首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 At the northern part of the Portuguese mainland, the upflow zone of several hot and cold HCO3/Na/CO2-rich mineral waters is mainly associated with important NNE–SSW faults. Several geochemical studies have been carried out on thermal and non-thermal hydromineral manifestations that occur along or near these long tectonic alignments. The slight chemical differences that exist between these meteoric hot and cold HCO3/Na/CO2-rich mineral waters seem to be mainly caused by CO2. δ13C(TIDC) values observed in these groundwaters range between –6.00 and –1.00‰ versus V-PDB (V denotes Vienna, the site of the International Atomic Energy Agency; PDB originates from the CaCO3 of the rostrum of a Cretaceous belemnite, Belemnitella americana, collected in the Peedee formation of South Carolina, USA) indicating a deep-seated (mantle) origin for most of the CO2. Nevertheless, in the case of the heavier δ13C(TIDC) values, the contribution of metamorphic CO2 or the dissolution of carbonate rock levels at depth cannot be excluded. Concerning the hot waters, the lack of a positive 18O-shift should be attributed to water-rock interaction in a low temperature environment, rather than to the isotopic influence of CO2 on the δ18O-value of the waters. Received: 9 August 1999 · Accepted: 8 March 2000  相似文献   

2.
Mas-Pla  Josep  Brusi  David  Roqué  Carles  Soler  David  Menció  Anna  Costa  Josep M  Zamorano  Manuel  Meredith  Warren 《Hydrogeology Journal》2023,31(3):661-684

The mineral water of Vilajuïga village in Alt Empordà (NE Catalonia, Spain) owes its uniqueness to an emanation of geogenic CO2 that modifies groundwater hydrochemistry to produce a differentiated HCO3–Na- and CO2-rich groundwater among the usual Ca–HCO3 type found in this region. A hydrogeological conceptual model attributes its occurrence to the intersection of two faults: La Valleta and Garriguella-Roses. The former provides a thrust of metamorphic over igneous rocks, formed during the Paleozoic, over a layer of ampelitic shale that, from a hydrogeological perspective, acts as a confining layer. The Garriguella-Roses normal fault, which originated during the Neogene, permits the degassing of geogenic CO2 that is attributed to volcanic activity occurring in the Neogene. Groundwater mixing from the metamorphic and igneous rock units plus the local occurrence of CO2 creates a HCO3–Na water that still holds free-CO2 in solution. Interaction with the gas phase is restricted at the intersection of the two faults. Radiocarbon dating, after correcting for geogenic dead carbon, estimates an age of 8,000 years BP. The low tritium content (0.7 TU) indicates that Vilajuïga water is a mix of “older” groundwater recharged in the metamorphic rocks of the Albera range and “younger” groundwater from the igneous rocks of the Rodes range, over a recharge area of 45 km2 and a maximum elevation of 600 m. Given its origin as rare groundwater in the southern slope of the Eastern Pyrenees, purposeful monitoring is necessary to evaluate the groundwater vulnerability and anticipate impacts from nearby wells and climate-change effects.

  相似文献   

3.
The Vilarelho da Raia-Chaves region, located in northern Portugal adjacent to the Spanish border, is characterized by both hot and cold CO2-rich mineral waters issuing from springs and drilled wells. The present paper updates the conceptual circulation model of the Vilarelho da Raia cold CO2-rich mineral waters. Vilarelho da Raia mineral waters, dominated by Na and HCO3 ions, have formed mainly by interaction with CO2 of deep-seated mantle origin. The δ 18O, δ 2H and 3H values indicate that these waters are the result of meteoric waters infiltrating into Larouco Mountain, NW of Vilarelho da Raia, circulating at shallow depths in granitic rocks and moving into Vilarelho da Raia area. The conceptual geochemical and geophysical circulation model indicates that the hot and cold CO2-rich mineral waters of Chaves (76 °C) and Vilarelho da Raia (17 °C) should be considered manifestations of similar but not the same geohydrological systems. Electronic Publication  相似文献   

4.
Post-metamorphic CO2-rich fluid inclusions in granulites   总被引:2,自引:0,他引:2  
In granulite-facies samples from the Adirondack Mountains, NY, estimates of peak-metamorphic CO2 fugacities based on mineral equilibria are not consistent with estimates based on data for high-density, CO2-rich fluid inclusions. Of the 21 Adirondack samples investigated for this study, all contain CO2-rich inclusions. Inclusions occur in quartz, apatite, and garnet. They range in size from 3 to 50 m and are without visible H2O. In a few of the inclusions, freezing point determinations and preliminary Laser Raman spectroscopy show the presence of small amounts (<3%) of other fluids (N2 and H2S). CO2 liquid-vapor homogenization temperatures are between –46 and +31° C, corresponding to densities between 1.14 and 0.5 gm/cc. Some of these densities are consistent with peak-metamorphic entrapment (1.06 to 1.1 gm/cc).Peak metamorphic fluid compositions in these samples are inferred from fluid-buffering equilibria that restrict the fugacity of CO2 (f CO2) directly (i.e., calcite+quartz+wollastonite) or buffer the fugacity of oxygen (f O2). Assemblages that bufferf O2 are important because knowledge off O2 places an upper limit onf CO2. In 13 of the 21 samples, estimates of peak-metamorphic fluid compositions based on these equilibria show that the mole fraction of CO2 (XCO2) in equilibrium with the rock was low, in some cases less than 0.2.The contradiction of mineral equilibria and fluid inclusion data shows that the inclusions record post-metamorphic conditions. At present, there are no criteria to distinguish these primary appearing CO2-rich inclusions from those found in other granulite-facies terranes. Therefore, inferences of pressure-temperature conditions and peakmetamorphic fluid compositions based on fluid inclusions must be viewed with caution.  相似文献   

5.
6.
The present study highlights the hydrogeological and hydrogeochemical characteristics of the CO2-rich thermal–mineral waters in Kayseri, Turkey. These waters of Dokuzpınar cold spring (DPS) (12–13°C), Yeşilhisar mineral spring (YMS) (13–16°C), Acısu mineral spring (ACMS) (20–22.5°C), Tekgöz thermal spring (TGS) (40–41°C), and Bayramhacı thermal-mineral spring (BTMS) (45–46.5°C) have different physical and chemical compositions. The waters are located within the Erciyes basin in the Central Anatolian Crystalline complex consisting of three main rock units. Metamorphic/crystalline rocks occur as the basement, sedimentary rocks of Upper Cretaceous-Quaternary age form the cover, and volcanosedimentary rocks Miocene-Quaternary in age represent the extrusive products of magmatism acting in that period. All these units are covered unconformably by terrace and alluvial deposits, and travertine occurrences have variable permeability. Dokuzpinar cold spring, YMS and ACMS localized mainly along the faults within the region have higher Na+ and Cl contents whereas TGS and BTMS have higher amounts of Ca2+ and HCO 3 . The high concentrations of Ca2+ and HCO 3 are mainly related to the high CO2 contents resulting from interactions with carbonate rocks. Whereas the high Na+ content is derived from the alkaline rocks, such as syenite, tuff and basalts, the Clis generally connected to the dissolution of the evaporitic sequences. These waters are of meteoric-type. BTMS deviates from meteoric water line. The content is related to the increases in the δ18O compositions due to mineral–water interaction (re-equilibrium) process. CO2-dominated YMS and ACMS with low temperatures have higher mineralizations. Yeşilhisar mineral spring, ACMS, TGS and BTMS are oversaturated in terms of calcite, aragonite, dolomite, goethite and hematite, and undersaturated with respect to gypsum, halite and anhydrite. Yeşilhisar mineral spring, ACMS and BTMS are also characterized by recent travertine precipitation. Dokuzpınar cold spring is undersaturated in terms of the above minerals. The higher ratios of Ca/Mg and Cl/HCO3, and lower ratios of SO4/Cl in BTMS than TGS suggest that TGS has shallow circulation compared to BTMS, and/or has much more heat-loss enroute the surface. The sequence of hydrogeochemical and isotopic compositions of the waters is in an order of DPS>YMS>ACMS>TGS>BTMS and this suggests a transition period from a shallow circulation to a deep circulation path.  相似文献   

7.
Summary In previous work,Gunter et al. (1993), suggested water-rock reactions in deep aquifers in sedimentary basins could sequester injected-CO2-waste from industry, thereby reducing greenhouse gas emissions. Experiments, carried out at 105°C and 90 bars CO2 pressure, to test the validity of this mineral-trapping of CO2 were unsuccessful due to sluggish kinetics of reaction. The most significant change recorded by the reaction products from these experiments was a large increase in alkalinity, which was attributed to very small amounts of water-mineral reaction. A computer model, PATHARC.94, was used to interpret this change in alkalinity and to predict the path and time necessary to reach equilibrium. Substantial trapping of CO2 by formation of siderite, calcite and aqueous bicarbonate ions was predicted to occur in 6 to 40 years.Potential errors as high as two orders of magnitude were estimated based on a thorough examination of the kinetic data used in the modelling. In order to achieve reasonable time estimates, reactive surface areas were approximated by 100 micron spherical grains in the computer model. This represents a smaller cumulative surface area than actually present in the experiment. When these results are extrapolated to the field, where the aquifers are at lower temperatures,Perkins andGunter (1995a), concluded that CO2-trapping reactions are expected to take 100s of years to complete. This is sufficient time for the trapping to occur as the residence time of a packet of fluid in a deep low-permeability aquifer in a sedimentary basin is measured in 10,000s to 100,000s of years.
Einlagerung von CO2-Treibhaus-Gasen in einem Aquifer: Erweiterung des Zeitmaßstabes von Experimenten von CO2-Aufnahme-Reaktionen durch geochemische Modellierung
Zusammenfassung In früheren Arbeiten habenGunter et al. (1993) Wasser-Gesteinsreaktionen in tiefen Aquiferen in Sedimentbecken vorgeschlagen, die injiziertes CO2 aus industriellen Abgasen aufnehmen, und damit die Treibhausgasemissionen reduzieren könnten. Experimente wurden bei 105°C und 90 bar CO2-Druck durchgeführt, um die Anwendbarkeit dieser mineralischen Fallen für CO2 zu testen; wegen der langsamen Reaktions-Kinetik waren diese nicht erfolgreich. Die markanteste Änderung, die diese Experimente in den Reaktionsprodukten hervorriefen, war eine beträchtliche Zunahme der Alkalinität, die auf geringfügige Wasser-Mineralreaktionen zurückgehen dürfte. Ein Computermodell, PATHARC 94, wurde benützt, um diese Änderungen der Alkalinität zu interpretieren und die erforderlichen Zeiten und Pfade vorherzusagen, die notwendig sind, um Gleichgewicht zu erreichen. Signifikanter Einbau von CO2 durch Bildung von Siderit, Calcit und Bikarbonat-tonen sollte dementsprechend in 6 bis 40 Jahren stattfinden.Mögliche Fehler, die bis in zwei Größenordnungen gehen können, wurden aufgrund einer sorgfältigen Überprüfung der kinetischen Daten, die hier benützt wurden, ermittelt. Um sinnvolle Zeitmaßstäbe zu erreichen, wurden im Computermodell reaktive Ober flächen durch 100 Mikron große kugelförmige Körner repräsentiert. Dies stellt eine kleinere Gesamtoberfläche dar, als die, die tatsächlich im Experiment vorhanden ist. Wenn diese Ergebnisse ins Gelände extrapoliert werden, wo die Aquifere niedrigere Temperaturen aufweisen, kommenPerkins undGunter (1995a) zu dem Schluß, daß ein vollständiger Einbau von CO2 hunderte von Jahre benötigen würde. Diese Zeiträume sind ausreichend, da die Verweildauer einer Fluid-Menge in einem tief gelegenen Aquifer mit niedriger Permeabilität in einem sedimentären Becken in Größenordnungen von 10.000 bis 100.000 von Jahren gemessen wird.
  相似文献   

8.
兰坪盆地西缘广泛发育大量沉积岩容矿脉状铜矿床,这些脉状铜矿床的成矿流体以普遍存在大量富CO2流体包裹体为特征,这在整个兰坪盆地是十分罕见的,显著区别于盆地流体成矿系统主导成矿的Pb-Zn矿床。为探明这种富CO2流体的来源,本文首次报道了盆地西缘2个代表性脉状铜矿床(连城、金满)主成矿阶段形成的黄铜矿、黄铁矿的He和Ar同位素组成的研究结果。结果表明,2个矿床不同样品流体包裹体中3He/4He比值变化较小,介于0.01~0.07 Ra之间,明显区别于幔源氦的3He/4He特征值(6~9 Ra),而与壳源氦的3He/4He特征值(0.01~0.05 Ra)极其一致;40Ar/36Ar比值变化较大,介于305~1142之间,明显高于大气中的40Ar/36Ar比值(295.5)。结合矿床地质、流体包裹体及H、O同位素地球化学特征,认为兰坪盆地西缘脉状铜矿床中富CO2的成矿流体以混有少量饱和大气水的地壳流体为主,没有明显的幔源流体参与。  相似文献   

9.
The objective of this study is to understand cement alteration processes with the evolution of porosity and hardness under geologic CO2 storage conditions. For this study, the cylindrical cement cores (class G) were reacted with CO2–saturated water in a vessel (40 °C and 8 MPa) for 10 and 100 days. After the experiment, the CO2 concentration and Vickers hardness were measured in the hydrated cement core to estimate the carbonation depth and to identify the change in hardness, respectively. Diffusive-reactive transport modeling was also performed to trace the alteration processes and subsequent porosity changes. The results show that cement alteration mainly results from carbonation. With alteration processes, four different reaction zones are developed: degradation zone, carbonation zone, portlandite depletion zone, and unreacted zone. In the degradation zone, the re-dissolution of calcite formed in the carbonation zone leads to the increase of porosity. In contrast, the carbonation zone is characterized by calcite formation resulting mainly from the dissolution of portlandite. The carbonation zone acts as a barrier to CO2 intrusion by consuming dissolved CO2. Especially in this zone, although the porosity decreases, the Vickers hardness increases. Our results show that cement alteration processes can affect the physical and hydrological properties of the hydrated cement under CO2-saturated conditions. Further long-term observation is required to confirm our results under in-situ fluid chemistry of a CO2 storage reservoir. Nonetheless, this study would be helpful to understand alteration processes of wellbore cements under CO2 storage conditions.  相似文献   

10.
承德作为京津冀水源涵养地,其天然矿泉水和山泉水等水资源丰富,分布广、流量大、水质优,且多为弱碱性或中性淡水,富含钾、钙、镁、锶、锂、锌、偏硅酸等多种矿物质及微量元素。通过对承德地区矿泉水资源分布情况的研究,总结不同类型的矿泉水在承德地区的分布规律,并对不同类型矿泉水形成的地球化学条件做了阐述。  相似文献   

11.
The kinetics of chemical reactions at mineral surfaces and the rates of diffusion of species in an aqueous phase are coupled in many geochemical systems. Analytical solutions to equations describing coupled mineral dissolution/growth and solute transport in both transient and steady-state systems are used to delimit regimes of pure reaction control, pure transport control and mixed kinetic control of mass-transfer rates. The relative significance of the two processes depends on the magnitudes of the diffusion coefficients and rate constants as functions of temperature, and the degree of disequilibrium in the system. In addition, the system geometry, the ratio of mineral surface area to diffusion cross-section, and the porosity and tortuosity of the medium through which aqueous species diffuse affect reaction vs. diffusion control. In general, diffusion control increases with increasing temperature and increasing distance over which diffusion occurs. Calculations for the mixed kinetic regime in transient systems demonstrate that the relative significance of diffusion and surface reaction varies with reaction progress, and approaches a limiting value as equilibrium is approached. This limiting value may be appropriate to natural water-rock interactions that occur at conditions that are close to equilibrium. This result permits extension of simple models for irreversible mass transfer in homogeneous systems to systems in which mass-transfer kinetics are controlled by coupled surface reactions and mass transport. Criteria are established for time and length scales and fluid velocity limits on the validity of the continuum hypothesis and the local equilibrium assumption in mass-transport modeling.  相似文献   

12.
Strontium isotopes and other geochemical signatures are used to determine the relationships between CO2-rich thermal (Chaves: 76 °C) and mineral (Vilarelho da Raia, Vidago and Pedras Salgadas: 17 °C) waters discharging along one of the major NNE–SSW trending faults in the northern part of mainland Portugal. The regional geology consists of Hercynian granites (syn-tectonic-310 Ma and post-tectonic-290 Ma) intruding Silurian metasediments (quartzites, phyllites and carbonaceous slates). Thermal and mineral waters have 87Sr/86Sr isotopic ratios between 0.716713 and 0.728035. 87Sr/86Sr vs. 1/Sr define three end-members (Vilarelho da Raia/Chaves, Vidago and Pedras Salgadas thermal and mineral waters) trending from rainfall composition towards that of the CO2-rich thermal and mineral waters, indicating different underground flow paths. Local granitic rocks have 87Sr/86Sr ratios of 0.735697–0.789683. There is no indication that equilibrium was reached between the CO2-rich thermal and mineral waters and the granitic rocks. The mean 87Sr/86Sr ratio of the thermal and mineral waters (0.722419) is similar to the Sr isotopic ratios of the plagioclases of the granitic rocks (0.71261–0.72087). The spatial distribution of Sr isotope and geochemical signatures of waters and the host rocks suggests that the thermal and mineral waters circulate in similar but not the same hydrogeological system. Results from this study could be used to evaluate the applicability of this isotope approach in other hydrogeologic investigations.  相似文献   

13.
The Central West Bank aquifer (CWB) is one of the most important resources of fresh groundwater of Palestine. The geology of the area consists mainly of karstic and permeable limestones and dolomites interbedded with argillaceous beds of late Albian–Turonian age. Exploitation of the CWB aquifer, combined with lack of information required to understand the groundwater pattern, represents a challenge for reservoir management. The present work reports hydrogeochemistry, microbiology and environmental isotope data from spring water samples, which were utilized to understand recharge mechanisms, geochemical evolution and renewability of groundwater in CWB aquifer. Besides the major chemical compositions, ionic ratios were used to delineate mineral-solution reactions and weathering processes. Interpretation of chemical data suggests that the chemical evolution of groundwater is primarily controlled by (1) water–rock interactions, involving dissolution of carbonate minerals (calcite and dolomite), and (2) cation exchange processes. The measured equation of the local meteoric water line is δD?=?5.8 δ18O?+?9.9. Stable isotopes show that precipitation is the source of recharge to the groundwater system. The evaporation line has a linear increasing trend from south to north direction in the study area. All analyzed spring waters are suitable for irrigation, but not for drinking purposes. The results from this study can serve as a basis for decision-makers and stakeholders, with the intention to increase the understanding of sustainable management of the CWBs.  相似文献   

14.
Generation of CO2-rich melts during basalt magma ascent and degassing   总被引:1,自引:0,他引:1  
To test mechanisms of basaltic magma degassing, continuous decompressions of volatile-bearing (2.7–3.8 wt% H2O, 600–1,300 ppm CO2) Stromboli melts were performed from 250–200 to 50–25 MPa at 1,180–1,140 °C. Ascent rates were varied from 0.25 to ~1.5 m/s. Glasses after decompression show a wide range of textures, from totally bubble-free to bubble-rich, the latter with bubble number densities from 104 to 106 cm?3, similar to Stromboli pumices. Vesicularities range from 0 to ~20 vol%. Final melt H2O concentrations are homogeneous and always close to solubilities. In contrast, the rate of vesiculation controls the final melt CO2 concentration. High vesicularity charges have glass CO2 concentrations that follow theoretical equilibrium degassing paths, whereas glasses from low vesicularity charges show marked deviations from equilibrium, with CO2 concentrations up to one order of magnitude higher than solubilities. FTIR profiles and maps reveal glass CO2 concentration gradients near the gas–melt interface. Our results stress the importance of bubble nucleation and growth, and of volatile diffusivities, for basaltic melt degassing. Two characteristic distances, the gas interface distance (distance either between bubbles or to gas–melt interfaces) and the volatile diffusion distance, control the degassing process. Melts containing numerous and large bubbles have gas interface distances shorter than volatile diffusion distances, and degassing proceeds by equilibrium partitioning of CO2 and H2O between melt and gas bubbles. For melts where either bubble nucleation is inhibited or bubble growth is limited, gas interface distances are longer than volatile diffusion distances. Degassing proceeds by diffusive volatile transfer at the gas–melt interface and is kinetically limited by the diffusivities of volatiles in the melt. Our experiments show that CO2-oversaturated melts can be generated as a result of magma decompression. They provide a new explanation for the occurrence of CO2-rich natural basaltic glasses and open new perspectives for understanding explosive basaltic volcanism.  相似文献   

15.
The CO2-rich thermal groundwater in the Betic Cordilleras in Spain has been studied with regard to the geological and hydrogeological setting, physical and chemical characteristics, and 13C-isotope content. The study area is about 60 km northeast of Almería city, in southeastern Spain. The thermomineral waters are plentiful and are related to regional geothermal anomalies. Temperatures of 20 −41°C, high bicarbonate concentrations (183–1824 mg/L), and high amounts of PCO2 (<1.1 bar) characterize the groundwater. CO2 spatial variations are related to proximity to the Carboneras, Palomares, and Guadalentín fault systems, which may be the surface representation of the zone of crustal thinning and magmatism. δ 13C values probably indicate a deep source for the CO2, either the mantle or perhaps carbonate rocks in the metamorphic substratum. The high amount of CO2 in the groundwater causes problems in wells and severely restricts water usage. The hydrothermal features of this area are probably related to neotectonic activity. Received, September 1998/Revised, June 1999, September 1999/Accepted, December 1999  相似文献   

16.
乌拉斯沟铅锌铜矿床位于新疆阿尔泰南缘克兰火山–沉积盆地。本矿床分为铜、铅–锌两个矿化带,矿体赋存在下泥盆统康布铁堡组上亚组,容矿岩石为大理岩、绿泥石英片岩等。矿床内角砾状铅锌矿石反映了早期海相沉积成矿作用,矿床变形变质特征明显,其矿化石英脉可分为两个阶段:早阶段顺层石英脉和晚阶段切层硫化物石英脉。石英脉中流体包裹体分为富CO_2包裹体、碳质流体包裹体和部分水溶液包裹体,含子晶包裹体。显微测温结果显示,早阶段石英脉中富CO_2包裹体,CO_2相的三相点温度(Tm,CO_2)范围在–62.3~–58.5℃,CO_2笼合物熔化温度(Tm,clath)为0.5~7.5℃,部分均一温度(Th,CO_2)集中在5.0~21.0℃,均一温度(Th,total)集中在285~378℃,所计算的盐度变化于4.9%~15.1%Na Cleqv之间,密度为0.84~0.97 g/cm~3,最低捕获压力为260~360 MPa。晚阶段石英脉中,富CO_2包裹体的CO_2三相点的温度(Tm,CO_2)为–61.9~–56.9℃,T_(m,clath)为0.4~9.5℃,Th,CO_2为9.0~28.0℃,Th,total范围为242~389℃,盐度分布于1.0%~15.5%Na Cleqv之间,密度为0.55~0.98 g/cm~3,最低捕获压力范围为180~370 MPa。激光拉曼探针测试显示包裹体除含CO_2外,还含有不定量的CH4和N2。铜矿化石英脉的流体以富CO_2为特征,为中高温、低盐度、中低密度的H_2O-NaCl-CO_2±CH_4±N_2变质流体,与造山–变质成因有关。  相似文献   

17.
This paper summarizes advances since 1987 in the application of glacial sediment sampling to mineral exploration (drift prospecting) in areas affected by continental or alpine glaciation. In these exploration programs, clastic glacial sediments are tested by geochemical or mineralogical methods to detect dispersal trains of mineral deposit indicators that have been glacially transported from source by mechanical processes. In glaciated terrain the key sampling medium, till, is produced by abrasion, crushing and blending of rock debris and recycled sediment followed by down-ice dispersal ranging from a few metres to many kilometres. As a consequence of the mid-1980s boom in gold exploration, the majority of case studies and regional till geochemical surveys published in the past decade deal with this commodity. Approximately 30% of Canada and virtually all of Fennoscandia have been covered by regional till geochemical surveys that aid mineral exploration and provide baseline data for environmental, agricultural, and landuse planning. The most profound event in drift prospecting in the last decade, however, has been the early-1990s explosion in diamond exploration which has dramatically increased the profile of glacial geology and glacial sediment sampling and stimulated changes in sampling and analytical methods.  相似文献   

18.
The carbon isotope composition of carbonate rocks in time-boundary zones is interpreted as a reflection of the variations in the total biomass at mass extinction events. Better stratigraphic control and identification of hiatuses can be gained by stable isotope stratigraphic methods than with any other type of stratigraphy. It is suggested that the use of carbon isotopes can help in solving some of the problems confronting palaeontologists and lead to a better understanding of the evolutionary significance of these events.  相似文献   

19.
20.
李腊梅 《地质与勘探》2009,45(5):502-508
马攸木金矿床是产于西藏雅鲁藏布江缝合带西段重要的独立岩金矿床。本文通过显微测温分析首次发现该矿床的富CO2流体包裹体具有临界均一的特征,成矿流体属于超临界流体。研究结果表明:成矿流体主要为低盐度的CO2-H2O超临界流体。超临界流体可能是从岩浆出溶的,这种流体萃取了围岩中的金等成矿元素。流体经历了相分离-不均一捕获-跨越临界点-大气降水加入的过程,正是由于成矿流体在跨越临界点时析出部分成矿物质,形成早期矿化体;成矿后期流体与大气降水混合最终导致矿质大量沉淀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号