首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Although sandy foreshore facies are generally characterized by parallel lamination, wavy lamination is predominant in the mixed sand and gravel foreshore facies of the Pleistocene Hosoya Sandstone, which crops out along the Pacific coast of the Atsumi Peninsula, Aichi, central Japan. The foreshore facies consists of three sedimentary subfacies; interbeds of gravel and parallel laminated sand of the lower foreshore facies, parallel laminated fine to medium sand beds containing scattered pebbles and cobbles of the middle foreshore facies, and wavy laminated fine to medium sand beds containing scattered pebbles and cobbles of the upper foreshore facies. A lack of erosional surfaces in the middle foreshore facies indicates the continuous accumulation of sand in flat beds under upper plane bed flow. The wavy laminated sands of the upper foreshore facies exhibit erosional surfaces indicative of repeated deposition and erosion. The erosional surfaces are undulatory, with depressions (10 cm wide and 3 cm deep) that contain scattered pebbles and cobbles. These depressions reflect backwash erosion of sand around and below the pebbles and cobbles. Sand draping over the undulating erosional surfaces forms the wavy lamination. The wavy laminated sand with scattered pebbles and cobbles is a key facies of an upper foreshore or swash zone, and is a good sea-level marker.  相似文献   

2.
The Pleistocene Higashikanbe Gravel, which crops out along the Pacific coast of the Atsumi Peninsula, central Japan, consists of well‐sorted, pebble‐ to cobble‐size gravel beds with minor sand beds. The gravel includes large‐scale foreset beds (5–10 m high) and overlying subhorizontal beds (0·5–3 m thick), showing foreset and topset structure, from which the gravel has previously been interpreted as deposits of a Gilbert‐type delta. However, (1) the gravel beds lack evidence of fluvial activity, such as channels in the subhorizontal beds; (2) the foresets incline palaeolandwards; (3) the gravels fill a fluvially incised valley; and (4) the gravels overlie low‐energy deposits of a restricted environment, such as a bay or an estuary. The foresets generally dip towards the inferred palaeoshoreline, indicating landward accretion of gravel. Reconstruction of the palaeogeography of the peninsula indicates that the Higashikanbe Gravel was deposited as a spit similar to that developed at the western tip of the present Atsumi Peninsula, rather than as a delta. According to the new interpretation, the large‐scale foreset beds are deposits on the slopes of spit platforms and accreted in part to the sides of small islets that are fragments of the submerging spit during relative sea‐level rise. The subhorizontal beds include nearshore deposits on the spit platform topsets and deposits of gravel shoals or bars, which are reworked sediments of the spit beach gravels during a transgression. The lack of spit beach facies in the subhorizontal beds results from truncation by shoreface erosion. Dome structure, which is a cross‐sectional profile of a recurved gravel spit at its extreme point, and sandy tidal channel deposits deposited between the small islets were also identified in the Higashikanbe Gravel. The Higashikanbe Gravel fills a fluvially incised valley and occupies a significant part of a transgressive systems tract, suggesting that gravelly spits are likely to be well developed during transgressions. The large‐scale foreset beds and subhorizontal beds of gravelly spits in transgressive systems tracts contrast with the foreset and topset beds of deltas, characteristic of highstand, lowstand and shelf‐margin systems tracts.  相似文献   

3.
The Doumsan fan-delta system in the Pohang Basin (Miocene), SE Korea comprises tripartite components of Gilbert-type topset, foreset, and bottomset environments with an extended prodelta in the deeper part (a few hundred metres deep). The present study documents sedimentologic features and origin of a gravel body (here interpreted as a gravel lobe) formed in the prodelta region of the Doumsan fan delta. The gravel lobe lies on sandy mud deposits and is capped by a thick massive sand bed. It extends for more than 1.5 km with a height of up to 30 m and shows a narrow tongue-like geometry. Eight sedimentary facies have been distinguished to describe characteristic features of the gravel lobe and the associated deposits. Of these, three types of gravelly sedimentary facies are important with regard to volumetric contribution and depositional processes: (1) crudely stratified pebble-grade conglomerate; (2) disorganized, clast-rich pebble(-to-cobble)-grade conglomerate; and (3) matrix-rich, bimodal cobble-grade conglomerate. The former two types dominate the central part of the lobe where they are not accompanied by sand beds, whereas the latter, as subordinate units, is prevalent in the fringe which otherwise is dominated by thick sandy mud deposits. The stacked successions of crudely stratified pebble-grade conglomerate are representative of the active aggradational phases of the gravel lobe, whereas the occurrence of channels within the lobe reflects that the gravel lobe prograded under the influence of subaqueous channel systems. The gravel lobe resulted from catastrophic disturbance (slumping) on the foreset region that further caused the development of channel systems, promoting efficient transport of gravelly sediments. This type of deposit may represent an important additional category of low-efficiency subaqueous fans.  相似文献   

4.
《Sedimentary Geology》2007,193(1-4):105-129
The blocking of major river valleys in the Leinebergland area by the Early Saalian Scandinavian ice sheet led to the formation of a large glacial lake, referred to as “glacial Lake Leine”, where most of the sediment was deposited by meltwater. At the initial stage, the level of glacial Lake Leine was approx. 110 m a.s.l. The lake level then rose by as much as 100 m to a highstand of approx. 200 m a.s.l.Two genetically distinct ice-margin depositional systems are described that formed on the northern margin of glacial Lake Leine in front of the retreating Scandinavian ice sheet. The Bornhausen delta is up to 15 m thick and characterized by a large-scale tangential geometry with dip angles from 10°–28°, reflecting high-angle foreset deposition on a steep delta slope. Foreset beds consist of massive clast-supported gravel and pebbly sand, alternating with planar-parallel stratified pebbly sand, deposited from cohesionless debris flows, sandy debris flows and high-density turbidity flows. The finer-grained sandy material moved further downslope where it was deposited from low-density turbidity currents to form massive or ripple-cross-laminated sand in the toeset area.The Freden ice-margin depositional system shows a more complex architecture, characterized by two laterally stacked sediment bodies. The lower part of the section records deposition on a subaqueous ice-contact fan. The upper part of the Freden section is interpreted to represent delta-slope deposits. Beds display low- to high-angle bedding (3°–30°) and consist of planar and trough cross-stratified pebbly sand and climbing-ripple cross-laminated sand. The supply of meltwater-transported sediment to the delta slope was from steady seasonal flows. During higher energy conditions, 2-D and 3-D dunes formed, migrating downslope and passing into ripples. During lower-energy flow conditions thick climbing-ripple cross-laminated sand beds accumulated also on higher parts of the delta slope.  相似文献   

5.
The architectural framework and Holocene evolution of the Zeballos fjord‐head delta on west‐central Vancouver Island was established through a multidisciplinary field‐based study. The Zeballos delta is a composite feature, consisting of an elevated, incised, late Pleistocene delta and an inset Holocene delta graded to present sea level. Both deltas have a classic Gilbert‐type tripartite architecture, with nearly flat topset and bottomset units and an inclined foreset unit. Time domain electromagnetic (TDEM) and ground‐penetrating radar (GPR) surveys, borehole data, and gravel pit exposures provided information on the internal form, lithologies and substrate of both deltas. Both sets of deltaic deposits coarsen upward from silt in the bottomset unit to gravel in the topset unit. The TDEM survey revealed a highly irregular, buried bedrock surface, ranging from 20 m to 190 m in depth, and it delineated saltwater intrusion into the deltaic sediments. Late Quaternary sea‐level change at Zeballos was inferred from delta morphology and the GPR survey. The elevated, late Pleistocene delta was constructed when the sea was about 21 m higher relative to the land than it is today. It was dissected when sea‐level fell rapidly as a result of glacio‐isostatic rebound. Relative sea‐level reached a position about 20 m below the present datum during the early Holocene. Foreset beds that overlap and progressively climb in a seaward direction and topset beds that thicken to 26 m landward imply that the delta aggraded and prograded into Zeballos Inlet during the middle and late Holocene transgression. Sea‐level may have risen above the present datum during the middle Holocene, creating a delta plain at about 4 m a.s.l. Remnants of this surface are preserved along the valley margins. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Lithofacies characteristics and depositional geometry of a sandy, prograding delta deposited as part of the Holocene valley‐fill stratigraphy in the Målselv valley, northern Norway, were examined using morpho‐sedimentary mapping, facies analysis of sediments in exposed sections, auger drilling and ground penetrating radar survey. Various lithofacies types record a broad range of depositional processes within an overall coarsening‐upward succession comprising a lowermost prodelta/bottomset unit, an intermediate delta slope/foreset unit containing steeply dipping clinoforms and an uppermost delta plain/topset unit. Bottomset lithofacies typically comprise sand‐silt couplets (tidal rhythmites), bioturbated sands and silts, and flaser and lenticular bedding. These sediments were deposited from suspension fall‐out, partly controlled by tidal currents and fluvial effluent processes. Delta foreset lithofacies comprise massive, inverse graded and normal graded beds deposited by gravity‐driven processes (mainly cohesionless debris flows and turbidity currents) and suspension fall‐out. In places, delta foreset beds show tidal rhythmicity and individual beds can be followed downslope into bottomset beds. Delta plain facies show an upward‐fining succession with trough cross‐beds at the base, followed by planar, laminated and massive beds indicative of a bedload dominated river/distributary system. This study presents a model of deltaic development that can be described with reference to three styles within a continuum related primarily to water depth within a basin of variable geometry: (i) bypass; (ii) shoal‐water; and (iii) deep‐water deltas. Bypass and deep‐water deltas can be considered as end members, whereas shoal‐water deltas are an intermediate type. The bypass delta is characterized by rapid progradation and an absence of delta slope sediments and low basin floor aggradation due to low accommodation space. The shoal‐water delta is characterized by rapid progradation, a short delta slope dominated by gravity‐flow processes and a prodelta area characterized by rapid sea‐floor aggradation due to intense suspension fallout of sandy material. Using tidal rhythmites as time‐markers, a progradation rate of up to 11 m year?1 has been recorded. The deep‐water delta is characterized by a relatively long delta slope dominated by gravity flows, moderate suspension fall‐out and slow sea‐floor aggradation in the prodelta area.  相似文献   

7.
The Kregnes “moraine” ridge in Gauldalen, a north-trending valley south of Trondheim, is a Gilbert-type delta formed at a Younger Dryas glacier terminus. The gravelly delta consists of a north-dipping foreset, 150 m thick, comprised of turbidites, debrisflow beds and debrisfall deposits. The bottomset consists of turbiditic sand and mud layers. The topset, 2-3 m thick, is a braided-river alluvium with local beach deposits, matching the marine limit of 175 m a.s.l. The fjord-wide delta front had an extent of 3 km and prograded over a distance of 1.5 km, in probably less than 100 years, with the delta toe climbing by 50 m against the basin's rapidly aggrading muddy floor. The delta advanced through the alternating episodes of its toe aggradation and progradation, related to the increases and decreases of the delta-slope gradient. Slope steepening led to intense sediment sloughing by chutes and occasional large-scale failures. The fjord's wave fetch was low and the wave base no deeper than 1.5-2 m, but strong storm waves occasionally reworked the delta front to a depth of 6 m. Glacitectonic deformation was limited to the system's upfjord end. Allostratigraphic analysis suggests that the proglacial system commenced its development as an ice-contact submarine fan that was deformed, quickly aggraded to the sea surface and turned into an ice-contact delta, which further evolved into the large glaciofluvial delta. The Kregnes ridge represents an episode of the ice-front re-advance due to climatic deterioration and is tentatively correlated with the Hoklingen substage.  相似文献   

8.
The Pliocene Loreto basin is an asymmetrical half graben located on the eastern margin of Baja California Sur, Mexico, which formed by rapid subsidence along the dextral-normal Loreto fault. The southern Loreto basin contains numerous, well exposed coarse-grained Gilbert-type fan deltas that were derived from the footwall of the Loreto fault. Detailed sedimentological study of individual foreset beds provides information about down-slope flow transformations of cohesionless sediment gravity flows in shallow water. Deposits of Gilbert-delta foresets consist of ungraded, normal-graded, inverse- to normal-graded, and bipartite conglomerate and sandstone. Lateral transitions in sorting, grading style and internal structure are commonly observed within individual beds, both across and down slope, suggesting heterogeneity within flows and a close relationship between high-density turbidity currents and gravel traction carpets. A conceptual model for flow transformation and deposition of high-density turbidity currents on Gilbert-delta foreset slopes is developed for Pliocene strata in the Loreto basin. In this model, ungraded cohesionless debris flows evolved rapidly down-slope into normal-graded gravelly turbidity currents. With continued down-slope transport, the gravel fraction collapses and becomes concentrated into a basal traction carpet undergoing laminar shear, and is over-ridden by a sandy turbulent suspension. The short distances (10–20 m) over which lateral transitions within single beds are observed indicate very rapid flow transformations (10–20 s) and rapid deposition of gravel traction carpets by frictional freezing on and near the base of the foreset slope.  相似文献   

9.
ABSTRACT The Lower Old Red Sandstone (Downton to ?Emsian) in southern Britain is a largely fluviatile sequence of increasing upward sand-dominance. The highest beds at two groups of localities include many sedimentation units composed of gravelly foresets in depositional continuity with overlying topsets of parallel-laminated sandstone. These units are thought to have been fashioned by humpback bars having a crest a considerable way upstream from the brink at the top of a gravelly slipface. The overall textural composition but internally segregated character of the bar units suggests that a bimodal sediment load of mixed sand and gravel was supplied at the upstream end of the bar, but that this load became texturally differentiated as it moved downstream. Differentiation is suggested to have occurred because the comparatively large and well-rounded gravel particles behaved on the sandy topset as though on a smooth surface, and were transported under similar flow conditions to the sand, much of which eventually lodged on the topset instead of being passed on, like the gravel, to the slipface beyond. A quantitative model is outlined which justifies the proposed gravel overpassing. In terms of the control of sedimentary structures exerted by grain size under laboratory conditions, the association of cross-bedding (gravel) with simultaneously formed parallel lamination (sand) seems to be a natural consequence of the efficient textural differentiation of the supplied load by the overpassing of the gravel component under a single flow condition.  相似文献   

10.
The Kerinitis Delta in the Corinth Rift, Greece, is a footwall derived, coarse‐grained, Gilbert‐type fan delta deposited in the hangingwall of a linked normal fault system. This giant Gilbert‐type delta (radius 3·8 km, thickness > 600 m) was supplied by an antecedent river and built into a brackish to marine basin. Although as yet poorly dated, correlation with neighbouring deltas suggests that the Kerinitis Delta was deposited during a period of 500 to 800 ka in the Early to early Middle Pleistocene. Facies characterizing a range of depositional processes are assigned to four facies associations (topset, foreset, bottomset and prodelta). The dominantly fluvial topset facies association has locally developed shallow marine (limestone) and fluvial‐shoreface sub‐associations. This delta represents a subsidence‐dominated system in which high fault displacement overwhelmed base‐level falls (creation of accommodation predominantly ≥ 0). Stratal geometries and facies stacking patterns were used to identify 11 key stratal surfaces separating 11 stratal units. Each key stratal surface records a landward shift in the topset breakpoint path, indicating a rapid increase in accommodation/sediment supply. Each stratal unit records a gradual decrease in accommodation/sediment supply during deposition. The cyclic stratal units and key stratal surfaces are interpreted as recording eustatic falls and rises, respectively. A 30 m thick package of foresets below the main delta records the nucleation of a small Proto‐delta probably on an early relay ramp. Based on changes in stratal unit geometries, the main delta is divided into three packages, interpreted as recording the initiation, growth and death of the controlling fault system. The Lower delta comprises stacked, relatively thin, progradational stratal units recording low displacement on the young fault system (relay ramp). The Middle delta comprises vertically stacked stratal units, each recording initial aggradation–progradation followed by progradation; their aggradational component increases up through the Middle delta, which records the main phase of increasing rate of fault displacement. The Upper delta records pure progradation, recording abrupt cessation of movement on the fault. A major erosion surface incising basinward 120 m through the Lower and Middle delta records an exceptional submarine erosion process (canyon or delta collapse).  相似文献   

11.
Glacigenic sediments exposed at Rhosesmor, Clwyd, North Wales, were deposited in a small proglacial lake ponded by the stagnating margin of the Late Devensian Irish Sea icesheet. Three major fades assemblages are identified and show a prograding sequence of topset, foreset, and bottomset deposits associated with two Gilbert-style deltas stacked one above the other. The lower delta is associated with a lake level at c. 180 m OD. A subsequent ice-marginal readvance raised the lake to c. 192 m OD, drowned the lower delta and caused the growth of a second delta by an iceward shift of facies. It is estimated that the life of the lake was of the order of 90 years during which average sediment in-fill amounted to some 4±104 m3 per annum.  相似文献   

12.
王立武 《沉积学报》2012,30(6):1053-1060
坳陷湖盆浅水三角洲的形成古地形背景、水动力学特征、平面形态、微相类型及三角洲内部结构等多个方面与正常三角洲有着极大的差异。姚一段沉积时期,松辽盆地古地形平坦并不具备明显的坡折带,水体浅、面积小并且湖泊能量较弱,湖岸线不稳定并常常发生大范围的迁移,为典型的浅水沉积湖盆。浅水湖盆的沉积充填主要以浅水三角洲和滨浅湖沉积为主,深湖、半深湖相对不发育,浅水三角洲砂体是湖泊砂体的主要类型。根据供源水系的不同,松南的浅水三角洲可以分为浅水型扇三角洲、浅水型辫状河三角洲和浅水曲流河三角洲等。浅水型三角洲主要有以下特点:1.具高建设性河控三角洲的沉积特点,平面上呈鸟足状,前缘相带延伸较远,形成了大规模的湖盆中心砂体;2.浅水三角洲前缘主要以分流河道为主,河口坝极不发育;3.前缘分流河道呈网状展布,河道遭受不同程度的席状砂化,依次划分为弱席状化、中等席状化、强席状化等3种类型;4.不具备典型三角洲的三层式沉积结构及向上变粗的反序列特征。松南姚一段沉积时期,总体表现为基准面上升的湖侵过程,I、II砂组低位和湖侵域的砂体为成藏提供了的有利储集空间,III砂组的湖侵为区域性成藏提供了良好的盖层。  相似文献   

13.
Facies, depositional model and stratigraphic architecture of Pleistocene giant Gilbert-type fan deltas are presented, based on outcrop data from the Derveni–Akrata region along the southern coast of the Gulf of Corinth, Greece. The common tripartite consisting of topset, foreset and bottomset [Gilbert, G.K., 1885. The topographic features of lake shores: Washington, D.C., United States Geol. Survey, 5th Annual Report, 69–123.] has been identified, as well as the most distal environment consisting of turbidites, and is organised in a repetitive pattern of four main systems tracts showing a clear facies and volumetric partitioning.The first systems tract (ST1) is characterised by the lack of topset beds and the development of a by-pass surface instead, thick foresets and bottomset beds, and thick well-developed turbiditic systems. This systems tract (ST1) is organised in an overall progradational pattern. The second systems tract (ST2) is characterised by a thin topset and almost no foreset equivalent. This systems tract is not always well-preserved and is organised in an overall retrograding trend with a landward shift in the position of the offlap break. The offshore is characterised by massive sandy turbidites. The third systems tract (ST3) is characterised by small-scale deltas prograding above the staked topsets of the giant Gilbert-type fan delta. Those small Gilbert-type fan deltas are generally organised in a pure progradation evolving to an aggradational–progradational pattern. In the distal setting of those small Gilbert-type fan deltas, almost no deposits are preserved on the remaining topography of the previous Gilbert-type fan delta. The fourth systems tract (ST4) is characterised by continuous vertically aggrading topsets that laterally pass into aggrading and prograding foresets. Bottomsets and distal turbiditic systems are starved. This fourth systems tract (ST4) is organised in an overall aggrading trend.These giant Gilbert-type fan deltas correspond to the Middle Group of the Corinth Rift infill and their stratigraphic development was strongly influenced by evolving rift structure. They record the migration of the depocenter from the rift shoulder to the rift axis in four main sequences from ca. 1.5 to 0.7 Ma, related to the migration of fault activity. It is worth noting that the maximum paleobathymetry was recorded during the final stage of the progradation of the Middle Group, suggesting that the rift climax was diachronous at the scale of the entire basin. The rapid (< 1 Ma) structural and sedimentological evolution, the migration of fault activity as well as the youth of the Corinth Rift, are probably exceptional factors allowing the characterisation of such diachronism.  相似文献   

14.
15.
D. Uli&#;ný 《Sedimentology》2001,48(3):599-628
Deposits of coarse‐grained, Gilbert‐type deltas showing varying degrees of reworking of foresets by basinal currents were identified in Middle Turonian to Early Coniacian sandstones of the Bohemian Cretaceous Basin. The progradation of the deltaic packages, earlier interpreted as large‐scale subaqueous dunes, shelf ridges or subaqueous fault‐scarp ‘accumulation terraces’, was controlled by high‐ and low‐frequency, relative sea‐level changes in a relatively slowly subsiding, intracontinental strike‐slip basin. End‐member types of the Bohemian Cretaceous coarse‐grained deltas are deep‐water deltas, characterized by thick (50–80 m) foreset packages with steep (10–30°) foresets, and shallow‐water deltas, which deposited thin (<15 m) packages with foresets typically between 4° and 10°. The differences in thickness and foreset slope angle were controlled predominantly by the accommodation available during progradation. The depositional regime of the deltas was governed by (i) the fluvial input of abundant sand bedload, with a minor proportion of gravel; (ii) gravity flows, most probably caused by liquefaction of the upper part of the unstable foreset slope; and (iii) migration of sandy bedforms on the foreset slopes. The bedform migration was driven by unidirectional currents of possible tidal origin. Individual foreset packages represent systems tracts, or parts of systems tracts, of depositional sequences. A variety of stacking patterns of high‐frequency sequences exists in the basin, caused by low‐frequency relative sea‐level changes as well as by local changes in sediment input. Because of generally low subsidence rates, fluvial or beach topset strata were not preserved in the cases studied. The absence of preserved fluvial facies, which has been one of the main arguments against the fluvio‐deltaic origin of the sandstone bodies, is explained by erosion of the topsets during transgression and their reworking into coarse‐grained lags of regional extent covering ravinement surfaces.  相似文献   

16.
断陷湖盆中强制湖退沉积作用及其成因机制   总被引:8,自引:3,他引:5  
操应长 《沉积学报》2005,23(1):84-90
断陷湖盆中相对湖平面下降引起的湖退作用称之为强制湖退作用。强制湖退作用时期若存在沉积物供给盆地,将加速湖退作用,并形成一套具有明显前积结构的强制湖退前积体。强制湖退前积体的顶积层不发育,地震剖面上具斜交前积反射结构。强制湖退前积体的顶界面为层序界面,且伴随有下切谷的形成。气候变化、构造抬升和边界断层的幕式断陷活动引起的盆地缓坡带基底差异沉降运动均可引起断陷湖盆中相对湖平面的下降,也是引起强制湖退作用的三大成因机制。强制湖退前积体具有良好的油气成藏条件,是隐蔽油气藏有利勘探目标。  相似文献   

17.
The late Permian to Triassic sediments of the Solway Basin consist of a layer-cake succession of mature, predominantly fine-grained red clastics laid down in semi-arid alluvial plain to arid sabkha and saline marginal marine or lacustrine environments. The Cumbrian Coastal Group consists of Basal Clastics and Eden Shales. The Basal Clastics are thin regolith deposits resting unconformably on all-underlying units and are composed of mixtures of angular local gravel and far-transported fine to very fine-grained sands deposited as basal lag. The Eden Shales are predominantly gypsiferous red silty mudstones, with thin very fine-grained sandstone beds, and with thick marine gypsum beds at the base, deposited at a saline lake margin. The overlying Triassic Sherwood Sandstone Group consists of the Annan and Kirklinton Sandstones. The Annan Sandstones are predominantly thick-bedded, multi-storied, fine-grained mature red quartz sandstones in which coarse sand is practically absent despite channels with clay pebbles up to 30 cm in diameter. The overlying, predominantly aeolian, Kirklinton Sandstones consist of festoon cross-bedded and parallel-laminated fine-grained sandstones, almost identical to the Annan Sandstones except that mica and clay are absent. The Stanwix Shales, located above, consist of interbedded red, blue and green mudstones, siltstones, and thin very fine-grained sandstones, with gypsum layers. Although the entire succession can plausibly be interpreted as deposited in a large desert basin opening into a hypersaline marine or lacustrine embayment to the southwest, the uniformly fine-grained nature of the succession is unusual, as is the absence of paleosols, and body and trace fossils. There is almost no coarse sand even in the river channel units, and it seems likely that the basin was not only extremely arid but supplied predominantly by wind rather than water.  相似文献   

18.
Particle over-passing on depth-limited gravel bars   总被引:3,自引:0,他引:3  
An experimental channel is used to examine the transport of mixed sand and gravel bedload over the crestal platform of ‘hump-back’ bars and along the top of planar gravel sheets. Hydraulic processes result in the simultaneous transport of cobbles and pebbles over a static closely packed bed consisting of like-sized and finer particles. For prescribed conditions, flat upper-stage plane sand-beds develop over the crestal location with pebbles rolling easily over the sandy bed. At the brinkpoint, flow separation ensures effective segregation of the gravel from the sand. Over the slip-face the deposition rate of the sand is insufficient to fill fully the interstices within the gravel foresets before rapid deposition of gravel further advances the bed-form. Consequently, distinctive vertical assemblages of open-work and closed contact framework gravels could be generated as another bar migrates over, and preserves, the initial structure. In respect to the observed mechanisms of sorting over the bars, a mathematical expression is developed to explain the critical conditions allowing coarse particle mobility over planar sand or gravel beds under upper-stage plane-bed conditions on the crestal platform. The model then is used to ascertain whether the depositional environment ascribed to certain facies in the Bunter Pebble Beds, described in a recent publication, is appropriate given the distinctive facies assemblages generated in this experiment and the known hydrodynamic control of the particle-segregation process.  相似文献   

19.
1933年发生在青藏高原东缘岷江上游叠溪地区的7.5级地震,致岷江干流两岸岩体崩滑堵江,形成叠溪小海子堰塞湖。堰塞湖形成后,水流携带松坪沟流域内的泥砂进入堰塞湖不断沉积,形成具有顶积层、前积层和底积层3层结构的吉尔伯特型扇三角洲。基于野外调查,本文对叠溪堰塞湖三角洲沉积物的沉积特征进行研究,依据沉积物的地貌和沉积特征推断松坪沟流域至少发生过两次大型洪水事件。采用水力学中的水流能量法反演计算,结果表明这两次洪水的最大洪峰流量分别为405.4 m3·s-1和365.4 m3·s-1。叠溪堰塞湖沉积特征与历史洪峰流量的重建,对于了解震后堰塞湖地质环境及演化规律等方面具有重要意义,可为地质灾害等事件的发生频率、危害程度在工程建设方面提供参考。  相似文献   

20.
Lake-level changes inferred from seismic surveying and core sampling of the floor of Lake Baikal near the Selenga River delta can be used to constrain regional climatic history and appear to be correlated to global climate changes represented by marine oxygen isotope stages (MIS). The reflection pattern and correlation to the isotope stages indicate that the topset and progradational foreset sediments of the deltas formed during periods of stable lake levels and warm climatic conditions. During warm stages, the lake level was high, and during cold stages it was low. The drop in the lake level due to cooling from MIS 5 through MIS 4 is estimated to be 33-38 m; from MIS 3 through MIS 2, it fell an additional 11-15 m. Because the lake level is chiefly controlled by evaporation and river input, we infer that more water was supplied to Lake Baikal during warm stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号