首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The earliest decipherable record of the Dharwar tectonic province is left in the 3.3 Ga old gneissic pebbles in some conglomerates of the Dharwar Group, in addition to the 3.3–3.4 Ga old gneisses in some areas. A sialic crust as the basement for Dharwar sedimentation is also indicated by the presence of quartz schists and quartzites throughout the Dharwar succession. Clean quartzites and orthoquartzite-carbonate association in the lower part of the Dharwar sequence point to relatively stable platform and shelf conditions. This is succeeded by sedimentation in a rapidly subsiding trough as indicated by the turbidite-volcanic rock association. Although conglomerates in some places point to an erosional surface at the contact between the gneisses and the Dharwar supracrustal rocks, extensive remobilization of the basement during the deformation of the cover rocks has largely blurred this interface. This has also resulted in accordant style and sequence of structures in the basement and cover rocks in a major part of the Dharwar tectonic province. Isoclinal folds with attendant axial planar schistosity, coaxial open folds, followed in turn by non-coaxial upright folds on axial planes striking nearly N-S, are decipherable both in the “basement” gneisses and the schistose cover rocks. The imprint of this sequence of superposed deformation is registered in some of the charnockitic terranes also, particularly in the Biligirirangan Hills, Shivasamudram and Arakalgud areas. The Closepet Granite, with alignment of feldspar megacrysts parallel to the axial planes of the latest folds in the adjacent schistose rocks, together with discrete veins of Closepet Granite affinity emplaced parallel to the axial planes of late folds in the Peninsular Gneiss enclaves, suggest that this granite is late-tectonic with reference to the last deformation in the Dharwar tectonic province. Enclaves of tonalite and migmatized amphibolite a few metres across, with a fabric athwart to and overprinted by the earliest structures traceable in the supracrustal rocks as well as in a major part of the Peninsular Gneiss, point to at least one deformation, an episode of migmatization and one metamorphic event preceding the first folding in the Dharwar sequence. This record of pre-Dharwar deformation and metamorphism is corroborated also by the pebbles of gneisses and schists in the conglomerates of the Dharwar Group. Volcanic rocks within the Dharwar succession as well as some of the components of the Peninsular Gneiss give ages of about 3.0 Ga. A still younger age of about 2.6 Ga is recorded in some volcanic rocks of the Dharwar sequence, a part of the Peninsular Gneiss, Closepet Granite and some charnockites. These, together with the 3.3 Ga old gneisses and 3.4 Ga old ages of zircons in some charnockites, furnish evidence for three major thermal events during the 700 million year history of the Archaean Dharwar tectonic province.  相似文献   

2.
Abstract Two varieties of charnockites are recognized in the Dharwar craton of southern India. The style and sequence of structures in one charnockite variety, and related intermediate to basic granulites, are similar to those in the supracrustal rocks of the Dharwar Supergroup and the adjacent Peninsular Gneiss. This style has isoclinal folds with long limbs and sharp hinges with an axial planar fabric in some instances. Additional evidence of flattening is provided by pinch-and-swell and boudinage structures, with basic granulites forming boudins in the more ductile charnockites/enderbites in the limbs of isoclinal folds. These folds are involved in near-coaxial upright folding resulting in the bending of the axial planes of the isoclinal folds and the associated boudins. All these structures are overprinted by non-coaxial upright folds with axial planes striking nearly N–S. The map pattern of charnockites suggests that this sequence of structures is present not only on a mesoscopic scale, but also on a macroscopic scale. Charnockites of this variety provide, in some instances, evidence of having been migmatized to give rise to hornblende–biotite gneiss and biotite gneiss, which form a part of the Peninsular Gneiss terrane.
The second variety comprises charnockite sensu stricto with an entirely different structural style. This type occurs in the tensional domains of the hinge zones of the later buckle folds, in the necks of foliation boudinage, in shear zones and in release joints parallel to the axial planes of the later folds in the Peninsular Gneiss. Because the non-coaxial later folds are associated with a strain pattern different from, and later than, that of the isoclinal folds of the first generation, it follows that charnockites of the Dharwar craton have evolved in at least two distinct phases, separate both in time and in process.  相似文献   

3.
The supracrustal enclave within the Peninsular Gneiss in the Honakere arm of the Chitradurga-Karighatta belt comprises tremolite-chlorite schists within which occur two bands of quartzite coalescing east of Jakkanahalli(12°39′N; 76°41′E), with an amphibolite band in the core. Very tight to isoclinal mesoscopic folds on compositional bands cut across in the hinge zones by an axial planar schistosity, and the nearly orthogonal relation between compositional bands and this schistosity at the termination of the tremolite-chlorite schist band near Javanahalli, points to the presence of a hinge of a large-scale, isoclinal early fold (F1). That the map pattern, with an NNE-plunging upright antiform and a complementary synform of macroscopic scale, traces folds 'er generation (F 2),is proved by the varying attitude of both compositional bands (S0) and axial pranar schistosity (S 1), which are effectively parallel in a major part of the area. A crenulation cleavage (S 2) has developed parallel to the axial planes of theF 2 folds at places. TheF 2 folds range usually from open to rarely isoclinal style, with theF 1 andF 2 axes nearly parallel. Evidence of type 3 fold interference is also provided by the map pattern of a quartzite band in the Borikoppalu area to the north, coupled with younging directions from current bedding andS 0 -S 1 inter-relation. Although statistically theF 1 andF 2 linear structures have the same orientation, detailed studies of outcrops and hand specimens indicate that the two may make as high an angle as 90°. Usually, in these instances, theF 1 lineations are unreliable around theF 2 axes, implying that theF 2 folding was by flexural slip. In zones with very tight to almost isoclinalF 2 folding, however, buckling attendant with flattening has caused a spread of theF 1 lineations almost in a plane. Initial divergence in orientation of theF 1 lineations due to extreme flattening duringF 1 folding has also resulted in a variation in the angle between theF 1 andF 2lineations in some instances. Upright later folding (F3) with nearly E-W strike of axial planes has led to warps on schistosity, plunge reversals of theF 1 andF 2 axes, and increase in the angle between theF 1 andF 2 lineations at some places. Large-scale mapping in the Borikoppalu sector, where the supposed Sargur rocks with ENE ‘trend’ abut against the N-‘trending’ rocks of the Dharwar Supergroup, shows a continuity of rock formations and structures across the hinge of a large-scaleF 2 fold. This observation renders the notion, that there is an angular unconformity here between the rocks of the Sargur Group and the Dharwar Supergroup, untenable.  相似文献   

4.
Mafic rocks of Western Dharwar Craton (WDC) belong to two greenstone cycles of Sargur Group (3.1–3.3 Ga) and Dharwar Supergroup (2.6–2.8 Ga), belonging to different depositional environments. Proterozoic mafic dyke swarms (2.4, 2.0–2.2 and 1.6 Ga) constitute the third important cycle. Mafic rocks of Sargur Group mainly constitute a komatiitic-tholeiite suite, closely associated with layered basic-ultrabasic complexes. They form linear ultramaficmafic belts, and scattered enclaves associated with orthoquartzite-carbonate-pelite-BIF suite. Since the country rocks of Peninsular Gneiss intrude these rocks and dismember them, stratigraphy of Sargur Group is largely conceptual and its tectonic environment speculative. It is believed that the Sargur tholeiites are not fractionated from komatiites, but might have been generated and evolved from a similar mantle source at shallower depths. The layered basic-ultrabasic complexes are believed to be products of fractionation from tholeiitic parent magma. The Dharwar mafic rocks are essentially a bimodal basalt-rhyolite association that is dominated by Fe-rich and normal tholeiites. Calc-alkaline basalts and andesites are nearly absent, but reference to their presence in literature pertains mainly to carbonated, spilitized and altered tholeiitic suites. Geochemical discrimination diagrams of Dharwar lavas favour island arc settings that include fore-, intra- and back-arcs. The Dharwar mafic rocks are possibly derived by partial melting of a lherzolite mantle source and involved in fractionation of olivine and pyroxene followed by plagioclase. Distinctive differences in the petrography and geochemistry of mafic rocks across regional unconformities between Sargur Group and Dharwar Supergroup provide clinching evidences in favour of distinguishing two greenstone cycles in the craton. This has also negated the earlier preliminary attempts to lump together all mafic volcanics into a single contemporaneous suite, leading to erroneous interpretations. After giving allowances for differences in depositional and tectonic settings, the chemical distinction between Sargur and Dharwar mafic suites throws light on secular variations and crustal evolution. Proterozoic mafic dyke swarms of three major periods (2.4, 2.0–2.2 and 1.6 Ga) occur around Tiptur and Hunsur. The dykes also conform to the regional metamorphic gradient, with greenschist facies in the north and granulite facies in the south, resulting from the tilt of the craton towards north, exposing progressively deeper crustal levels towards the south. The low-grade terrain in the north does not have recognizable swarms, but the Tiptur swarm consists essentially of amphibolites and Hunsur swarm mainly of basic granulites, all of them preserving cross-cutting relations with host rocks, chilled margins and relict igneous textures. There are also younger dolerite dykes scattered throughout the craton that are unaffected by this metamorphic zonation. Large-scale geochemical, geochronological and palaeomagnetic data acquisition through state-of-the-art instrumentation is urgently needed in the Dharwar craton to catch up with contemporary advancements in the classical greenstone terrains of the world.  相似文献   

5.
In the Kolar Schist Belt well-preserved small-scale diastrophic structures suggest four phases of folding (F1 — F4). The near coaxial F1 andF 2folds are both isoclinal with long-drawn out limbs and sharp hinges. The axial planes of bothF 1andF 2folds are subvertical with N-S strikes; these control the linear outcrop pattern of the Schist belt. The later folds (F 3and F4) are important in small-to-intermediate scales only and are accommodation structures formed during the relaxation period of the early folding episodes. Mesoscopic shear zones, post-F2 but pre-F3 in age, are present in all the rock types in this area. The F1 and F2 folds and the mesoscopic shear zones were formed during a continuous E-W subhorizontal compression. Available geochemical and isotopic data show that the Kolar Schist Belt with ensimatic setting is bounded by two granitic terrains of contrasting evolutionary histories. This, together with E-W subhorizontal compression over a protracted period of time, strengthens the recent suggestions that the Kolar Schist Belt represents a suture. This belt then marks the site of a continent-continent collision event of late Archaean-early Proterozoic age.  相似文献   

6.
In spite of detailed geological investigations of the Dharwar craton since the 1890s, its principal lithological units, structure and chronology remain contentious. Important new work on lithostratigraphy, basin development, structure, geochemistry and geochronology has led to wide-ranging speculation on the Late Archaean plate tectonic setting. Much of the speculation is based on uniformitarian models which contrast with a recent proposal that the evolution of the craton was controlled by gravity-driven processes with no crustal shortening.  相似文献   

7.
The sulfur isotope composition of sulfides (mainly pyrite and arsenopyrite) from gold deposits/prospects of the Dharwar Craton such as Hutti, Hira-Buddini, Uti, Kolar (Chigargunta), Ajjanahalli, and Jonnagiri has a narrow range (δ34S = +1.1 to +7.1‰). Such craton-scale uniformity of the above gold camps is noteworthy, in spite of the wide diversity in host rock compositions and their metamorphic conditions, and suggests a magmatic or average crustal source of sulfur for all deposits studied. In addition, our study points towards gold precipitation from reduced ore fluids, with near-homogeneous sulfur isotope compositions.  相似文献   

8.
晋北早前寒武纪变质岩区构造相研究   总被引:1,自引:0,他引:1  
晋北地区出露有不同层次的地壳,是研究构造相最理想的地区之一。本文以构造分析为主线,结合当前地壳流变学研究进展,对该区早前寒武纪构造特征进行了分析,初步建立了早前寒武纪地质事件序列。提出了该区北部(大同-集宁)麻粒岩相变质岩代表下地壳的物质组成,中部(恒山)中深变质岩代表典型的中下地壳过渡带的特征(早前寒武纪一个重要的软...  相似文献   

9.
The ENE-plunging macroscopic folds, traced by calc gneiss interbanded with marble and sillimanite schist within the Peninsular Gneiss around Suganapuram in the ‘Palghat gap’ in southern India, represent structures of the second generation (D2). They have folded the axial planes of a set of D1 isoclinal folds on stratification coaxially, so that the mesoscopic D1 folds range from reclined in the hinge zones, through inclined to upright in the limb zones of the D2 folds. Orthogonal relation between stratification and axial planar cleavage, and ‘M’ shaped folds on layering locate the hinge zones of the D1 folds, whereas folds on axial planar cleavage with ‘M’ shaped folds are the sites of the D2 fold hinges. Extreme variation in the shapes of the isoclinal D1 folds from class 1B through class 1C to nearly class 2 of Ramsay is a consequence of buckling followed by flattening on layers of widely varying viscosity contrast. The large ENE-trending structures in this supracrustal belt within the Peninsular Gneiss in the ‘Palghat gap’ could not have evolved by reorientation of NS-trending structures of the Dharwar tectonic province to the north by movement along the Moyar-Bhavani shear zone which marks the boundary between the two provinces. This is because the Moyar and Bhavani faults are steep dipping reverse faults with dominant dip-slip component. Deceased  相似文献   

10.
Gold mineralization at Hutti is confined to a series of nine parallel, N–S to NNW–SSE trending, steeply dipping shear zones. The host rocks are amphibolites and meta-rhyolites metamorphosed at peak conditions of 660±40°C and 4±1 kbar. They are weakly foliated (S1) and contain barren quartz extension veins. The auriferous shear zones (reefs) are typically characterized by four alteration assemblages and laminated quartz veins, which, in places, occupy the entire reef width of 2–10 m, and contain the bulk of gold mineralization. A <1.5 m wide distal chlorite-sericite (+biotite, calcite, plagioclase) alteration zone can be distinguished from a 3–5 m wide proximal biotite-plagioclase (+quartz, muscovite, calcite) alteration zone. Gold is both spatially and temporally associated with disseminated arsenopyrite and pyrite mineralization. An inner chlorite-K-feldspar (+quartz, calcite, scheelite, tourmaline, sphene, epidote, sericite) alteration halo, which rims the laminated quartz veins, is characterized by a pyrrhotite, chalcopyrite, sphalerite, ilmenite, rutile, and gold paragenesis. The distal chlorite-sericite and proximal biotite-plagioclase alteration assemblages are developed in microlithons of the S2–S3 crenulation cleavage and are replaced along S3 by the inner chlorite-K-feldspar alteration, indicating a two-stage evolution for gold mineralization. Ductile D2 shearing, alteration, and gold mineralization formed the reefs during retrograde evolution and fluid infiltration under upper greenschist to lower amphibolite facies conditions (560±60°C, 2±1 kbar). The reefs were reactivated in the D3 dextral strike-slip to oblique-slip environment by fault-valve behavior at lower greenschist facies conditions (ca. 300–350°C), which formed the auriferous laminated quartz veins. Later D4 crosscutting veins and D5 faults overprint the gold mineralization. The alteration mineralogy and the structural control of the deposit clearly points to an orogenic style of gold mineralization, which took place either during isobaric cooling or at different levels of the Archean crust. From overlaps in the tectono-metamorphic history, it is concluded that gold mineralization occurred during two tectonic events, affecting the eastern Dharwar craton in south India between ca. 2550 – 2530 Ma: (1) The assemblage of various terranes of the eastern block, and (2) a tectono-magmatic event, which caused late- to posttectonic plutonism and a thermal perturbation. It differs, however, from the pre-peak metamorphic gold mineralization at Kolar and the single-stage mineralization at Ramagiri. Notably, greenschist facies gold mineralization occurred at Hutti 35–90 million years later than in the western Dharwar craton. Editorial handling: G. Beaudoin  相似文献   

11.
Gold mineralization at Jonnagiri, Dharwar Craton, southern India, is hosted in laminated quartz veins within sheared granodiorite that occur with other rock units, typical of Archean greenstone–granite ensembles. The proximal alteration assemblage comprises of muscovite, plagioclase, and chlorite with minor biotite (and carbonate), which is distinctive of low- to mid-greenschist facies. The laminated quartz veins that constitute the inner alteration zone, contain muscovite, chlorite, albite and calcite. Using various calibrations, chlorite compositions in the inner and proximal zones yielded comparable temperature ranges of 263 to 323 °C and 268 to 324 °C, respectively. Gold occurs in the laminated quartz veins both as free-milling native metal and enclosed within sulfides. Fluid inclusion microthermometry and Raman spectroscopy in quartz veins within the sheared granodiorite in the proximal zone and laminated auriferous quartz veins in inner zone reveal the existence of a metamorphogenic aqueous–gaseous (H2O–CO2–CH4 + salt) fluid that underwent phase separation and gave rise to gaseous (CO2–CH4), low saline (~ 5 wt.% NaCl equiv.) aqueous fluids. Quartz veins within the mylonitized granodiorites and the laminated veins show broad similarity in fluid compositions and P–T regime. Although the estimated P–T range (1.39 to 2.57 kbar at 263 to 323 °C) compare well with the published P–T values of other orogenic gold deposits in general, considerable pressure fluctuation characterize gold mineralization at Jonnagiri. Factors such as fluid phase separation and fluid–rock interaction, along with a decrease in f(O2), were collectively responsible for gold precipitation, from an initial low-saline metamorphogenic fluid. Comparison of the Jonnagiri ore fluid with other lode gold deposits in the Dharwar Craton and major granitoid-hosted gold deposits in Australia and Canada confirms that fluids of low saline aqueous–carbonic composition with metamorphic parentage played the most dominant role in the formation of the Archean lode gold systems.  相似文献   

12.
Evidence of mafic and ultramafic magmatism exists in many parts of the Dharwar craton which is divided into two blocks, the West Dharwar Craton (WDC) and the East Dharwar Craton (EDC). The mafic-ultramafic rocks occur in supracrustal/greenstone belts and in numerous enclaves and slivers in the WDC. The oldest recorded maficultramafic rocks, which are mainly komatiitic in nature, are preserved in the Sargur Group which is more than 3.3–3.4 Ga old, the youngest being manifested by 63–76 Ma old mafic dyke magmatism, possibly related to Deccan volcanism. In the Sargur Group, ultramafics rocks greatly dominate over mafic lithological units. Both extrusive and intrusive varieties, the latter in the form of differentiated layered complexes, occur. Mafic volcanics exists in all the greenstone belts of the eastern block and in the Bababudan and Western Ghats belts of the western block. In addition to the Sargur Group where stratigraphic sequences are unclear, mafic magmatism is recorded in three different formations of the Bababudan Group and two sub-divisions of the Shimoga and Chitradurga Groups where basaltic flows are conspicuous. In the well studied greenstone belts of Kolar and Hutti in the EDC, three to four different Formations of mafic volcanic rocks have been mapped. Isotopic dating has indicated that while mafic magmatism in the greenstone belts of the EDC covers only a short time span of between 2.65 to 2.75 Ga, those in the Dharwar Supergroup of the WDC cover a much longer time span from 3.35 to 2.5 Ga. Mafic dyke magmatism has taken place repeatedly from 2.45 Ga to about 1.0 Ga, but, the peak of emplacement was between 1.8 and 1.4 Ga when the densely developed swarms on the western and south western portions of the Cuddapah Basin and in the central part of Karnataka, were intruded. Emplacement of potassic ultramafic magma in the form of kimberlite-lamproite which is confined to the EDC, is a later magmatic event that took place between 1.4 Ga and 0.8 Ga. From a mineralization perspective, mafic magmatism of the supracrustal groups of the WDC and the greenstone belts of the EDC are the most important. V-Ti-magnetite bands constitute the most common deposit type recorded in the mafic-ultramafic complexes of the Sargur Group with commercially exploitable chromite deposits occurring in a number of belts. PGE mineralization of possible commercial value has so far been recorded in a single mafic-ultramafic complex, while copper-nickel mineralization occurs at certain localities in the Sargur and Chitradurga Groups. Gold mineralization hosted by mafic (occasionally ultramafic) rocks has been noted in many of the old workings located in supracrustal groups of rocks in the WDC and in the greenstone belts of EDC. Economically exploitable mineralization, however, occurs mainly in the greenstone belts of the Kolar, Ramagiri-Penkacherla and Hutti-Maski and along the eastern margin of the Chitradurga belt, where it is associated with a major N-S striking thrust zone separating the WDC from the EDC. Gold deposits of the eastern greenstone belts are comparable to those of the younger greenstone belts of Canada, Zimbabwe and Australia where the mineralization is associated with quartz carbonate veins often in iron-rich metabasic rocks. The gold was emplaced as hydrothermal fluids, derived from early komatiitic and tholeiitic magmas, and injected into suitable dilatent structures. The other common type of mineralization associated with the ultramafic rocks of the Sargur Group and supracrustal belts, particularly of the WDC, are asbestos and soapstone, related to autometamorphism/metasomatism. Ruby/sapphire deposits occur in places at the contacts of ultramafic rocks with the Peninsular Gneiss, and are related to contact metamorphism and metasomatism. Mineable magnesite deposits related to low-temperature hydrothermal/lateritic alteration exist in the zone of weathering, particularly in the more olivine-rich rocks. Recent spurt in diamond exploration is offering promise of discovering economically workable diamondiferous kimberlite/lamproite intrusions in the EDC.  相似文献   

13.
Diamond exploration in India over the past decade has led to the discovery of over 80 kimberlite-inferred and lamproite-related intrusions in three of the four major Archean cratons that dominate the subcontinent. These intrusions are Proterozoic (1.1 Ga), and are structurally controlled: locally (at the intersections of faults); regionally (in a 200 km wide, 1000 km long diamond corridor); and globally (in the reconstructed supercontinent of Rodinia). The geochemistry of 57 samples from 13 intrusions in the southern Dharwar Craton of Andhra Pradesh has been determined by XRF spectrometry. The bodies are iron-rich with mg#=50–70 and are neither archetypal kimberlites nor ideal lamproites; this may be the underlying reason that conventional exploration techniques have thus far failed to locate the primary sources of India's historically famous diamonds. The two major fields of kimberlite-clan rocks (KCR) in the Dharwar Craton, Wajrakur and Narayanpet, are separated by a NW–SE trending, transcontinental (Mumbai-Chennai) gravity lineament. About 80% of intrusions in Wajrakur are diamondiferous, but diamonds have not yet been reported in Narayanpet. The gravity anomaly may mark the boundary of an architectural modification in the keel of the sub-continental lithosphere, a suggestion that is supported by differences in kimberlite mineralogy, chemistry, mantle xenoliths, structural setting and crustal host rocks.  相似文献   

14.
Coupled paleomagnetic and geochronologic data derived from mafic dykes provide valuable records of continental movement. To reconstruct the Proterozoic paleogeographic history of Peninsular India, we report paleomagnetic directions and U-Pb zircon ages from twenty-nine mafic dykes in the Eastern Dharwar Craton near Hyderabad. Paleomagnetic analysis yielded clusters of directional data that correspond to dyke swarms at 2.37 Ga, 2.22 Ga, 2.08 Ga, 1.89–1.86 Ga, 1.79 Ga, and a previously undated dual polarity magnetization. We report new positive baked contact tests for the 2.08 Ga swarm and the 1.89–1.86 Ga swarm(s), and a new inverse baked contact test for the 2.08 Ga swarm. Our results promote the 2.08 Ga Dharwar Craton paleomagnetic pole (43.1° N, 184.5° E; A95 = 4.3°) to a reliability score of R = 7 and suggest a position for the Dharwar Craton at 1.79 Ga based on a virtual geomagnetic pole (VGP) at 33.0° N, 347.5° E (a95 = 16.9°, k = 221, N = 2). The new VGP for the Dharwar Craton provides support for the union of the Dharwar, Singhbhum, and Bastar Cratons in the Southern India Block by at least 1.79 Ga. Combined new and published northeast-southwest moderate-steep dual polarity directions from Dharwar Craton dykes define a new paleomagnetic pole at 20.6° N, 233.1° E (A95 = 9.2°, N = 18; R = 5). Two dykes from this group yielded 1.05–1.01 Ga 207Pb/206Pb zircon ages and this range is taken as the age of the new paleomagnetic pole. A comparison of the previously published poles with our new 1.05–1.01 Ga pole shows India shifting from equatorial to higher (southerly) latitudes from 1.08 Ga to 1.01 Ga as a component of Rodinia.  相似文献   

15.
The occurrence of rhythmic layering of chromite and host serpentinites in the deformed layered igneous complexes has been noticed in the Nuggihalli schist belt (NSB) in the western Dharwar craton, Karnataka, South India. For this study, the chromitite rock samples were collected from Jambur, Tagadur, Bhakatarhalli, Ranganbetta and Byrapur in the NSB. Petrography and ore microscopic studies on chromite show intense cataclasis and alteration to ferritchromite. The ferritchromite compositions are characterized by higher Cr number (Cr/[Cr+Al]) (0.68–0.98) and lower Mg number (Mg/[Mg+Fe]) (0.33–0.82) ratios in ferritchromite compared to that of parent chromite. The formation process for the ferritchromite is thought to be related to the exchange of Mg, Al, Cr, and Fe between the chromite, surrounding silicates (serpentines, chlorites), and fluid during serpentinization.  相似文献   

16.
华北克拉通南部早前寒武纪基底形成与演化   总被引:4,自引:3,他引:1  
张瑞英  孙勇 《岩石学报》2017,33(10):3027-3041
简要总结了华北克拉通南部鲁山地区、小秦岭地区、登封及中条山地区的早前寒武纪地质事件序列及其地质意义,并对各地区地质特征和变质演化特点进行对比。结合前人研究工作,初步探讨了华北克拉通南部早前寒武纪基底的演化特点、陆壳形成的主要时期和华北南部基底的构造区划等问题,提出几点认识:1)华北克拉通南部鲁山、中条山、小秦岭等地区均有2.7~2.9Ga岩石记录,以英云闪长质-奥长花岗质-花岗闪长质(TTG)岩石为主,它们共同构成华北南缘的古老结晶基底,并经历了新太古代晚期~2.5Ga构造-热事件,标志着华北克拉通南部在新太古代末期可能已经形成统一基底;2)华北克拉通南部主要的陆壳形成时期为中太古代晚期-新太古代,与全球其他主要克拉通一致,而古元古代早-中期则以地壳再循环为主;3)综合地质、地球化学等特点,将华北南部鲁山-小秦岭地区和中条山等地区划归为"南部古陆块",并提出该陆块呈现为一个大型的倾伏向斜构造,可能在新太古代晚期已经形成,其枢纽向南东倾斜。"南部古陆块"在新太古代末期与其它微陆块拼合,并发生了变质作用和陆壳的活化与再循环,共同指示新太古代晚期华北克拉通统一基底的形成。  相似文献   

17.
The Dharwar Craton is a composite Archean cratonic collage that preserves important records of crustal evolution on the early Earth. Here we present results from a multidisciplinary study involving field investigations, petrology, zircon SHRIMP U–Pb geochronology with in-situ Hf isotope analyses, and whole-rock geochemistry, including Nd isotope data on migmatitic TTG (tonalite-trondhjemite-granodiorite) gneisses, dark grey banded gneisses, calc-alkaline and anatectic granitoids, together with synplutonic mafic dykes along a wide Northwest – Southeast corridor forming a wide time window in the Central and Eastern blocks of the Dharwar Craton. The dark grey banded gneisses are transitional between TTGs and calc-alkaline granitoids, and are referred to as ‘transitional TTGs’, whereas the calc-alkaline granitoids show sanukitoid affinity. Our zircon U–Pb data, together with published results, reveal four major periods of crustal growth (ca. 3360-3200 Ma, 3000-2960 Ma, 2700-2600 Ma and 2570-2520 Ma) in this region. The first two periods correspond to TTG generation and accretion that is confined to the western part of the corridor, whereas widespread 2670-2600 Ma transitional TTG, together with a major outburst of 2570–2520 Ma juvenile calc-alkaline magmatism of sanukitoid affinity contributed to peak continental growth. The transitional TTGs were preceded by greenstone volcanism between 2746 Ma and 2700 Ma, whereas the calc-alkaline magmatism was contemporaneous with 2570–2545 Ma felsic volcanism. The terminal stage of all four major accretion events was marked by thermal events reflected by amphibolite to granulite facies metamorphism at ca. 3200 Ma, 2960 Ma, 2620 Ma and 2520 Ma. Elemental ratios [(La/Yb)N, Sr/Y, Nb/Ta, Hf/Sm)] and Hf-Nd isotope data suggest that the magmatic protoliths of the TTGs emplaced at different time periods formed by melting of thickened oceanic arc crust at different depths with plagioclase + amphibole ± garnet + titanite/ilmenite in the source residue, whereas the elemental (Ba–Sr, [(La/Yb)N, Sr/Y, Nb/Ta, Hf/Sm)] and Hf-Nd isotope data [εHf(T) = −0.67 to 5.61; εNd(T) = 0.52 to 4.23; ] of the transitional TTGs suggest that their protoliths formed by melting of composite sources involving mantle and overlying arc crust with amphibole + garnet + clinopyroxene ± plagioclase + ilmenite in the residue. The highly incompatible and compatible element contents (REE, K–Ba–Sr, Mg, Ni, Cr), together with Hf and Nd isotope data [εHf(T) = 4.5 to −3.2; εNd(T) = 1.93 to −1.26; ], of the sanukitoids and synplutonic dykes suggest their derivation from enriched mantle reservoirs with minor crustal contamination. Field, elemental and isotope data [εHf(T) = −4.3 to −15.0; εNd(T) = −0.5 to −7.0] of the anatectic granites suggest their derivation through reworking of ancient as well as newly formed juvenile crust. Secular increase in incompatible as well as compatible element contents in the transitional TTGs to sanukitoids imply progressive enrichment of Neoarchean mantle reservoirs, possibly through melting of continent-derived detritus in a subduction zone setting, resulting in the establishment of a sizable continental mass by 2700 Ma, which in turn is linked to the evolving Earth. The Neoarchean geodynamic evolution is attributed to westward convergence of hot oceanic lithosphere, with continued convergence resulted in the assembly of micro-blocks, with eventual slab break-off leading to asthenosphere upwelling caused extensive mantle melting and hot juvenile magma additions to the crust. This led to lateral flow of hot ductile crust and 3D mass distribution and formation of an orogenic plateaux with subdued topography, as indicated by strain fabric data and strong seismic reflectivity along an E-W crustal profile in the Central and Eastern blocks of the Dharwar Craton.  相似文献   

18.
Based on the chronological data and relevant geological evidence, the chronological framework of the major geological events of the granulite terrain in northwestern Hebei Province and its adjacent areas has been established. Basic lava eruption occurred in the span of 2868-2932 Ma, resulting in the formation of the early crust. The TTG magma emplacement took place c.2761 Ma ago. Subsequently basic magma intruded into the supracrustal rocks at 2650 Ma, resulting in crustal thickening. The thickening was enhanced at 2561-2503 Ma by the widespread intrusions of granodioritic magma. In the period of 2477-2461 Ma charnockite intruded, accompanied by regional granulite facies metamorphism. The second stage of granulite facies metamorphism occurred c. 2300 Ma ago, and finally pink granite intrusions at 2144-2087 Ma resulted in the formation of a granite zone.  相似文献   

19.
Detailed structural and lithological mapping of the Aravalli rocks overlying the Mewar Gneiss in the area east of Udaipur, Rajasthan, suggests presence of blocks bounded by faults, showing a contrasting structural pattern. The contrast is reflected in the differential development and in the orientation of AF1, AF2 and AF4 folds in different blocks. In the central Umra block, the rocks constitute a virtually homoclinal sequence showing one dominant orientation of bedding and axial planar schistosity. Fold axes, lineations andβ orientations indicate presence of reclined folds of AF1 generation. AF2 folds are either absent or have developed only locally. The two other blocks which border the Umra block show development of large AF2 synforms and local minor antiforms having N-S or NNE-SSW trend. The folds interfere with AF4 folds producing irregular domes and basins in the western Kanpur-Kalarwas Block and minor plunge reversals in Bagdara-Dhamdhar Block. It is argued that the constituents of the different blocks which formed a collage of rift basins and horsts during sedimentation, responded differentially to deforming forces because of differential mobility of the underlying basement.  相似文献   

20.
There are several geological, geochemical and geophysical evidences, which corroborate reconstruction of Gondwanaland and juxtaposition of India and Antarctica. Petrology of the Precambrian mafic dykes of East Antarctica and Central-East India also support juxtaposition of India and Antarctica. Mafic dykes of different generations are emplaced in the Archaean granite gneisses of these regions. These dykes appear to be an important tool to support juxtaposition of India and Antarctica. Geological and petrological data of the Central-East India Precambrian mafic dykes suggest four episodes of mafic magmatism in the region - three tholeiitic and one noritic (?). Similarly, East Antarctica also comprises four dyke suites, emplaced during three distinct periods. These suites are 2.4 Ga meta-tholeiites, 2.4 Ga high-Mg tholeiites, 1.8 Ga dolerites and 1.2–1.4 Ga dolerites. Geochemical compositions of these mafic dykes are compared and they show good relationships with each other. Similarities in petrological and geochemical characteristics of Precambrian mafic dykes of East Antarctica and Central-East India strongly support juxtaposition of these two continents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号