共查询到20条相似文献,搜索用时 62 毫秒
1.
Hamza Jerbi Sylvain Massuel Christian Leduc Jamila Tarhouni 《Arabian Journal of Geosciences》2018,11(10):236
The aquifer of the semi-arid Kairouan plain has been exploited for decades to supply the growing irrigated agriculture and the need of drinking water. In parallel, the major hydraulic works drastically changed the natural groundwater recharge processes. The continuous groundwater level drop observed since the 1970s naturally raises the question of groundwater storage sustainability. To date, hydrogeological studies focused on groundwater fluxes, but the total amount of groundwater stored in the aquifer system has never been fully estimated. This is the purpose of the present paper. A complete database of all available geological, hydrogeological and geophysical data was created to build a 3D lithology model. Then, the lithological units were combined with the hydraulic properties to estimate the groundwater storage. Over the 700 km2 of the modelled area, the estimated storage in 2013 was around 18?×?109 m3 (equivalent to 80 times the annual consumption of 2010) with a highly variable spatial distribution. In 45 years (1968–2013), 12% of the amount of groundwater stored in the aquifer has been depleted. According to these results, individual farms will face strong regional disparities for their access to groundwater in the near future. 相似文献
2.
Hichem Yangui Kamel Zouari Rim Trabelsi Kazimierz Rozanski 《Environmental Earth Sciences》2011,63(5):969-979
Groundwater is the most important source of water supply in Sidi Bouzid plain located in central Tunisia. Proper understanding
of the geochemical evolution of groundwater is important for sustainable development of water resources in this region. A
hydrogeochemical survey was conducted on the Mio–Plio–Quaternary aquifer system using stable isotopes, radiocarbon, tritium
and major elements, in order to evaluate the groundwater chemistry patterns and the main mineralization processes occurring
in this system. The chemical data indicate that dissolution of evaporate minerals and evaporation are the main processes controlling
groundwater mineralization. The isotopic data show that groundwater in the study area is a mixture of recent shallow waters
located upstream and along Wadi Al Fakka bed and paleowaters located towards plain limits and discharge areas. Low 3H and 14C contents are observed in major part of the plain indicating that recharge of the aquifer occurs mainly through direct infiltration
at Wadi Al Fakka while there is no evidence of significant recharge in major part of the plain and mountains piedmonts. 相似文献
3.
Assessment of groundwater quality and hydrochemical characteristics in Farashband plain,Iran 总被引:1,自引:0,他引:1
Groundwater in Farashband plain, Southern Iran, is the main source of water for domestic and agricultural uses. This study was carried out to assess the overall water quality and identify major variables affecting the groundwater quality in Farashband plain. The hydrochemical study was undertaken by randomly collecting 84 groundwater samples from observation wells located in 13 different stations covering the entire plain in order to assess the quality of the groundwater through analysis of major ions. The water samples were analyzed for various physicochemical attributes. Groundwater is slightly alkaline and largely varies in chemical composition; e.g., electrical conductivity (EC) ranges from 2314 to 12,678 μS/cm. All the samples have total dissolved solid values above the desirable limit and belong to a very hard type. The abundance of the major ions is as follows: Na+ > Ca2+ > Ma2+ > K+ and Cl? > SO4 2– > HCO3 ?. Interpretation of analytical data shows three major hydrochemical facies (Ca–Cl, Na–Cl, and mixed Ca–Mg–Cl) in the study area. Salinity, total dissolved solids, total hardness, and sodium percentage (Na%) indicate that most of the groundwater samples are not suitable for irrigation as well as for domestic purposes and far from drinking water standard. A comparison of groundwater quality in relation to drinking water standards showed that most of the water samples are not suitable for drinking purposes. Based on the US salinity diagram, most of samples belong to high salinity and low to very high sodium type. 相似文献
4.
Assessment of water quality index for the groundwater in the upper Cheliff plain,Algeria 总被引:1,自引:0,他引:1
Abdelkader Bouderbala 《Journal of the Geological Society of India》2017,90(3):347-356
Assessment of groundwater suitability for drinking and agricultural purposes was carried out in the plain of upper Cheliff. The study area covers an area of 375 km2 and lies in a semiarid climate. Groundwater is the major source for domestic and agricultural activity in this area. Groundwater samples were collected from 19 wells during dry and wet periods in 2012, and they were analyzed for major cations and anions and compared with drinking and irrigation specification standards. The concentration of the majority of chemical constituents exceeds the standards of WHO as a result of various sources of pollution. It indicates the dominance of groundwater types: Ca-Mg-Cl, and Ca-Mg-HCO3. Suitability of groundwater for drinking was evaluated based on the water quality index; it shows more than 60% of samples have very poor quality for dry and wet periods, which means water is severely contaminated and unsuitable for drinking purpose. In terms of the irrigation usage, generally groundwater is suitable for both periods in the major part of the plain. The Mineralization processes in this area is determined by the lithology of the aquifer (exchange water-rock), by anthropogenic factors (discharges of urban sewage, use of fertilizers) and also by evaporation (semi-arid climate). 相似文献
5.
6.
Groundwater resources are vulnerable to contamination especially in shallow aquifers. The aquifer hydrogeological parameters and the Land Uses category combinations lead to subdivide areas according to their contamination likelihood. In arid and semi-arid regions, shallow aquifers are more exposed to groundwater contamination due to high population densities (extensive uses) and agricultural activities (nitrate contamination). Moreover, these regions are characterized by low rainfall and high evaporation. Furthermore, the spread of farmland, industrial and domestic sectors, is the principal contaminant producer which threats the groundwater quality. To protect these limited resources, the groundwater vulnerability assessment was developed in Maritime Djeffara shallow aquifer (Southeastern Tunisia). The study area is essentially occupied by agricultural areas (intensive use of chemical fertilizers) in addition to the discharge of industrial zones. The main objective of this study is to assess the aquifer vulnerability using the Susceptibility Index (SI) method as a specific vulnerability model. The results show that the study area is classified into five classes of vulnerability: very low, low, medium, high, and very high (1.54, 20, 41.54, 35.9, and 1.02%, respectively) with an uneven spatial distribution. The risk results exhibit three degrees: low, moderate, and high. The validation of the vulnerability model was performed by using salinity values and nitrate concentrations with a correlation coefficient of about 57 and 55%, respectively. This study could serve as a scientific basis for sustainable land use planning and groundwater management in the study area. 相似文献
7.
8.
9.
Younes Hamed 《Arabian Journal of Geosciences》2013,6(3):697-710
Gafsa region is one of the most productive artesian basins in Southern Tunisia. It is located in the southwestern part of the country, and its groundwater resources are developed for water supply and irrigation. Proper understanding of the geochemical evolution of groundwater is important for sustainable development of water resources in this region. A hydrogeochemical survey was conducted on the Plio-Quaternary shallow and on the Complex Terminal aquifers system using major (Ca, Mg, Na, SO4, Cl, NO3 and HCO3) and minor (Sr) elements, in order to evaluate the groundwater chemistry patterns and the main mineralization processes occurring in this system. Hydrochemical and isotopic data were used in conjunction with hydrogeological characteristics to investigate the groundwater composition in these aquifers. It has been demonstrated that groundwaters acquire their mineralization principally by water–rock interaction, i.e. dissolution of evaporites (halite/gypsum, pyrite, etc.) and return flow of irrigation waters, and by anthropogenic activities due to the use of nitrogen (N) fertilizers–pesticides in agriculture. The isotopic study of “stable isotopes, radiocarbon and tritium” (Yermani 2002) shows that a paleoclimatic recharge is corroborated by the relatively low carbon-14 activities (5–25.3%) of the referred groundwater group samples, which were interpreted as recharge occurring during the late Pleistocene and the early Holocene periods. The water feedings of these aquifers are mainly provided by infiltration of precipitations, infiltration of irrigation water, lateral feeding from Cretaceous relieves from the South and the North and along recent and fossil drainage networks that constitute major freshwater sources in groundwater tables (Hamed et al., J Environ Protect 1:466–474, 2010a). 相似文献
10.
Abdelkader Bouderbala 《Arabian Journal of Geosciences》2017,10(15):333
The assessment of the suitability of groundwater for drinking and irrigation uses was carried out in the alluvial plain of Low-Isser in the north of Algeria. The plain covers an area of 533 km2 and lies in a Mediterranean sub-humid climate. Groundwater is the main source for domestic uses and agricultural activities in this area. Groundwater samples were collected from 15 wells during dry and wet seasons in 2015, and they were analyzed for major cations and anions and compared with drinking and irrigation specification standards. The comparison of chemical concentration with WHO drinking water standards of 2006 shows that more than 30% of groundwater samples are unsuitable for drinking, and the majority of groundwater samples fell on the hard and very hard categories. Suitability of groundwater for drinking was also evaluated based on the water quality index (WQI). It shows more than 80% of samples have good or permissible water quality for dry and wet seasons. In terms of the irrigation usage, generally, groundwater in the study area is suitable for different uses in both seasons according to SAR, %Na, RSBC, and PI. However, water rock exchange processes and groundwater flow have been responsible for the dominated water type Ca–Mg–Cl. 相似文献
11.
Hydrologic and geologic factors controlling groundwater geochemistry in the Turonian aquifer (southern Tunisia) 总被引:2,自引:0,他引:2
Kamel Abid Kamel Zouari Marek Dulinski Najiba Chkir Brahim Abidi 《Hydrogeology Journal》2011,19(2):415-427
Water in the fissured limestone and dolomite of the Turonian aquifer of Tunisia has been investigated using geochemical (major ions) and isotopic (δ18O, δ2H, 14C) data. To carry out a characterization of aquifer behaviour, 48 representative samples were collected at the end of the humid season. The evolution of chemical composition of groundwater from recharge areas to discharge areas is characterized by increasing sodium, chloride and sulphate contents as a result of leaching of evaporite rock. In the study, three distinct chemical trends in groundwater were identified. The major reactions responsible for the chemical evolution of groundwater in the investigated area fall into three categories: (1) calcite precipitation, (2) gypsum and halite dissolution, and (3) ion exchange. The stable isotope composition of water samples indicates large-scale interaction between the Continental Intercalaire and the Turonian aquifer and the presence of a young local component which probably enters the system via faults and/or fractures. 相似文献
12.
Lazhar Belkhiri Abderrahmane Boudoukha Lotfi Mouni Toufik Baouz 《Journal of African Earth Sciences》2011,59(1):140-148
Water analysis data of 54 groundwater samples from 18 uniformly distributed wells were collected during three campaigns (June, September and December 2004). Q-mode hierarchical cluster analysis (HCA) was employed for partitioning the water samples into hydrochemical facies. Interpretation of analytical data showed that the abundance of major ions was identified as follows: Ca ? Mg > Na > K and HCO3 ? Cl > SO4. Three major water facies are suggested by the HCA analysis. The samples from the area were classified as recharge area waters (Ca–Mg–HCO3 water), transition area waters (Mg–Ca–HCO3–Cl water), and discharge area waters (Mg–Ca–Cl–HCO3 water). Inverse geochemical modeling suggests that relatively few phases are required to derive the water chemistry in the area. In a broad sense, the reactions responsible for the hydrochemical evolution in the area fall into two categories: (1) evaporite weathering reactions and (2) precipitation of carbonate minerals. 相似文献
13.
Hydrochemistry and geothermometry of thermal groundwater of southeastern Tunisia (Gabes region) 总被引:1,自引:0,他引:1
Given the vital importance of water and energy in desert regions, we undertook a study dealing with the deep reservoirs in Gabes area, which is located in the southeastern part of Tunisia. Geothermal resources are taken from the Intercalary Continental [or Continental Intercalaire (CI)], known as the largest deep aquifer in Tunisia and are used in a number of applications, mainly in agriculture. Previous investigations performed on the thermal waters of this area focused on the genesis of the deep waters with regard to the thermal features of geothermal reservoirs. A more detailed investigation has been carried out, considering both deep and shallow waters. In order to estimate the potential temperatures of deep reservoir in the Gabes area, we developed a synthetic study including chemical geothermometers, multiple mineral equilibrium approach, and other approaches. Chemical types of the thermal waters and effects of mixing between shallow cold waters with deep thermal waters were also discussed. In fact, the application of Na–K–Mg diagram relative to deep geothermal reservoir capitulate estimated temperatures (about 90°C). In addition, the multiple mineral equilibrium approach submits a similar estimated temperature ranging between 65 and 70°C, showing a disequilibrium status which indicates a possibly mixing with surface water. Indeed, wells exploiting the CI aquifer in the south part of the studied area showed the same characteristics, corroborating the reliability of the applied methods. 相似文献
14.
15.
Groundwater is the most important natural resource used for drinking by many people around the world, especially in rural areas. In Tunisia, since the quantity and the quality of water available for different uses is variable from one place to another, groundwater quality in El Khairat deep aquifer was evaluated for its suitability for drinking purposes. To this end, an attempt has been made for the first time in order to determine spatial distribution of groundwater quality parameters and to identify places with the best quality for drinking within the study area based on: (1) an integrated analysis of physical?Cchemical parameters, (2) use of Geographical Information System, and (3) Water Quality Index (WQI) calculation. The physical?Cchemical results were compared with the World Health Organization (WHO) standards for drinking and public health, in order to have an overview of the present groundwater quality. According to the overall assessment of the basin, almost all the parameters analyzed are above the desirable limits of WHO. Using GIS contouring methods with Arcview 3.2a, spatial distribution maps of pH, TDS, EC, TH, Cl, HCO3, SO4, NO3, Ca, Mg, Na, and K have been created. The spatial analysis of groundwater quality patterns of the study area shows that the TDS value increases from north-west to south-east following the general trend of the Khairat aquifer flow direction. The spatial distribution map of TH shows that a majority of the groundwater samples falls in the very hard category. WQI was used to assess the suitability of groundwater from the study area for human consumption. From the WQI assessment, over 82% of the water samples fall within the ??Poor?? and ??Very poor?? categories, suggesting that groundwater from the south-eastern of the El Khairat deep aquifer is unsuitable for drinking purposes. 相似文献
16.
17.
Khadhar Samia Achouri Dhouha Chekirben Anis Mlayah Ammar Azibi Rim Charef Abdelkrim 《Arabian Journal of Geosciences》2018,11(2):34
Toxic organic compounds in wastewater are serious threats for both human and environment healthy states. This study investigates the potential sources of surface water, sediment and groundwater pollution by polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyl (PCBs) as discharged by wastewater into the River of Oued El bey in northeastern Tunisia. Analysis indicates that the concentration of PAHs and PCBs are high in wastewater and vary from 0.37 to 0.83 mg/L and from 0.28 and 1.18 mg/L, respectively. The spatial distribution of PAHs and PCB in surface water showed a variation between 0.37 to 9.91 mg/L and between 0.1 to 0.47 mg/L, respectively. However, the quality of surface water is changed after wastewater evacuation at Oued Tahouna. The determination of PAH and PCB pollutants in groundwater shows a great interest in the development of water resources. The Concentration of these pollutants varying from 0.0204 to 1.93 mg/L and from 0.0052 to 0.196 mg/L, respectively. For PAH, analysis reveals also that naphtelene, fluorene, anthracene and chrysene are the most detected PAHs compounds in water and sediment samples while benzo[b]fluoranthene and benzo[a]pyrene are less present and in trace level. Higher concentrations of PAHs and PCBs are found in samples taken close to industrial areas of Bouargoub and Soliman, and wastewater discharge locations in Soliman. Analysis of the spatial distribution of PAHs and PCBs clearly link their higher concentration in water and sediments to wastewater and manufacturing discharges in the study area. In surface sediment, the organic pollutants are present. The cluster analysis for organic pollutants in different state and different matrix highlight a relationship between the wastewater evacuation and the water qualities which confirmed the direct response of the pollution sources on the surface water and groundwater organic pollution quality. 相似文献
18.
基于GIS的吉林省西部平原区浅层地下水防污性能评价 总被引:3,自引:0,他引:3
文章在DRASTIC指标体系的基础上,结合吉林省西部平原区的实际情况,利用GIS的矢量制图功能生成各单指标图,通过空间叠加分析模块生成评价单元,并利用GIS的属性数据库对吉林省西部平原的浅层地下水防污性能进行了评价,评价结果与区域环境水文地质条件基本吻合。 相似文献
19.
Besser Houda Mokadem Naziha Redhouania Belgacem Rhimi Nacira Khlifi Faten Ayadi Yosra Omar Zohra Bouajila Abdelhakim Hamed Younes 《Arabian Journal of Geosciences》2017,10(16):1-18
Arabian Journal of Geosciences - The present work is concerned with the valorization of clay minerals of the Aleg formation (Coniacian-middle Campanian) in the clinker manufacturing. The studied... 相似文献
20.
Belgacem Agoubi Faiza Souid Adel Kharroubi Abdelaziz Abdallaoui 《Environmental Earth Sciences》2016,75(24):1497
In this study, thermal groundwater from arid area in southeastern Tunisia was assessed for irrigation use. For this purpose, thirty-one water samples were collected and physiochemical parameters (EC, pH, TDS, major ions) were measured and analyzed. A fuzzy logic model was developed in which six parameters were integrated: electrical conductivity, sodium adsorption ratio, sodium percentage, Kelly ratio, permeability index and temperature. The membership functions for a fuzzy logic model were developed using linguistic terms and trapezoidal shapes. The fuzzy logic model developed was validated with a dataset of chemical analyses from groundwater sampled in the study area. The assessment indicated that 26% of the samples were in the “good” class, 10% in the “good to permissible” class, 55% are in the “permissible” class, 6% are in the “permissible to harmful” class and 3% were considered to be harmful and therefore unsuitable for use in irrigation. The effectiveness, simplicity and robustness of the fuzzy model assessment make this approach a more consistent and reliable way of assessing water quality than conventional methods of assessing water quality data. 相似文献