stations are considered, which allows the transition from variations according to ground measurements to variations of primary cosmic rays. The advantages and disadvantages of this variant of the global survey method and the opportunities for its development and improvement are assessed. The developed method makes it possible to minimize the problems of the network of neutron monitors and to make significant use of its advantages.  相似文献   

18.
This paper describes a method, which makes it possible to eliminate the effect of snow cover from the neutron component of secondary cosmic radiation. For many circumpolar, high-latitude, and mountain stations, where cosmic rays are continuously registered, it is exclusively important to take the presence of snow into consideration. Comparisons are made for manual and automated measurements, which are corrected for the snow effect based on the developed algorithm. The described method was tested for a number of cosmic ray stations where considerable snow masses are accumulated during the winter period near or above a detector: Magadan, Mount Hermon, Jungfraujoch, and Nain.  相似文献   

19.
20.
Zhang F  Zhou Z  Huang Y  Chen Z 《Ground water》2004,42(4):509-515
A typical fractured rock mass is intersected by several sets of discontinuities, which provide the main flowpath for ground water. Due to the limitations of data obtained by conventional field measurements, it is often difficult to estimate the anisotropic permeability tensor associated with the joints existing in the rock mass. For that reason, determining permeability tensors for fractured rocks is an important topic in rock mass hydraulics. Based on field surveys, joint parameters can be analyzed by using probabilistic and statistical tools, and three-dimensional mapping of the jointed rock mass. Through analysis of a single joint's hydraulic characteristics, the principal value of the permeability tensor for the jointed rock mass can be determined by using Monte Carlo methods and the searching percolation trace method, which is developed in this paper. The study reports on practical examples demonstrating that results from the methods discussed in this paper are in agreement with those from field hydrogeological surveys and measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号