首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In this study day by day synoptic conditions are classified over the Attica peninsula for a period of sixteen years. Eight synoptic categories which are demonstrated to be statistically distinct are selected with respect to the atmospheric circulation in the lower troposphere. Furthermore, a methodology is proposed to classify the mesoscale patterns for the same period on the basis of surface wind measurements, and this distinguishes eleven distinct mesoscale categories. In general, the frequency analysis reveals that the anticyclonic circulation dominates while the weak mesoscale flows prevail, with preference in May and June. A day by day cross tabulation of the synoptic flow patterns with the mesoscale categories is then performed in order to identify the association of the synoptic conditions with the mesoscale flow regime. It was found that the synoptic conditions at the level of 850 hPa are closely related to the observed surface local flows and therefore it is suggested that the synoptic categories can be used for the identification of the most favourable mesoscale atmospheric circulation. Received February 28, 1997 Revised May 22, 1997  相似文献   

2.
Summary A numerical mesoscale model (COAMPS) is used to study some of the features associated with the evolution of the kinematic, thermodynamic, and physical structure of the Alabama sea and bay breeze circulations and convections in weak shear environments based on five cases from Medlin and Croft (1998). The general and expected features and evolution of sea and bay breeze circulations are captured by the model simulations, including horizontal and vertical wind shifts, thermal contrast between land and water surface, vertical stability over water and land, return currents and moisture increase. The relationship of the circulations to specific synoptic flow regimes and local physiographic features was investigated. The sea breeze triggered convective cells are confirmed to have a preferred location according to the flow regime and local conditions. This result can assist the forecasters in understanding the anticipated convective cell initiation and development on a given day as related to sea and bay breeze cells as well as improve the short-term forecast accuracy of the location of thunderstorm initiation based on routine observations and subsequent convective activity. If local NWS office model a selective subset of cases then they can better visualize and forecast those cases operationally.  相似文献   

3.
海陆风环流在天津2009年9月26日局地暴雨过程中的作用   总被引:8,自引:4,他引:4  
利用常规天气资料、地面加密自动站资料、天津中尺度模式产品资料以及卫星云图和多普勒雷达等资料,对2009年9月26日出现在天津地区的局地暴雨过程进行天气学、动力学诊断分析和中尺度分析.结果表明,本次暴雨的天气尺度主要的影响系统是500 hPa高空槽,中尺度系统是由海陆风环流形成的地面中尺度辐合线.降水前天津市具有较好的热力不稳定条件,较好的能量储备,有利的动力条件,一定量级的水汽辐合,边界层的东风将渤海的水汽输送至天津市,是本次过程的主要水汽来源.天气尺度的积云对流与海风锋的碰撞触发不稳定能量的释放,引发第一阶段的强降水,边界层东风急流再度加强所产生的抬升效应引发第二阶段的降水.中尺度切变线通过提供带状辐合上升运动起着胚胎和组织积云对流的作用,使得降水回波和对流云团沿中尺度切变线发展、加强和移动,产生了明显的列车效应,导致了这场历史罕见的秋季局部暴雨过程,也充分凸显出海陆风环流对本次暴雨的重要作用.  相似文献   

4.
A land–sea surface warming ratio (or φ) that exceeds unity is a robust feature of both observed and modelled climate change. Interestingly, though climate models have differing values for φ, it remains almost time-invariant for a wide range of twenty-first century climate transient warming scenarios, while varying in simulations of the twentieth century. Here, we present an explanation for time-invariant land–sea warming ratio that applies if three conditions on radiative forcing are met: first, spatial variations in the climate forcing must be sufficiently small that the lower free troposphere warms evenly over land and ocean; second, the temperature response must not be large enough to change the global circulation to zeroth order; third, the temperature response must not be large enough to modify the boundary layer amplification mechanisms that contribute to making φ exceed unity. Projected temperature changes over this century are too small to breach the latter two conditions. Hence, the mechanism appears to show why both twenty-first century and time-invariant CO2 forcing lead to similar values of φ in climate models despite the presence of transient ocean heat uptake, whereas twentieth century forcing—which has a significant spatially confined anthropogenic tropospheric aerosol component that breaches the first condition—leads to modelled values of φ that vary widely amongst models and in time. Our results suggest an explanation for the behaviour of φ when climate is forced by other regionally confined forcing scenarios such as geo-engineered changes to oceanic clouds. Our results show how land–sea contrasts in surface and boundary layer characteristics act in tandem to produce the land–sea surface warming contrast.  相似文献   

5.
This study investigated the relationships between sea surface temperature(SST) and weather phenomena in different seasons in the Bohai region(China). Five categories of weather phenomena were screened(i.e., fine, cloudy,foggy, rainy and windy conditions) and their relationships with the difference between air temperature and SST observed at Oil Platform A during 2003-2010 were analyzed statistically. The effects of the difference between air temperature and SST in different weather phenomena were examined using the flux method of the atmospheric boundary layer and a formula for the difference between air temperature and SST. The results revealed diurnal variation of the difference between air temperature and SST of-1.0 to +1.0 ℃, i.e., air temperature above the sea surface is subtracted from the SST in corresponding weather phenomena in different seasons in the Bohai region. Moreover,according to the formula for the difference between air temperature and SST, wind and shortwave radiation are the most important factors in terms of the effects of SST on weather processes. In conclusion, the effects of SST on weather phenomena are manifest via the exchange of momentum and energy from sea to air. When the air temperature above the sea surface is lower than the SST, the SST helps develop mesoscale convection systems within the synoptic system through moisture and sensible heat fluxes. When the air temperature above the sea surface is greater than the SST,synoptic systems transfer energy into the sea through heat flux, which affects SST variation. Moreover, a mesoscale convection system will weaken if the synoptic system passes over a colder underlying surface.  相似文献   

6.
一次冷锋过境后的海风三维结构数值模拟   总被引:2,自引:1,他引:1       下载免费PDF全文
为研究大尺度系统风对海风的影响以及海风三维结构特征,利用山东省123个地面自动站资料、青岛地区三十多个内陆及沿海、海岛观测站以及奥帆赛场3个浮标站资料,对2006年8月21日青岛一次海风个例进行了分析,并利用美国俄克拉荷马大学风暴分析预测中心开发的ARPS(the Advanced Regional Prediction System)模式,对海风过程进行了数值模拟研究。结果发现:在较强的离岸风背景下,当内陆气温高于海面气温2℃左右时,海风也可以发生。海风首先在海岸线附近的海上开始,发展的同时向内陆及远海地区推进。海风低层环流很浅,主要位于500 m以下。在较强的偏北离岸风下,海风向内陆推进的距离很短。偏北的大尺度系统风由于渤海冷下垫面的影响,不利于青岛海风的维持。海风开始时,在1500~2500 m高度处同时有反环流出现,但直到傍晚前后,海风的垂直环流圈才发展得比较清晰,其高度也更接近地面。海风消亡后,高层的垂直环流圈及反环流维持3 h左右才逐渐消亡。  相似文献   

7.
Published reconstructions of last glacial maximum (LGM) sea surface temperatures and sea ice extent differ significantly. We here test the sensitivity of simulated North Atlantic climates to two different reconstructions by using these reconstructions as boundary conditions for model experiments. An atmospheric general circulation model has been used to perform two simulations of the (LGM) and a modern-day control simulation. Standard (CLIMAP) reconstructions of sea ice and sea surface temperatures have been used for the first simulation, and a set of new reconstructions in the Nordic Seas/Northern Atlantic have been used for the second experiment. The new reconstruction is based on 158 core samples, and represents ice-free conditions during summer in the Nordic Seas, with accordingly warmer sea surface temperatures and less extensive sea ice during winter as well. The simulated glacial climate is globally 5.7 K colder than modern day, with the largest changes at mid and high latitudes. Due to more intense Hadley circulation, the precipitation at lower latitudes has increased in the simulations of the LGM. Relative to the simulation with the standard CLIMAP reconstructions, reduction of the sea ice in the North Atlantic gives positive local responses in temperature, precipitation and reduction of the sea level pressure. Only very weak signatures of the wintertime Icelandic Low occur when the standard CLIMAP sea surface temperature reconstruction is used as the lower boundary condition in LGM. With reduced sea ice conditions in the Nordic Seas, the Icelandic Low becomes more intense and closer to its present structure. This indicates that thermal forcing is an important factor in determining the strength and position of the Icelandic Low. The Arctic Oscillation is the most dominant large scale variability feature on the Northern Hemisphere in modern day winter climate. In the simulation of the LGM with extensive sea ice this pattern is significantly changed and represents no systematic large scale variability over the North Atlantic. Reduction of the North Atlantic sea ice extent leads to stronger variability in monthly mean sea level pressure in winter. The synoptic variability appears at a lower level in the simulation when standard reconstructions of the sea surface in the LGM are used. A closer inspection of storm tracks in this model experiment shows that that the synoptic lows follow a narrow band along the ice edge during winter. The trajectories of synoptic lows are not constrained to the sea ice edge to the same degree when the sea ice extent is reduced. Seasonally open waters in the Nordic Seas in the new reconstruction apparently act as a moisture source, consistent with the current understanding of the rapid growth of the Fennoscandian and Barents Ice Sheets, during the LGM. The signal from the intensified thermal forcing in the North Atlantic in Boreal winter is carried zonally by upper tropospheric waves, and thus generates non-local responses to the changed sea ice cover.  相似文献   

8.
Results from radiosoundings, performed both over land and over sea, show that the ascent rate of a radiosounding balloon, the vertical velocity of the balloon, can be used to determine the height of the boundary layer. In many cases the balloon has a higher ascent rate in the boundary layer and a lower, less variable, ascent rate above. The decrease in ascending velocity appears as a jump at the top of the boundary layer. Two examples of potential temperature profiles for unstable stratification and one profile for stable conditions are shown with the corresponding ascent rates. A comparison between the boundary-layer height determined from potential temperature profiles and from ascent rates is presented for a larger dataset. The different ascent rates of the balloon in the boundary layer and above can be explained by a decrease in drag on the balloon in combination with a lowering of the critical Reynolds number in the boundary layer caused by turbulence. Hence, by simply logging the time from release of a radiosonde, it is possible to obtain additional information that can be used to estimate the height of both the unstable and stable boundary layers.  相似文献   

9.
The daytime boundary-layer heating process and the air-land heat budget were investigated over the coastal sea-breeze region by means of observations over the Sendai plain in Japan during the summer. In this area, the onset of the sea breeze begins at the coast around 0900 LST, intruding about 35 km inland by late afternoon. The cold sea breeze creates a temperature difference of over 10°C between the coastal and inland areas in the afternoon. On the other hand, warm air advection due to the combination of the counter-sea breeze and land-to-sea synoptic wind occurs in the layer above the cold sea breeze in the coastal region. Owing to this local warm air advection, there is no significant difference in the daytime heating rate over the entire atmospheric boundary layer between the coastal and inland areas. The sensible heat flux from the land surface gradually decreases as distance from the coastline increases, being mainly attributed to the cold sea breeze. The daytime mean cold air advection due to the sea breeze is estimated asQ adv local =–29 W m–2 averaged over the sea breeze region (035 km from the coastline). This value is 17% of the surface sensible heat fluxH over the same region. The results of a two-dimensional numerical model show that the value ofQ adv local /H is strongly affected by the upper-level synoptic wind direction. The absolute value ofQ adv local /H becomes smaller when the synoptic wind has the opposite direction of the sea breeze. This condition occurred during the observations used in the present study.  相似文献   

10.
11.
Atmospheric turbulence measurements made at the U.S. Army Corps of Engineers Field Research Facility (FRF) located on the Atlantic coast near the town of Duck, North Carolina during the CASPER-East Program (October–November 2015) are used to study air–sea/land coupling in the FRF coastal zone. Turbulence and mean meteorological data were collected at multiple levels (up to four) on three towers deployed at different landward distances from the shoreline, with a fourth tower located at the end of a 560-m-long FRF pier. The data enable comparison of turbulent fluxes and other statistics, as well as investigations of surface-layer scaling for different footprints, including relatively smooth sea-surface conditions and aerodynamically rough dry inland areas. Both stable and unstable stratifications were observed. The drag coefficient and diurnal variation of the sensible heat flux are found to be indicators for disparate surface footprints. The drag coefficient over the land footprint is significantly greater, by as much as an order of magnitude, compared with that over the smooth sea-surface footprint. For onshore flow, the internal boundary layer in the coastal zone was either stable or (mostly) unstable, and varied dramatically at the land-surface discontinuity. The offshore flow of generally warm air over the cooler sea surface produced a stable internal boundary layer over the ocean surface downstream from the coast. While the coastal inhomogeneities violate the assumptions underlying Monin–Obukhov similarity theory (MOST), any deviations from MOST are less profound for the scaled standard deviations and the dissipation rate over both water and land, as well as for stable and unstable conditions. Observations, however, show a poor correspondence with MOST for the flux-profile relationships. Suitably-averaged, non-dimensional profiles of wind speed and temperature vary significantly among the different flux towers and observation levels, with high data scatter. Overall, the statistical dependence of the vertical gradients of scaled wind speed and temperature on the Monin–Obukhov stability parameter in the coastal area is weak, if not non-existent.  相似文献   

12.
Summary This paper is concerned with sea/land-breeze systems over relatively flat tropical islands to the north of continental Australia. The purpose of this study is to contribute to the relatively small body of knowledge on tropical island sea/land-breeze systems in this region and to highlight their particular characteristics. The evolution and structure of coastal circulations over the Tiwi Islands, northern Australia are examined using observations made during the Maritime Continent Thunderstorm Experiment (MCTEX), November/December 1995. During the transition period between dry and wet (monsoon) seasons, strong diurnal surface heating dominates the local meteorology. Thermally modified pressure differences across the coastline are seen to control the timing, direction and intensity of local winds. The evolution and structure of the resulting circulations appear to be affected greatest by tropospheric stability and friction, while the Coriolis force, synoptic winds and topography are of much less importance in this case. Consequently, even small differences in surface properties seem to produce strong and well defined local wind circulations. The depth of the sea breeze averaged 1200 m, while the land breeze was considerably shallower (290 m). Return flows were evident in both circulations, although better defined in land breeze cases. Day to day variation in vertical structure was considerable and appeared to be controlled by stability in the lower troposphere. Spatial patterns of surface temperature, pressure and wind show formation of an island heat low by day and a cool high pressure centre at night, resulting in island scale convergence and divergence, respectively. Received February 27, 2000/Revised October 16, 2000  相似文献   

13.
To explore processes involved in glacial inception at 116 kaBP, the response of an atmospheric general circulation model (AGCM) to changes in lower boundary conditions is investigated. Two 116 kaBP experiments are conducted to examine the importance of sea surface conditions (sea surface temperature and sea ice distribution): one with the present-day sea surface conditions, and the other with 116 kaBP sea surface conditions. These two different sea surface conditions are obtained from simulations using an earth system climate model of intermediate complexity. Perennial snow cover occurred over the Canadian Archipelago under 116 kaBP orbital and CO2 forcing with present-day "warm" sea surface conditions, and further expanded over northeastern Canada when 116 kaBP "cool" sea surface conditions were applied. The net positive accumulation in northeastern Canada, with little in Alaska, is in good agreement with geological records. Two additional 116 kaBP experiments are conducted to examine the combined importance of sea surface conditions and land surface conditions (vegetation): one with the present-day sea surface and modified land surface conditions, and the other with 116 kaBP sea surface and modified land surface conditions. Modifying vegetation, based on cooling during summer induced by 116 kaBP sea surface conditions, leads to much larger areas of perennial snow cover. Only when 116 kaBP sea surface conditions are applied, is a realistic global net snow accumulation rate obtained. Contrary to the earlier ice age hypothesis, our results suggest that the capturing of glacial inception at 116 kaBP requires the use of "cooler" sea surface conditions than those of the present climate. Also, the large impact of vegetation change on climate suggests that the inclusion of the vegetation feedback is important for model validation, at least, in this particular period of Earth history.  相似文献   

14.
Summary The dispersion of recycled particulates in the complex coastal terrain surrounding Kangnung city, Korea was investigated using a three-dimensional non-hydrostatic numerical model and lagrangian particle model (or random walk model). The results show that particulates at the surface of the city that float to the top of thermal internal boundary layer (TIBL) are then transported along the eastern slope of the mountains with the sea breeze passage and nearly reach the top of the mountains. Those particulates then disperse eastward at this upper level over the coastal sea and finally spread out over the open sea. Total suspended particulate (TSP) concentration near the surface of Kangnung city is very low. At night, synoptic scale westerly winds intensify due to the combined effect of the synoptic scale wind and land breeze descending the eastern slope of the mountains toward the coast and further seaward. This increase in speed causes development of internal gravity waves and a hydraulic jump up to a height of about 1km above the surface over the city. Particulate matter near the top of the mountains also descends the eastern slope of the mountains during the day, reaching the central city area and merges near the surface inside the nocturnal surface inversion layer (NSIL) with a maximum ground level concentration of TSP occurring at 0300 LST. Some particulates are dispersed following the propagation area of internal gravity waves and others in the NSIL are transported eastward to the coastal sea surface, aided by the land breeze. The following morning, particulates dispersed over the coastal sea from the previous night, tend to return to the coastal city of Kangnung with the sea breeze, developing a recycling process and combine with emitted surface particulates during the morning. These processes result in much higher TSP concentration. In the late morning, those particulates float to the top of the TIBL by the intrusion of the sea breeze and the ground level TSP concentration in the city subsequently decreases.  相似文献   

15.
An observational analysis of the structures and characteristics of a windy atmospheric boundary layer during a cold air outbreak in the South China Sea region is reported in this paper. It is found that the main structures and characteristics are the same as during strong wind episodes with cold air outbreaks on land. The high frequency turbulent fluctuations(period<1 min) are nearly random and isotropic with weak coherency, but the gusty wind disturbances(1 min相似文献   

16.
Formation,Evolution, and Dissipation of Coastal Sea Fog   总被引:5,自引:2,他引:3  
Evolution of sea fog has been investigated using three-dimensional Mesoscale Model 5 (MM5) simulations. The study focused on widespread fog-cloud layers advected along the California coastal waters during 14–16 April 1999. According to analysis of the simulated trajectories, the intensity of air mass modification during this advection significantly depended on whether there were clouds along the trajectories and whether the modification took place over the land or ocean. The air mass, with its trajectory endpoint in the area where the fog was observed and simulated, gradually cooled despite the gradual increase in sea-surface temperature along the trajectory. Modelling results identified cloud-top cooling as a major determinant of marine-layer cooling and turbulence generation along the trajectories. Scale analysis showed that the radiative cooling term in the thermodynamic equation overpowered surface sensible and latent heat fluxes, and entrainment terms in cases of the transformation of marine clouds along the trajectories. Transformation of air masses along the trajectories without clouds and associated cloud-top cooling led to fog-free conditions at the endpoints of the trajectories over the ocean. The final impact on cloud-fog transition was determined by the interaction of synoptic and boundary-layer processes. Dissipation of sea fog was a consequence of a complex interplay between advection, synoptic evolution, and development of local circulations. Movement of the high-pressure system over land induced weakening of the along-shore advection and synoptic-pressure gradients, and allowed development of offshore flows that facilitated fog dissipation.  相似文献   

17.
Boundary-layer wind structure in a landfalling tropical cyclone   总被引:1,自引:0,他引:1  
In this study, a slab boundary layer model with a constant depth is used to analyze the boundary-layer wind structure in a landfalling tropical cyclone. Asymmetry is found in both the tangential and radial components of horizontal wind in the tropical cyclone boundary layer at landfall. For a steady tropical cyclone on a straight coastline at landfall, the magnitude of the radial component is greater in the offshoreflow side and the tangential component is greater over the sea, slightly offshore, therefore the greater total wind speed occurs in the offshore-flow side over the sea. The budget analysis suggests that: (1) a greater surface friction over land produces a greater inflow and the nonlinear effect advects the maximum inflow downstream, and (2) a smaller surface friction over the sea makes the decrease of the tangential wind component less than that over land. Moreover, the boundary layer wind structures in a tropical cyclone are related to the locations of the tropical cyclone relative to the coastline due to the different surface frictions. During tropical cyclone landfall, the impact of rough terrain on the cyclone increases, so the magnitude of the radial component of wind speed increases in the offshore-flow side and the tangential component outside the radius of maximum wind speed decreases gradually.  相似文献   

18.
Summary Sea breezes were investigated during the maturation period of wine grapes in the South-Western Cape under particular synoptic wind conditions (onshore for Table Bay and offshore for False Bay). Observations from an automatic weather station network located in the Stellenbosch wine-producing area as well as the Regional Atmospheric Modelling System (RAMS, non-hydrostatic, parallel, version 4.3) were used. Results showed that two sea breezes developed, one from Table Bay late in the morning, and the other from False Bay later in the afternoon. The coastal low strengthened and deflected the sea breeze from Table Bay towards the south and south-east of the study area, while the offshore large-scale circulation hindered the development of the sea breeze in the opposite direction over False Bay and delayed its movement towards land. The decrease in temperature resulting from the onset of the sea breeze from the Atlantic early in the afternoon could be significant for viticulture, reducing the duration and intensity of high temperature stress on grapevine functioning at the coolest locations.  相似文献   

19.
Summary A comparison of 8 regional atmospheric model systems was carried out for a three-month late summer/early autumn period in 1995 over the Baltic Sea and its catchment area. All models were configured on a common grid using similar surface and lateral boundary conditions, and ran in either data assimilation mode (short term forecasts plus data assimilation), forecast mode (short term forecasts initialised daily with analyses) or climate mode (no re-initialisation of model interior during entire simulation period). Model results presented in this paper were generally post processed as daily averaged quantities, separate for land and sea areas when relevant. Post processed output was compared against available analyses or observations of cloud cover, precipitation, vertically integrated atmospheric specific humidity, runoff, surface radiation and near surface synoptic observations. The definition of a common grid and lateral forcing resulted in a high degree of agreement among the participating model results for most cases. Models operated in climate mode generally displayed slightly larger deviations from the observations than the data assimilation or forecast mode integration, but in all cases synoptic events were well captured. Correspondence to near surface synoptic quantities was good. Significant disagreement between model results was shown in particular for cloud cover and the radiative properties, average precipitation and runoff. Problems with choosing appropriate initial soil moisture conditions from a common initial soil moisture field resulted in a wide range of evaporation and sensible heat flux values during the first few weeks of the simulations, but better agreement was shown at later times. Received September 8, 2000 Revised April 3, 2001  相似文献   

20.
Summary  According to past experience, the nearly stagnant conditions caused by the presumed equilibrium between the Saronikos Gulf sea breeze and an opposing synoptic flow is identified as the principal mechanism leading to high pollution episodes in Athens during the summer. However, previous experimental work has not examined in detail the interaction of the sea breeze flow with the opposing background flow. In this context, recent experimental work covering the basic key-locations of the Athens Basin focused on the inland propagation of the southerly sea breeze from the coast to the northern part of the basin mainly under moderate northerly background wind. During this campaign, a network of four meteorological stations established along the Athens Basin and a high range acoustic sounder at the centre of Athens operated over a two months time period in the summer of 1993. In addition, tethered balloon flights in the centre of Athens and on a sea vessel about 15 km offshore were employed during an experimental day with moderate opposing background wind. The results from this experimental campaign include the documentation of the sea breeze delay and its intensity as a function of a sea breeze index and features of the vertical structure of the sea breeze over land as well as over sea. Received March 20, 1998 Revised October 12, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号