首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In the Ospin–Kitoi ultramafic massif of the Eastern Sayan, accessory and ore Cr-spinel are mainly represented by alumochromite and chromite. Copper–nickel mineralization hosted in serpentinized ultramafic rocks occurs as separate grains of pentlandite and pyrrhotite, as well as assemblages of (i) hexagonal pyrrhotite + pentlandite + chalcopyrite and (ii) monoclinal pyrrhotite + pentlandite + chalcopyrite. Copper mineralization in rodingite is presented by bornite, chalcopyrite, and covellite. Talc–breunnerite–quartz and muscovite–breunnerite–quartz listvenite contains abundant sulfide and sulfoarsenide mineralization: pyrite, gersdorffite, sphalerite, Ag–Bi and Bi-galena, millerite, and kuestelite. Noble metal mineralization is represented by Ru–Ir–Os alloy, sulfides, and sulfoarsenides of these metals, Au–Cu–Ag alloys in chromitite, laurite intergrowth, an unnamed mineral with a composition of Cu3Pt, orcelite in carbonized serpentinite, and sperrylite and electrum in serpentinite. Sulfide mineralization formed at the late magmatic stage of the origination of intrusion and due to fluid–metamorphic and retrograde metasomatism of primary rocks.  相似文献   

2.
The Wengeqi complex in Guyang County, Inner Mongolia, is one of several Pd–Pt-mineralized Paleozoic mafic–ultramafic complexes along the north-central margin of the North China. The complex comprises pyroxenites, biotite pyroxenites, amphibole pyroxenites, gabbros, and amphibolites. Zircons extracted from a pyroxenite yield a U–Pb SHRIMP age of 399?±?4?Ma. Several 2–6-m wide syngenetic websterite dikes contain 1–3?ppm Pd?+?Pd and are dominated by pyrite–chalcopyrite–pyrrhotite–magnetite–(pentlandite) assemblages with minor sperrylite, sudburyite, and kotuskite. Textural relationships indicate that pyrite has replaced magmatic chalcopyrite and that magnetite has replaced magmatic pyrrhotite. The mineralization is enriched in Pd–Pt–Cu > Au >> Rh–Ir–Os–Ni > Ru, similar to other occurrences of hydrothermally modified magmatic mineralization, but very different from the much less fractionated compositions of magmatic PGE mineralization. Textural, mineralogical, and geochemical relationships are consistent with alteration of an original magmatic Fe–Ni–Cu sulfide assemblage by a S-rich oxidizing high-temperature (deuteric) hydrothermal fluid.  相似文献   

3.
Summary ?We report, for the first time, the occurrence of five palladium-rich, one palladium bearing and two gold-silver minerals from podiform chromitites in the Eastern Alps. Minerals identified include braggite, keithconnite, stibiopalladinite, potarite, mertieite II, Pd-bearing Pt-Fe alloy, native gold and Ag-Au alloy. They occur in heavy mineral concentrates produced from two massive podiform chromitite samples (unaltered and highly altered) of the Kraubath ultramafic massif, Styria, Austria. Distribution patterns of platinum-group elements (PGE) in these chromitites show considerable differences in the behaviour of the less refractory PGE (PPGE-group: Rh, Pt, Pd) compared to the refractory PGE (IPGE-group: Os, Ir, Ru). PPGE are more enriched in chromitite showing pronounced alteration features. The unaltered chromitite displays a negatively sloped chondrite-normalised PGE pattern similar to typical ophiolitic-podiform chromitite. Except for the Pd- and Au-Ag minerals that are generally rare in ophiolites, about 20 other platinum-group minerals (PGM) have been discovered. They include PGE-sulphides (laurite, erlichmanite, kashinite, bowieite, cuproiridsite, cuprorhodsite, unnamed Ir-rich variety of ferrorhodsite, unnamed Ni-Fe-Cu-Rh- and Ni-Fe-Cu-Ir-Rh monosulphides), PGE alloys (Pt-Fe, Ir-Os, Os-Ir and Ru-Os-Ir), PGE-sulpharsenides (irarsite, hollingworthite, platarsite, ruarsite and a number of intermediate species), sperrylite and a Ru-rich oxide (?). Three PGM assemblages have been recognised and attributed to different processes ranging from magmatic to hydrothermal and weathering-related. Pd-rich minerals are characteristic of both chromitite types, although their chemistry and relative proportions vary considerably. Keithconnite, braggite and Pd-bearing ferroan platinum, together with a number of PGE-sulphides (mainly laurite-erlichmanite) and alloys, are typical only of the unaltered podiform chromitite (assemblage I). Euhedral mono- and polyphase PGM grains in the submicron to 100 μm range show features of primary magmatic assemblages. The diversity of PGM in these assemblages is unusual for ophiolitic environments. In assemblage II, laurite-erlichmanite is intergrown with and overgrown by PGE-sulpharsenides; other minerals of assemblage I are missing. Potarite, stibiopalladinite, mertieite II, native gold and Ag-Au alloys, as well as PGE-sulpharsenides, sperrylite and base metal arsenides and sulphides are characteristic for the highly altered chromitite (assemblage III). They occur either interstitial to chromite in association with metamorphic silicates, in chromite rims or along cracks, and are thus interpreted as having formed by remobilization of PGE by hydrothermal processes during polyphase regional metamorphism. Received August 3, 2000;/revised version accepted December 28, 2000  相似文献   

4.
The Pindos ophiolite complex, located in the north-western part of continental Greece, hosts various podiform chromite deposits generally characterized by low platinum-group element (PGE) grades. However, a few locally enriched in PPGE + Au (up to 29.3 ppm) chromitites of refractory type are also present, mainly in the area of Korydallos (south-eastern Pindos). The present data reveal that this enrichment is strongly dependant on chromian spinel chemistry and base metal sulfide and/or base metal alloy (BMS and BMA, respectively) content in chromitites. Consequently, we used super-panning to recover PGM from the Al-rich chromitites of the Korydallos area. The concentrate of the composite chromitite sample contained 159 PGM grains, including, in decreasing order of abundance, the following major PGM phases: Pd-Cu alloys (commonly non-stoichiometric, although a few Pd-Cu alloys respond to the chemical formula PdCu4), Pd-bearing tetra-auricupride [(Au,Pd)Cu], nielsenite (PdCu3), sperrylite (PtAs2), skaergaardite (PdCu), Pd-bearing auricupride [(Au,Pd)Cu3], Pt and Pd oxides, Pt-Fe-Ni alloys, hollingworthite (RhAsS) and Pt-Cu alloys. Isomertieite (Pd11Sb2As2), zvyagintsevite (Pd3Pb), native Au, keithconnite (Pd20Te7), naldrettite (Pd2Sb) and Rh-bearing bismuthotelluride (RhBiTe, probably the Rh analogue of michenerite) constitute minor phases. The bulk of PGE-mineralization is dominated by PGM grains that range in size from 5 to 10 µm. The vast majority of the recovered PPGM are associated with secondary BMS and BMA, thus confirming that a sulphur-bearing melt played a very important role in scavenging the PGE + Au content of the silicate magma from which chromian spinel had already started to crystallize. The implemented technique has led to the recovery of more, as well as noble, PGM grains than the in situ mineralogical examination of single chromitite samples. Although, the majority of the PGM occur as free particles and in situ textural information is lost, single grain textural evidence is observed. In summary, this research provides information on the particles, grain size and associations of PGM, which are critical with respect to the petrogenesis and mineral processing.  相似文献   

5.
Platinum-group minerals (PGM) in primary ores and placers are compared in order to substantiate prospecting guides for layered and differentiated intrusions containing sulfide Cu-Ni ores with platinum-group elements (PGE). It is shown that supergene placer mineral assemblages bear information on primary sources and their probable economic value. The mineralogical and geochemical data on the large Siberian intrusions that host Cu-Ni and low-sulfide PGM deposits (Noril’sk 1, Kingash, Chinei, and Yoko-Dovyren) are used to elaborate mineralogical prospecting guides based on the comparative study of PGM assemblages in primary ore, heavy concentrate halos, and hillside sediments. The mechanism of PGM redistribution under supergene conditions is exemplified in the Chinei deposit. The placer mineral assemblage with prevalence of Pt-Fe alloys, atokite-rustenburgite, sperrylite, and multicomponent Pd-Sn-Cu-Pb compounds can be used as a prospecting guide for Noril’sk-type primary PGM ore and related economic placers. The paolovite-sperrylite or sperrylite PGM assemblage in heavy concentrate halos indicates occurrence of Cu-Ni ore in the prospecting area. Sperrylite with isomorphic admixture of Ir and Os typical of the Kingash pluton could be a orospecting guide for Ni-bearing mafic-ultramafic intrusions.  相似文献   

6.
New data are reported on the localization and genesis of PGE mineralization at the South Sopcha deposit situated in the southern framework of the Monchegorsk pluton. Disseminated PGE-Cu-Ni mineralization, the thickness of which in particular boreholes exceeds 100 m, is hosted in the zone of alternating peridotite, pyroxenite, norite, and gabbronorite. The PGE grade does not exceed 1?C2 gpt with Pd/Pt = 3?C4 at Ni and Cu contents from 0.2 to 1.5 wt %. The PGE contents up to 4?C6 gpt and Pd/Pt = 4?C8 are noted at local sites of hydrothermally altered rocks. Another type of PGE mineralization is established in the outcrops of the southeastern marginal group of the massif. Pyroxenite, norite, and gabbronorite fragments are incorporated here in the gabbroic matrix, making up a complex zone of magmatic breccia complicated by mylonites and late injections. Elevated PGE contents (1.0?C6.5 gpt) are detected in all types of rocks in the zone of brecciation, mainly in the matrix. Platinum-group minerals (PGM) occur in association with magmatic and late sulfides, amphibole, mica, and chlorite. PGM vary in composition depending on the petrographic features of rocks. In rocks of the layered series and in pegmatoid pyroxenite PGM are extremely diverse comprising PGE compounds with As, Sb, Bi, Te, Se, and S. In the brecciated rocks of the marginal group, Pd bismuthotellurides (mainly merenskyite), sperrylite, hollingworthite, and Pd- and Rh-bearing cobaltite and gersdorffite are predominant. The PGE mineralization in rocks of the layered series and pegmatoid pyroxenite was formed from the magmatic melt enriched in volatiles and with subsequent transformation of PGE assemblages under the influence of hydrothermal fluids at a lower temperature. In gabbroic rocks of the marginal group, PGM are associated with the latest sulfides (chalcopyrite, bornite, chalcocite), forming separate grains and thin veinlets in hydrothermally altered rocks. The gabbroic melt affected incompletely crystallized rocks of the layered series by formation of contact-type PGE mineralization, deposition and redeposition of ore matter.  相似文献   

7.
吉林省小石人金矿区微量元素地球化学特征   总被引:3,自引:0,他引:3  
以吉林省小石人金矿区内不同类型岩(矿)石微量元素测试结果为基础,从数据结构和空间结构两方面,对微量元素的地球化学特征进行探讨。统计参数表明:所观测元素在矿区内具有明显的浓集、富集特点,在不同类型岩(矿)石中元素的分布分配也不尽相同。依据分布分配特点,可将矿区内的岩(矿)石分为正常岩石、弱蚀变岩石和强蚀变/矿化岩石3类。多元统计分析成果揭示:所观测元素都参与了金的成矿活动,但行为特点有所差异。依据多元统计特征,可将微量元素分为3个组合类型:Au、As、Sb、Bi、Hg、Mn,Cu、Pb、Zn、Ag,Co、Ni、V;第一组合为成矿成晕组合,第二组合为金的多金属矿化组合,第三组合为黄铁矿化蚀变组合;元素组合也对应于不同的矿化阶段,指示金的成矿活动及特征。土壤、岩石地化剖面显示所观测的元素间存在空间相关性,但Mn与Au相异,其异常出现在矿化蚀变带的外侧。  相似文献   

8.
The Kaalamo massif is located in the Northern Ladoga region, Karelia, on the extension of the Kotalahti Belt of Ni-bearing ultramafic intrusions in Finland. The massif, 1.89 Ga in age, is differentiated from pyroxenite to diorite. Nickel–copper sulfide mineralization with platinoids is related to the pyroxenite phase. The ore consists of two mineral types: (i) pentlandite–chalcopyrite–pyrrhotite and (ii) chalcopyrite, both enriched in PGE. Pd and Pt bismuthotellurides, as well as Pd and Pt tellurobismuthides, are represented by the following mineral species: kotulskite, sobolevskite, merenskyite, michenerite, moncheite, keithconnite, telluropalladinite; Pt and Pd sulfides comprise vysotskite, cooperite, braggite, palladium pentlandite, and some other rare phases. High-palladium minerals are contained in pentlandite–chalcopyrite–pyrrhotite ore. Native gold intergrown with kotulskite commonly contains microinclusions (1–3 μm) of Pd stannides: paolovite and atokite. Ore with 20–60% copper sulfides (0.2–6.0% Cu) contains 5.1–6.6 gpt PGE and up to 0.13–2.3 gpt Au. Pd minerals, arsenides and sulfoarsenides of Pt, Rh, Ir, Os, and Ru are identified as well. These are sperrylite, ruthenium platarsite, hollingworthite, and irarsite; silvery gold and paolovite have also been noted. All these minerals have been revealed in the massif for the first time. The paper also presents data on the compositions of 25 PGE minerals (PGM) from Kaalamo ores.  相似文献   

9.
山西省阳高县堡子湾金矿床矿物标型特征   总被引:2,自引:0,他引:2  
根据成因矿物学及找矿矿物学观点,系统研究堡子湾金矿床黄铁矿、金矿物、方铅矿、黄铜矿和闪锌矿等金属矿物,石英、碳酸盐、绢(白)云母和金红石等非金属矿物的产状、形态及化学成分标型,结果表明:①矿床中矿物组合复杂,硫化物种类多,有少量硫盐矿物出现;②矿物中微量元素成分复杂,富含As,Sb,Bi,Se,Te等Au活化、迁移有利的矿化搬运剂,Cu,Ph,Zn,Au,Ag等成矿元素和Cr,Ni,V等深源元素;元素矿物组合及其特征比值指示金矿化与深源(下地壳或上地慢)浅成岩浆热液活动(斑岩系统)有关,燕山期石英二长斑岩(角砾岩)是成矿的主导因素;③矿石中大量出现铁白云石、富铁闪锌矿,粒状、富Ti金红石的大量分布,反映矿床剥蚀深度较大,目前可能已揭露至中深部中温带,位于斑岩系统的中下部,深部金矿化不利;④矿石含丰富的铜矿物,其他硫化物矿物中含铜量大,指示深部可能存在斑岩型Cu(Au)矿化。  相似文献   

10.
The Avebury Ni deposit, which has a resource of 260,000 tons of Ni at a grade of 0.9%, is a unique example of a significant Ni sulfide deposit associated with an ophiolite sequence; the deposit is unique because it was formed by hydrothermal processes and also because ophiolites are generally considered unprospective for magmatic Ni sulfide mineralization. The deposit is hosted by Middle Cambrian cumulate peridotite and dunite rocks that were most probably formed from S-poor boninitic magmas. The mineralization, which consists principally of pentlandite, occurs in both serpentinites and skarns in the ultramafic cumulates. The ultramafic rocks are variably metasomatised as the result of the intrusion of the Late Devonian Heemskirk granite. Sulfide-rich and sulfide-poor portions of the ultramafic rocks are variably enriched in W, Bi, U, Pb, Mo, Sn and Sb relative to the primitive mantle. Modest to strong correlations between Cu, Au, Pd, REE, Sn, Mo, W and Ni provide strong evidence that the mineralization is hydrothermal in origin. In situ metasomatism of a magmatic Ni sulfide deposit is ruled out on the basis of poor or negative correlations between Ir, Ru, Rh and Pt when compared to Ni. Although the sulfide-free ultramafic rocks have high Ni contents, this Ni would have been unavailable to the ore-forming fluids as it was hosted in inaccessible sites, such as oxides and silicates. The strong correlations between Au, Pd and Ni suggest that the source of the Ni was magmatic sulfides somewhere at depth that not only have high Ni but also elevated Pd and Au contents.  相似文献   

11.
The geology of the basal-structural Loypishnyun low-sulfide Pt–Pd deposit is characterized, including its mineral composition and the peculiarities of its PGE and chalcophile-element distribution in ore. The deposit is situated in the northeastern part of the Monchetundra basic massif and is localized in its lower norite–orthopyroxenite zone, intensely injected with late gabbroic rocks. Two ore zones are distinguished within the deposit. Ore zone 1 has been traced by drilling for about 1.5 km at a thickness from 10–15 to 120 m and incorporates from two to nine separate lenticular–sheetlike orebodies 0.5–25 m in thickness. Ore zone 2 has been traced for 550 m and is represented by one orebody 5–35 m thick. The internal structure of the orebodies is characterized by alternation of low-grade (Pt + Pd = 0.5–0.9 gpt), ordinary (Pt + Pd = 1.0–1.9 gpt), and high-grade (Pt + Pd > 2 gpt) interlayers of various thickness. The ores are spatially and genetically related to sulfide mineralization (pentlandite–chalcopyrite–pyrrhotite) in an amount of 1–5 vol %. The PGE distribution in ores normalized to primitive mantle is characterized by fractionation of easily fusible platinoids with a positive Pd anomaly. The spectra of chalcophile elements normalized to primitive mantle are notable for elevated Te, Bi, As, and Se contents with respect to Sn, Hg, and Pb, which reflects the significant contribution of Te, Bi, and As in the formation of platinum group minerals (PGM), whereas Se, which is devoid of proper mineral phases, most likely is an admixture in the composition of sulfides. The S/Se value in ore of the Loypishnyun deposit varies from 31 to 814. The platinum group elements (PGE) in ore are represented by 45 noble metal minerals. Ore zone 1 is characterized by lateral mineral zoning, which is expressed as replacement of a bismuthotelluride–sulfide PGM assemblage by an assemblage of copper–PGE compounds and alloys. In ore zone 2, a mineral assemblage of tellurides, copper–PGE compounds and alloys predominates, with native gold, silver, and palladium, as well as sulfides and bismuthotellurides, playing a subordinate role. The formation of PGM ore proceeded under variable sulfur fugacity conditions, beginning with the late magmatic stage at temperatures of 900–700°C and ending with hydrothermal transformation at a temperature of <500°C.  相似文献   

12.
Physicochemical factors of formation of Au-As,Au-Sb,and Ag-Sb deposits   总被引:1,自引:0,他引:1  
The physicochemical formation conditions of Au-As, Au-Sb, and Ag-Sb ores characterized by similar paragenetic mineral assemblages and sets of major ore elements but differing in their proportions have been studied. The composition of the solutions filling fluid inclusions in minerals of Au-Sb deposits, combined with mineralogical and geochemical data, indicates that these deposits were formed from a near-neutral to alkalescent chloride-sulfide (<5 wt % NaCl) solution. Au-As and Au-Sb deposits were formed from fluids of the same type, consisting of a predominately CO2-CH4 gas phase with N2 and a low-saline chloride-sulfide solution, where Au and Ag were predominantly transported as dihydrosulfide species and Sb as sulfide and hydroxy complexes. Superimposed minerals of the sulfide-sulfosalt stage that precipitated from chloride-rich solutions (up to 30 wt % NaCl equiv), which contained Ca and Fe chlorides in addition to NaCl, are identified at some Au-Sb deposits. These solutions are similar in composition to the ore-forming fluids of Ag-Sb deposits. Chloride complexes are dominant Au and Ag species in acid chloride-rich solutions of Ag-Sb deposits (up to 38 wt % NaCl equiv), while chloride and hydroxy complexes are characteristic of Sb. These solutions are distinguished by high concentrations of Ag, Sb, Cu, Fe, Mn, Bi, Pb, and Zn. The mineralogical and geochemical specialization of Ag-Sb ore is caused by chemical features of highly concentrated chloride solutions enriched in Ag, Sb, and Cu and by a relatively low Au content within the pH interval 3.5–4.0 (10?6 m). The factors controlling formation of Au-As deposits are a high capacity of a low-chloride sulfide solution with respect to metals and a high Au concentration therein (two orders higher than that of solutions of Ag-Sb deposits). The enrichment of the pyrite-arsenopyrite paragenetic assemblage in gold is a result of juxtaposed stability fields of native gold, arsenopyrite, and pyrite and their mass deposition with a decrease in temperature from 400 to 300°C. The main cause of the specific mineralogy and geochemistry of Au-Sb deposits is a high metal capacity of a near-neutral low-chloride sulfide fluid with respect to Sb, Au, and Ag, but a low Ag content. The mineralogical and fluid inclusion data combined with computer thermodynamic simulation allowed us to establish the factors of ore formation at P-T-X parameters close to natural conditions and made it possible to characterize the joint deposition of gold and silver in quantitative terms.  相似文献   

13.
Copper–palladium intermetallic compounds and alloys (2314 grains) from the Au–Pd ore of the Skaergaard layered gabbroic pluton have been studied. Skaergaardite PdCu, nielsenite PdCu3, (Cu,Pd)β, (Cu,Pd)α, (Pd,Cu,Au,Pt) alloys, and native palladium have been identified as a result of 1680 microprobe analyses. The average compositions and various chemical varieties of these minerals are characterized, as well as vertical and lateral zoning in distribution of noble metals. The primary Pd–Cu alloys were formed within a wide temperature interval broadly synchronously with cooling and crystallization of host gabbro and in close association with separation of Fe–Cu sulfide liquid. In the course of crystallization of residual gabbroic melt enriched in iron, noble and heavy metals and saturated with the supercritical aqueous fluid, PGE and Au are selectively concentrated in the Fe–Cu sulfide phase as Pd–Cu and Cu–Au alloys.  相似文献   

14.
Minerals of native elements (Pd, Pt, Au, Ag, and Au-Ag solid solutions) as well as Pb, Zn, Cu, Bi, Fe, Cr, Ni, W, Al, and their intermetallides, and a number of other ore minerals were discovered in brown coals of the Erkovets field. The structural reorganization of the noble metal grains and most of the other minerals found in the brown coals suggest their authigenic paragenesis. The input of noble metals in brown coals is possible in an ionic mode from the surface and underground waters as mineral particles transported by wind from goldfields.  相似文献   

15.
铂族元素矿物共生组合(英文)   总被引:1,自引:2,他引:1  
CHEN Yuan 《现代地质》2001,15(2):131-142
由于铂族元素能有效地降低汽车尾气的污染 ,其需求量日益增加 ,对铂族元素矿床的寻找已是当务之急。着重从矿物矿床学角度对铂族元素的矿物共生特点进行了探讨。铂族元素可呈独立矿床产出 ,主要产于基性超基性层状侵入体、蛇绿岩套及阿拉斯加式侵入体中。铂族元素也伴生于铜镍矿床中 ,该类铜镍矿床主要与苏长岩侵入体、溢流玄武岩及科马提岩有关。产于基性超基性层状侵入体中的铂族矿物有铂钯硫化物、铂铁合金、钌硫化物、铑硫化物、铂钯碲化物、钯砷化物及钯的合金。这些铂族矿物可与硫化物矿物共生 ,也可与硅酸盐矿物共生 ,还可与铬铁矿及其他氧化物矿物共生。产于蛇绿岩套中的铂族矿物主要是钌铱锇的矿物 ,而铂钯铑的矿物则较少出现 ,这些铂族矿物可呈合金、硫化物、硫砷化物以及砷化物 4种形式出现。产于阿拉斯加式侵入体中的铂族矿物主要有铂铁合金、锑铂矿、硫铂矿、砷铂矿、硫锇矿及马兰矿等少数几种 ,其中铂铁合金与铬铁矿及与其同时结晶的高温硅酸盐矿物共生 ,而其他的铂族矿物则与后来的变质作用及蛇纹岩化作用中形成的多金属硫化物及砷化物共生。产于铜镍矿床中的铂族矿物主要是铂和钯的矿物。产于基性超基性层状侵入体、蛇绿岩套及阿拉斯加式侵入体中的铂族矿物的共同特点是它们均与铬铁矿?  相似文献   

16.
Utilizing theories of minerageny and prospecting mineralogy, the authors studied the attitude, morphotype and chemical composition of metallic minerals of pyrite, gold, chalcopyrite, galena and sphalerite, non-metallic minerals of quartz, carbonate, dolomite and rutile in the Puziwan gold deposit. The study shows the following results. (1) The mineral assemblage is complex and the species of sulfide are abundant with occurrences of sulfosalt minerals. (2) The composition in the minerals is complex and there rich micro elements, including As, Sb, Bi, Se, Te, Au, Ag, Cu, Pb, Zn, and Cr, Ni, V. The typomorphic characteristics of the association of the elements and their specific value suggest that gold mineralization is associated with shallow magmatic hydrothermal activity, the oreforming fluid is the mixture of abundant rising alkali magmatic water originating from the mantle or the lower crust and the descending acid atmospheric water. (3) Ankerite, Fe-rich sphalerite, granular Ti-rich rutile are widely distributed, which indicate great denudation depths, high mineralization temperature. The deposit is found in the middle and shallow positions of the porphyry series. The deep layers are not favorable for gold mineralization. (4) Copper minerals are rich in the ores and sulfides have high content of copper, suggesting possible porphyry-type Cu (Au) mineralization in deep positions and the surrounding areas.  相似文献   

17.
Summary The Jinchuan deposit is a platinum group element (PGE)-rich sulfide deposit in China. Drilling and surface sampling show that three categories of platinum group element (PGE) mineralization occur; type I formed at magmatic temperatures, type II occurs in hydrothermally altered zones of the intrusion, and type III in sheared dunite and lherzolite. All ore types were analyzed for Os, Ir, Ru, Rh, Pd, Pt and Au, as well as for Cu, Ni, Co and S. Type I ore has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios of <7 and relatively flat chondrite-normalized noble metal patterns; the platinum group minerals (PGM) are dominated by sperrylite and moncheite associated with chalcopyrite, pyrrhotite and pentlandite. Type II has (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 40 to 330 and noble metal distribution patterns with a positive slope; the most common PGM are sperrylite and Pd bismuthotelluride phases concentrated mostly at the margins of base metal sulfides. Type III ores have the highest (Pt + Pd)/(Os + Ir + Ru + Rh) ratios from 240 to 710; the most abundant PGM are sperrylite and phases of the Pt–Pd–Te–Bi–As–Cl system. It is concluded that the Jinchuan deposit formed as a result of primary magmatic crystallization followed by hydrothermal remobilization, transport, and deposition of the PGE.  相似文献   

18.
Oxides, sulfides, arsenides, native metals, and intermetallic compounds are accessory ore minerals from the rocks of the Mt. Poputnaya ultramafic massif. The Fe–Ni phases containing 55.3–82.3 wt % Ni are the most abundant among them. Magnetite, pyrrhotite, Co–Fe and Fe–Ni phases, and native iron are the comparatively high-temperature minerals, whereas heazlewoodite, orcelite, dienerite, and native copper are formed at low temperatures. The found minerals result from serpentinization at 500°C and below.  相似文献   

19.
Plutonogenic ore-magmatic systems of the Noril’sk ore field are unique constituents of the P2–T1 trap formation in the East Siberian Platform. We consider the formation of ore-bearing intrusions, evolution of Cr-spinels in intrusive magmatites, possible mechanisms of formation of massive, disseminated, and impregnated magmatic sulfide ores, possible reasons for the abundance of sulfide melts, quasi-anhydrite isotopic composition of sulfur of sulfide ores, and products of interaction of sulfide melts with ore-hosting basites. The unique contents of PGE, Ag, and Au in ores (eutectic Iss–PbSss intergrowths, crystallization products of low-temperature Ni-Fe-Cu-Pb-S melts) have been estimated for the first time. We have established that pneumatolytic Ag-Au-Pt-Pd mineralization is intimately related to the fluid aureoles near magmatic sulfide bodies. Pneumatolytic PGM are subdivided into early (tetraferroplatinum with lamellae atokite, paolovite with lamellae of insizwaite-geversite and niggliite, etc.), middle (rustenburgite-atokite-zvyagintsevite, mayakite, stannopalladinite, polarite, plumbopalladinite, maslovite, tatiyanite-taimyrite, Pd-Pt-containing tetraauricupride, etc.), late (sobolevskite, froodite, hessite, michenerite, cabriite, minerals of Au-Ag series, etc.), and the latest (sperrylite). The direct, reverse, oscillation, and complex zoning of gold particles is much due to variations in the Te activity in the fluids. Pneumatolytic noble-metal minerals were produced at <490 ºC in strongly reducing conditions with extremely low S2 fugacity. The Pb isotope composition evidences that all systems of the trap formation in the Noril’sk region had the same mantle source. The Pb isotope compositions of ore-bearing intrusions, magmatic sulfide ores, PbSss, and Pd-Pt intermetallides in the Noril’sk and Talnakh ore clusters differ significantly: Lead in the Talnakh cluster is more radiogenic. This evidences genetic relations between sulfide ores and particular intrusions as well as different intermediate magma chambers in the Noril’sk and Talnakh clusters, and a higher degree of contamination of mantle magmas in the Talnakh cluster, which might be the explanation of its giant area.  相似文献   

20.
The southern Kostomuksha gold-sulfide prospect with a grade of 0.2–30 g/t Au belongs to the gold-pyrrhotite-arsenopyrite mineral type and is localized in the metasomatically altered shear zone at the southern flank of the Kostomuksha iron deposit. The Au-bearing pyrite ore is commonly characterized by a low grade (0.02–1.0 g/t Au). The grade of Au-bearing mineralization composed of arsenopyrite, loellingite, and electrum (4.28–15.31 wt % Ag and up to 0.99–2.16 wt % Hg) is higher; pyrrhotite, chalcopyrite, galena, maldonite, aurostibite, and native bismuth are additional components of this mineral assemblage. The ore mineralization is hosted in the near-latitudinal shear zone close to the contact between the folded and metamorphosed banded iron formation (BIF) and hälleflinta. The early stage of collision-related HP-HT metamorphism resulted in the formation of a garnet-amphibole-biotite assemblage (T = 680-750°C) and microcline. After an abrupt drop m pressure, metasomatic alteration and ore mineralization took place. The ore-forming process started at 510–440°C with deposition of arsenopyrite. Galena and electrum were formed at a lower temperature. The temperature continued to decline down to the stage of ore oxidation and deposition of colloform marcasite. Ore minerals precipitated from acid chloride aqueous solutions admixed with methane at the initial stage and from diluted aqueous solutions at the final stage. The character of wall-rock alteration and the gain of K, Rb, and B show that the ore-forming process postdated the emplacement of potassium granite. The occurrence of Cu, Zn, Pb, As, and Ni and other heterogeneous elements indicates a complex metamorphic-metasomatic source and an additional supply of Au, As, Bi, Sb, and Te under conditions of sulfur deficiency. The gold mineralization at the southern Kostomuksha prospect is classified as gold-sulfide (arsenopyrite) ore type related to shear zones in the BIF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号