首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
1980-2015年青藏高原东南部岗日嘎布山冰川变化的遥感监测   总被引:9,自引:7,他引:2  
基于地形图、航空摄影相片和Landsat OLI遥感影像,对青藏高原东南部岗日嘎布山1980-2015年间的冰川变化进行了研究。结果表明: 1980-2015年,岗日嘎布山冰川面积减少679.50 km2(-24.91%),年平均面积退缩率为0.71%·a-1,末端海拔平均抬升了111 m。研究区范围内有10条冰川处于前进状态,冰川长度平均增加566.17 m;其余冰川均处于退缩状态,冰川长度平均减少823.49 m。与中国其他山系冰川相比,岗日嘎布山冰川面积年平均退缩速率较大,冰川长度变化速率最大,是冰川退缩最强烈的地区之一。岗日嘎布山冰川变化与气候变化关系密切,对研究区附近三个气象站5-9月平均气温和降水变化分析表明,自1980年以来,岗日嘎布山5-9月平均气温显著上升,降水变化不明显,是导致该区域冰川呈现快速退缩的主要原因。  相似文献   

2.
青藏高原现代冰川变化是对气候变化的响应, 对区域水资源评估有着重要的理论意义和现实意义.采用GIS分析方法, 利用三期卫星遥感数据研究青藏高原中部念青唐古拉山西段冰川在2个时间段(1977-2001和2001-2010)的时空分布和变化, 并对比分析其在南坡和北坡变化速率趋势以及在不同海拔高度的变化特征.研究发现: (1)2010年念青唐古拉山西段冰川面积为571.81±16.01 km2, 主要分布在5 500~6 200 m的高山区; (2)1977-2010年念青唐古拉山西段冰川退缩明显, 总面积减少22.42%±2.90%;(3)相比于1977-2001年时间段, 近十年来该区冰川退缩速率呈明显加剧趋势; (4)与前一个时段相比, 低于5 700 m海拔区域, 各海拔段的冰川年均面积退缩速率呈减缓趋势; 而在5 700~7 000 m海拔区域, 则呈加剧趋势; (5)北坡冰川退缩率(23.6%±2.88%)高于南坡(21.97%±2.90%), 且南北坡2001-2010年年均冰川面积减少最大的海拔段比1977-2001年都升高了200 m, 研究区冰川的持续退缩有向高海拔转移的趋势; (6)南坡拉萨河流域内的冰川年均减少面积最大的海拔段比北坡高100 m左右.气温升高是影响近十年以来研究区的冰川退缩加剧的根本原因, 将对区域水文和生态环境产生重大的影响.   相似文献   

3.
利用MODIS逐日无云积雪产品与AMSR-E雪水当量产品进行融合, 获取了青藏高原500 m分辨率的高精度雪水当量产品, 通过研究青藏高原积雪时空动态变化特征, 分析了积雪覆盖日数、雪水当量以及总雪量的季节及年际变化. 结果表明: 青藏高原地区降雪主要集中在高海拔山区, 而高原腹地降雪较少, 降雪在空间上分布极为不均; 2003-2010年期间, 平均积雪日数呈显著减少趋势, 稳定积雪区面积在逐渐扩大, 常年积雪区面积在不断缩小. 与积雪日数时空变化相比, 雪水当量增加的区域与积雪日数增加的区域基本一致, 但喜马拉雅山脉在积雪日数减少的情况下雪水当量却在逐年增加, 表明该地区温度升高虽然导致部分常年积雪向季节性积雪过渡, 但降雪量却在增加. 总的积雪面积年际变化呈波动下降的趋势, 但趋势不显著, 且减少的比例很少. 最大积雪面积呈现波动上升后下降的趋势, 平均累积积雪总量呈明显的波动下降趋势, 年递减率为1.0×103 m3·a-1.  相似文献   

4.
2000-2005年青藏高原积雪时空变化分析   总被引:16,自引:6,他引:10  
王叶堂  何勇  侯书贵 《冰川冻土》2007,29(6):855-861
利用MODIS卫星反演的积雪资料以及同期气象资料,分析了2000-2005年青藏高原积雪分布特征、年际变化及其与同期气温和降水的关系,结果表明:青藏高原积雪分布极不均匀,四周山区多雪,腹地少雪;高原积雪期主要集中在10月到翌年5月;2000-2005年高原积雪年际变化差异较大,积雪面积总体上呈现冬春季减少、夏秋季增加的趋势;气温和降水是影响高原积雪变化的基本因子.冬季,高原积雪面积变化对降水更为敏感;春季,气温是影响高原积雪面积变化更主要的因素.  相似文献   

5.
一种基于MODIS积雪产品的雪线高度提取方法   总被引:3,自引:2,他引:1  
冰川雪线高度的遥感提取对冰川物质平衡研究具有重要意义。提出一种基于晴空环境下积雪覆盖频率的雪线高度提取方法。使用MOD10A1积雪产品中的像元积雪面积比例数据,提取了2000/2001-2014/2015年间高亚洲地区冰川消融期末雪线高度。使用实测的冰川年物质平衡资料和气象格网数据对提取的雪线高度变化的可信度进行分析。研究表明:近15 a高亚洲雪线高度变化及趋势具有明显的东西差异,雪线高度变化幅度自青藏高原内部地区向四周呈增加趋势,西部大于东部。提取的冰川雪线高度变化与观测的年物质平衡序列具有很高的相关性,对物质平衡波动的平均解释率可高达75%;与气象要素(气温、降水)的年际变化的相关性也较高,约61.58%的格网冰川雪线高度变化可以由夏季气温和季节降水解释。而高亚洲各分区冰川雪线高度的波动规律也与大气环流背景分布一致。因此提取的雪线高度变化具有冰川学意义,可以进一步应用于冰川物质平衡估算及模拟研究中。  相似文献   

6.
1980-2005年藏东南然乌湖流域冰川湖泊变化研究   总被引:7,自引:0,他引:7  
基于1980年地形图和1988年、2001年Landsat数据以及2005年中巴资源卫星数据,对藏东南然乌湖流域1980-2005年25 a来冰川和湖泊的面积变化进行了研究.结果表明:1980-2005年间,冰川面积从496.64 km2减少到466.94 km2,冰川萎缩了29.7 km2,萎缩速率为1.19 km2·a-1 ,萎缩量占冰川总面积的5.98%,冰川面积占流域总面积的比例从22.42%减小到21.08%.区域冰碛湖泊面积则从1980年29.79 km2增大到2005年33.27 km2,湖泊面积扩大了3.48 km2,增加的速率为0.14km2·a-1,扩大面积占湖泊总面积的11.68%,湖泊而积占流域总面积的比例从1.34%增加到11.5%.其中,冰川面积在1980-1988年萎缩速率为1.73 km2·a-1 ,1988-2001年为0.82 km2·a-1和2001-2005年为1.3 km2·a-1.而湖泊面积在1980-1988年扩涨速率为0.11 km2·a-1,1988-2001年为0.12 km2·a-1,2001-2005年为0.27 km2·a-1,湖泊逐年加速扩涨.从流域内的气象数据来看,温度升高,是该区域冰川萎缩的根本原因,湖泊加速扩涨主要受到冰川萎缩,冰川融水量加大的影响.  相似文献   

7.
对青海省东北部祁连县周边的冰沟、青羊沟和扎麻什林线地区的祁连圆柏进行了树芯采集, 建立了祁连山中部3个样点林线处祁连圆柏的树轮宽度年表. 相关分析显示, 树轮宽度与前一年积雪深度和当年3-6月积雪面积呈显著负相关. 同时, 建立了树轮宽度与前一年9月份积雪深度的转换函数方程, 解释方差为35.9%, 树轮-雪深重建数据能较好的反映积雪深度变化. 重建序列显示, 自1740年以来, 研究区共有3个积雪深度高值时段, 分别为1740-1780年、1825-1880年和1910-1980年. 并且, 在长时间尺度上, 积雪深度变化与祁连山地区以及中国西部其他地区的冰川进退有较好的对应关系. 另外, 积雪深度在年际变化和长期变化上都与温度变化表现为负相关.  相似文献   

8.
长江源区典型流域积雪年变化及其与气温、降水的关系   总被引:3,自引:1,他引:2  
对长江源区冬克玛底河流域2005年1月-2006年9月积雪空间分布特征、雪盖变化进行了分析,探讨了2005年暖季(5~9月)积雪覆盖与同期气温和降水量之间的关系.结果表明:积雪主要分布在河谷两侧的山坡、山顶、冰川前沿和冰川上,宽广平坦的河谷积雪很少;在暖季,流域降水多、气温较高,积雪主要分布在冰川区.作为一种特殊的下垫面,沼泽化草甸和冻土丘对积雪分布也有较大的影响.从两年的积雪覆盖率变化来看,在降雪少而气温低的1~4月积雪覆盖率变化剧烈;5月份降雪增多,但由于气温也在逐步回升,使得积雪覆盖率还是变化剧烈;10~11月降雪较多而且气温较低使得积雪覆盖率保持在80%以上的覆盖水平;6~8月因气温和地温较高,尽管降水多以固态形式降落,但在地面保留的时间极短,故积雪覆盖面积较小.在暖季(5~9月)降水对积雪覆盖的影响微弱,而温度是流域积雪覆盖变化的主要影响因素.  相似文献   

9.
青藏高原各拉丹冬地区冰川变化的遥感监测   总被引:49,自引:20,他引:49  
以位于青藏高原长江源头的各拉丹冬地区冰川为例, 利用2000年的TM数字遥感影像资料、 1969年的航空相片遥感资料、地形图及数字地形模型, 通过遥感图像处理和分析提取研究区小冰期最盛期(LIA)、 1969年和2000年的冰川范围, 并在地理信息系统技术支持下分析该地区冰川的进退情况. 研究结果表明, 该地区1969年冰川面积比小冰期最盛期的冰川面积减少了5.2%, 2000年的冰川面积比1969年的冰川面积减少了1.7%. 从1969年到2000年最大冰川退缩速度为-41.5 m*a-1, 最大冰川前进速度为+21.9 m*a-1. 本区的冰川基本处于稳定状态, 冰川退缩的速度不是太大, 并有前进的冰川存在.  相似文献   

10.
长江源区冰川对气候变化的响应   总被引:16,自引:7,他引:9  
长江源区是青藏高原冰川分布集中的地区之一,冰川总面积达1276.02km2.研究表明,该区属于青藏高原升温幅度最大的地区之一,到2050年气温将比1961—1990年平均气温高出2.3~2.7℃,降水增加1%~33%.基于冰川编目资料,采用有关对长江源区未来50a内的气温和降水预测数据,应用冰川系统对气候响应的模型,对该区未来50a内冰川变化趋势进行预测.结果表明:到2010年、2030年、2050年该区冰川面积平均将减少3.2%、6.9%和11.6%;冰川径流平均将增加20.4%、26%和28.5%;零平衡线上升值为14m、30m和50m左右.最后,针对气候变化的不确定性,对预测结果的不确定性进行了探讨.  相似文献   

11.
天山乌鲁木齐河源1号冰川消融期反照率特征   总被引:2,自引:2,他引:0  
消融期冰川反照率特征研究对于深入理解冰川消融过程及其对气候变化的响应机理具有重要意义。利用Landsat卫星影像反演反照率数据,MODIS逐日反照率产品数据以及野外观测反照率数据,分析了天山乌鲁木齐河源1号冰川2016年消融期(5—8月)反照率时空变化特征。研究表明:消融早期,冰川反照率空间变化不明显;消融中后期,总体上呈现随海拔的升高而增大的趋势,在平衡线附近增速最快。消融期冰川反照率整体呈下降趋势,而且在6—7月份变化最为剧烈。平衡线附近反照率时间变化尤其显著,积累区次之,消融区最弱。冰川反照率的时空变化主要由冰面特征决定。气温和固态降水是其驱动因素。冰川反照率随气温的升高而降低,但固态降水会打破其随气温的变化趋势,引起反照率的增加。污化物显著降低冰面反照率,尤其在可见光波段(380~760 nm)。此外,即使冰面特征相对均一,反照率还呈现随太阳入射角的增大而增大的趋势,主要由冰川局部地形(坡度与坡向)差异所致。  相似文献   

12.
Climate change is expected to have a significant impact on the Himalayan region, which may ultimately affect the water security and agriculture productivity in the region. Investigations of hydrologic regimes and their linkage to climatic trends are therefore gaining importance to reduce vulnerability of growing implications in the region. In the present study, the eWater source software implementation of GR4JSG snow melt model was used for snow melt runoff modeling of the Astore river basin, western Himalayas. The model calibration and validation indicated a close agreement between the simulated and observed discharge data. The scenario of 0.9 °C increase in temperature indicated 33% rise in the river discharge, while an increase of 10% in precipitation may exaggerate the river flows by 15%. The scenario of 100% increase in glaciated area showed 41% increase in the Astore river discharge. On the other hand, reduction of 50% glacier cover may result in 34% decline in the river discharge, while 0% glacier coverage may reduce the river discharges by 49% from that of the base year 2014. It is essential to develop a long-term water resource monitoring process and adapt water management systems taking into account the socio-economic and ecological complexities of the region.  相似文献   

13.
新疆阿勒泰地区积雪变化特征及其对冻土的影响   总被引:4,自引:3,他引:1  
依据新疆阿勒泰地区气象台站观测的1961-2011年最大积雪深度、 积雪日数资料与安装在库威水文站的雪特性站观测的积雪密度资料, 讨论了新疆阿勒泰地区积雪的变化特征. 结果表明: 阿勒泰地区近50 a来最大积雪深度变化均呈显著增加的趋势, 且西部最大积雪深增加趋势大于东部. 积雪日数变化较为复杂, 在空间分布上有差异, 位于最东面的富蕴和青河50 a来积雪日数呈减少趋势, 其余各站均为增加趋势, 且东部历年平均积雪日数略高于西部, 积雪日数的增加趋势比最大积雪深度增长得平缓. 2011年8月-2012年9月在阿勒泰额尔齐斯河上游库威水文站架设的雪特性站观测资料表明, 在额尔齐斯河源头高山区冬季积雪主要是空心化的密实化过程, 升华可能是其主要的物质损失过程, 引起升华的主要气象要素是气温、 风速和水汽压. 各站月最大冻结深度与海拔关系较为密切, 随海拔的增加而增大. 积雪20 cm厚是积雪对下伏土壤冻结影响的一个界限, 积雪厚度超过20 cm就有一定的保温作用; 积雪超过40 cm时, 气温变化对下伏土壤冻结的影响保持稳定, 冻结深度也达到稳定值; 但当积雪厚度超过70 cm之后, 冻结深度会再次发生变化, 可能是由于地温从下向上的影响或地温不能与气温交换而产生的又一次变化.  相似文献   

14.
郭佳锴  李哲  李飞  张世强 《冰川冻土》2021,43(2):650-661
积雪积累和消融过程是冰冻圈水文模型的重要组成部分,利用多源遥感数据对水文模型模拟的积雪分布和深度进行评估是进一步增强融雪过程模拟的物理基础,也是提高模拟可靠性的重要手段。基于2002—2013年疏勒河上游山区流域MODIS地表反射率数据集和中国雪深长时间序列数据集,对VIC-CAS模型模拟的逐日积雪覆盖度和雪深进行了综合评估。结果表明:从不同降雪年份来看,VIC-CAS模型可以较好地模拟多雪年(2008年)疏勒河上游山区流域积雪的覆盖度,在平雪年(2004年)和少雪年(2013年)模型模拟精度相对较低。从不同海拔的模拟结果来看,在流域占比最高的4 000~5 000 m高程带精度最高,2 000~3 000 m高程带精度最低;对比模拟雪深与中国雪深产品发现,多雪年的一致性较高,平雪年和少雪年的一致性较低。这表明VIC-CAS模型对疏勒河上游日尺度的积雪覆盖度和雪深的模拟精度相对较低,特别在低海拔处和薄雪情况下,其原因可能是对积雪再分布和风吹雪过程的模拟算法和参数化存在较大的不确定性,需要进一步改进。  相似文献   

15.
玉龙雪山白水1号冰川近地层气象要素变化特征   总被引:2,自引:1,他引:1  
利用2011年10月1日至2012年9月30日玉龙雪山白水1号冰川海拔4 500 m气象观测资料,对位于我国最南、亚欧大陆距赤道最近的海洋型冰川区近地层气象要素基本特征进行了分析,并与同海拔大陆型冰川——祁连山老虎沟12号冰川区近地层气象要素进行了对比。研究表明:海洋型与大陆型冰川区气温逐时变化呈单峰单谷型分布,均表现出升温快降温慢的特点,观测点5 m层气温高于2 m层气温,二者差值日变化呈单峰型,峰值出现在北京时间12:00;受季风气候影响,研究区干季相对湿度小,湿季相对湿度大,年均相对湿度为73.3%,与相对湿度相比,研究区水汽压变化更受控于气温;两冰川区冬半年气压低,夏半年气压高,均表现为典型的"高山型"气压;受冰川"冷效应"影响研究区干季风速大,湿季风速小,因冰川规模较小,研究区冰川风不发达,谷风发育强劲;受季风期云雨影响,白水1号冰川区总辐射在季风前期达到最大值,季风期达到极小值,年均总辐射量低于老虎沟12号冰川同海拔地区。  相似文献   

16.
The snow cover days were extracted out of the snow data on depth distribution from 1979 to 2016 in China, combined with temperature, precipitation, humidity, sunlight and wind speed and other meteorological data, by taking advantage of traditional statistical methods and GIS spatial analysis methods, to study the temporal and spatial variation characteristics of snow cover days in northeast China region in the past 40 years, and to analyze their relationship with climatic factors. It turned out that the average annual snow cover days were 93 d in northeast China region, having an increasing trend, the rate was 0.6 d/10a, and the maximum average annual snow cover days appeared in 2013. Snow cover days in spring dominate the changes of the average snow days all year around. The snow cover days in northeast China region were affected by latitude, geography and land-sea thermal difference, which gradually decreased from north to south, and the maximum value appeared in the Da Hinggan area. Precipitation, humidity and snow cover days are positive correlation, and temperature, wind speed and sunlight are negative correlation. The correlation between climatic elements and snow cover days is as follows: temperature>humidity>wind speed>sunlight>precipitation. The influence of climatic elements on the seasonally frozen ground region is more significant than that in the permafrost region. The results show that temperature is the main factor that affects the average annual snow cover days in northeast China region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号