首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Perennially frozen loess deposits in the Klondike goldfields include paleosols formed in full-glacial environments, correlated by Alaskan distal tephra with Marine Isotope Stages (MIS) 2 and 4. Patterns of organic and inorganic carbon and clay distribution, microstructures, and profile morphologies indicate that soil formation occurred in a base-rich environment in which organic matter accreted predominantly as root detritus. At sites approximately 20 km apart, the expression of cryoturbation and ice wedge development decreases in strength upward in loess-paleosol sequences correlated with MIS 4, suggesting increasing aridity. Configurations of cryoturbation features and ice-wedge thaw unconformities, the presence of numerous ground squirrel burrows, and an absence of peat accumulation suggest that these substrates were predominantly well-drained, with active layers of equal or greater thickness than in modern soils on similar sites in the west-central Yukon. Some characteristics of these paleosols are similar to those of modern steppe and tundra soils, consistent with plant macrofossil evidence for local ecological diversity during full-glacial conditions in eastern Beringia.  相似文献   

2.
The Klondike Schist that forms the basement rocks for the famous Klondike placer goldfield was emplaced as km-scale thrust slices in Early Jurassic time, along with some thin (10 to 30 m-scale) slices of greenstone and ultramafic rocks. Permian metamorphic fabrics in the schists were deformed during thrust emplacement by structures formed as the rocks passed through the brittle–ductile transition. Early-formed thrust-related structures were almost-pervasive recumbent folds that affected both the schist and greenstone/ultramafic slices and imposed a spaced cleavage with minor recrystallisation of micas. These structures gave way to shallow-dipping phacoidal cleavage near (within <100 m of) thrust structures. Thrust-related structures have been overprinted locally by well-defined steeply dipping reverse fault-fold zones, and associated upright folding on regional (km) to mesoscopic (m) scales. The fold-fault zones occur as two orthogonal sets of structures oriented NW to N and NE to E. Some of these steeply dipping fault zones have been reactivated by Late Cretaceous normal faulting. Orogenic (mesothermal) gold-bearing veins were emplaced in local sites of extension during or after formation of the compressional fault-fold zones and before normal fault reactivation. Over 400 veins (m to cm-scale) observed in this study imply a general NW strike for mineralised structures (W to N), but with a broad scatter of orientations. Vein emplacement was controlled principally by fold axial surfaces of kink folds of the fault-fold generation. However, some other local extension sites have opened along preexisting structures to host veins locally, including metamorphic foliation and spaced cleavage planes. In addition, irregular extensional fractures with no obvious structural control host some veins. The Klondike mineralised veins formed as swarms with broad regional structural control, but represent relatively diffuse mineralised zones, with numerous scattered small veins, compared to most orogenic vein systems. These diffuse vein swarms appear to be sufficient sources for the rich and geographically localised placer gold deposits that formed in overlying gravels during erosion of the Klondike Schist basement.  相似文献   

3.
40Ar/39Ar data for muscovite separates and hydrothermally altered whole‐rock samples from the Ballarat West and the Ballarat East goldfields indicate that mesothermal gold mineralisation at Ballarat occurred during several episodic pulses, ranging in age from the Late Ordovician to the Early Devonian. Initial formation of auriferous structures in the Ballarat goldfields coincided with folding and thrusting associated with the development of the western Lachlan Fold Belt between 460 and 440 Ma. Subsequent fault reactivation and magmatism resulted in remobilisation and additional mineralisation between 410 and 380 Ma, and around 370 Ma. The results presented herein are in agreement with findings for other major gold deposits in central Victoria and further constrain the history of deformation, metamorphism and mineralisation in the western subprovince of the Lachlan Fold Belt.  相似文献   

4.
 The Keno Hill mining district in central Yukon was the second largest silver producer in Canada with mines operating from 1913 to 1989 on more than 65 vein silver deposits. The seven and a half decades of mining activities have generated large volumes of mine waste disposed on the land surface, resulting in elevated metal contents in numerous small drainages. To assess the extent of metal mobilization, old mine workings and the associated mine waste were examined and the water courses draining to a major river valley sampled. The results of field observations and an array of water and sediment analyses led to three major conclusions. 1. Acid mine drainage is not widespread because of galvanic protection of pyrite from oxidative dissolution and neutralization by carbonates in the country rock. 2. Mechanisms operative to limit aqueous metal transport in small streams in the district include cryogenic precipitation, coprecipitation and sorption. 3. The near-surface concentration of metals limits the options of waste disposal in future mining developments due to potential metal-leaching problems. Received: 12 December 1995 · Accepted: 26 March 1996  相似文献   

5.
A large scale Proterozoic breccia system consisting of numerous individual breccia bodies, collectively known as Wernecke Breccia, occurs in north-central Yukon Territory, Canada. Breccias cut Early Proterozoic Wernecke Supergroup sedimentary rocks and occur throughout the approximately 13 km thick deformed and weakly metamorphosed sequence. Iron oxide–copper–gold ± uranium ± cobalt mineralization is associated with the breccia bodies and occurs as veins and disseminations within breccia and surrounding rocks and locally forms the breccia matrix. Extensive sodic and potassic metasomatic alteration occurs within and around breccia bodies and is overprinted by pervasive calcite and dolomite/ankerite, and locally siderite, alteration, respectively. Multiple phases of brecciation, alteration and mineralization are evident. Breccia bodies are spatially associated with regional-scale faults and breccia emplacement made use of pre-existing crustal weaknesses and permeable zones. New evidence indicates the presence of metaevaporitic rocks in lower WSG that may be intimately related to breccia formation. No evidence of breccia-age magmatism has been found to date.
Julie HuntEmail:
  相似文献   

6.
The stream sediments of Dahab area, southeastern Sinai, Egypt, were studied for their content of economic minerals. These sediments are immature as indicated by poor sorting and other mechanical parameters. They are derived from Precambrian basement rocks, which are mostly represented by granitic rocks in addition to lesser amounts of volcanics and gabbros. The mineralogical investigation revealed that these sediments contain considerable amounts of placer gold, Fe–Ti oxides and zircon.The concentrated Fe–Ti oxides comprise homogeneous magnetite and ilmenite in addition to ilmeno-magnetite, hemo-ilmenite and rutile–hematite intergrowths. Isodynamic separation of some raw samples of SIZE=1 mm revealed that up to 15.12% magnetic minerals can be recovered. Zircon shows remarkable variations in morphology, colour, chemistry and provenance. U-poor and U-rich varieties of zircon were discriminated containing UO2 in the ranges of 0.04–1.19 and 3.05–3.68 wt.%, respectively. REE-bearing minerals comprise monazite, allanite and La-cerianite.On mineralogical basis, the present work suggests that Dahab stream sediments represent a promising target for further geochemical exploration for precious metals, especially gold. Fire assay data indicate that placer gold in the studied sediments sometimes reaches 15.34 g/t. Narrow gullies and valleys cutting the basement manifest the development and preservation of gold in this arid environment. Background concentration of gold and variation in lithology suggest multiple source of the metal in the investigated sediments.  相似文献   

7.
In this paper we present titanite U–Pb (both single crystal CA ID‐TIMS and in situ LA ICP‐MS) data, coupled with ore and gangue mineralogy and geochemical (both lithogeochemistry and microanalysis) data from the Nucleus Au–Ag–Bi–Cu deposit, in the Yukon (Canada) portion of the Tintina Au province. Arsenic‐bearing Au–Ag–Bi–Cu mineralization at Nucleus consists of two distinct styles of mineralization including: (i) reduced Au skarn and sulfide replacement; and (ii) a relatively shallow‐emplaced (as supported by textures and temperature of formation), vein‐controlled mineralization occurring mainly as veins and veinlets of various shapes (sheeted, single, stockworks, and crustiform), breccias, and disseminations. Whereas Au, Bi, and Cu mineralization from skarn is associated with hydrous retrograde alteration phases (actinolite, ferro‐actinolite, hastingsite, cannilloite, and hornblende), numerous alteration types are associated with the vein‐controlled style of mineralization and these include: biotite, phyllic, argillic, propylitic, carbonate, and quartz (silicification) alterations. The mineralization–alteration processes took place over a wide temperature range that is bracketed between 340 and 568°C, as indicated by chlorite and arsenopyrite geothermometers. The Au‐rich Nucleus deposit is characterized by anomalously high content of As and Bi (as much as 1 %), and whereas Au moderately correlates with Bi (r = 0.40) in the skarn mineralization style (where native Au is spatially associated with native Bi and Bi‐bearing sulfides), the two elements correlate poorly (r = 0.14) in the vein‐controlled type, in which native Bi‐ and Bi‐sulfide‐bearing veins are locally observed. Sphalerite from the vein‐controlled mineralized type is Fe‐rich (9.92–10.54 mol % FeS) indicative of low sulfidation conditions, as well as high temperature, with the latter further supported by arsenopyrite geothermometry (up to 491°C), low Ag content (3–7 wt.%) in Au, and the high gold fineness (926–964). Whereas molybdenite Re–Os ages from quartz‐molybdenite veins range from 75.8 to 76.2 ± 0.3 Ma, titanite from the skarn type mineralization recorded CA ID‐TIMS and LA ICP‐MS U–Pb ages of 182.6 ± 2.4 Ma and 191.0 ± 1.5 Ma, respectively, thus precluding any genetic link between the two spatially associated styles of mineralization from the Nucleus deposit area. The Au–Ag–Bi–Cu Nucleus deposit is therefore regarded as a superposed system in which two mineralization types, without any petrogenetic relationship, overlapped, possibly with remobilization of early‐formed mineralization.  相似文献   

8.
A massive ground-ice body was found exposed in the headwall of a thaw flow developed within the Chapman Lake terminal moraine complex on the Blackstone Plateau (Ogilvie Mountains, central Yukon Territory), which is contemporaneous to the Reid glaciation. Based on visible cryostructures in the 4-m-high headwall, two units were identified: massive ground ice, overlain sharply by 2 m of icy diamicton. The nature and origin of the Chapman Lake massive ground ice was determined using cryostratigraphy, petrography, stable O-H isotopes and the molar concentration of occluded gases (CO2, O2, N2 and Ar) entrapped in the ice, a new technique in the field of periglacial geomorphology that allows to distinguish between glacial and non-glacial intrasedimental ice. Collectively, the results indicate that the Chapman Lake massive ground ice formed by firn densification with limited melting-refreezing and underwent deformation near its margin. Given that the massive ground-ice body consists of relict glacier ice, it suggests that permafrost persisted, at least locally, on plateau areas in the central Yukon Territory since the middle Pleistocene. In addition, the d value of Chapman Lake relict glacier ice suggests that the ice covering the area during the Reid glaciation originated from a local alpine glaciation in the Ogilvie Mountains.  相似文献   

9.
Mineral composition and quantitative thermobarometric studies indicate that the Teslin-Taylor Mountain and Nisutlin terranes within the Teslin suture zone (TSZ), Yukon, record widespread high-P/T metamorphic conditions consistent with subduction zone dynamothermal metamorphism. The highest P–T conditions (575–750° C and 9–17 kbar) are preserved in tectonites formed during normal dip-slip ductile shear. Dextral strike-slip tectonites record lower P–T conditions (400–550° C and 5–8 kbar), and tectonites which show reverse shear have peak temperatures of c. 420° C and a minimum peak pressure of 3 kbar. Dynamothermal metamorphism took place in a west-dipping B-type subduction zone outboard of western North America in Permo-Triassic time. TSZ tectonites were underplated against the hangingwall plate of the subduction zone. Following subduction of the ocean basin which separated North America from the hangingwall plate, TSZ tectonites were overthrust eastward as a coherent structural package as a result of A-type subduction of Cassiar strata in early Jurassic time. (Par)autochthonous Cassiar tectonites, which comprised the leading edge of the western North American margin, record prograde moderate-P, high-T metamorphism (550–750° C and 7–13 kbar) synchronous with top-to-the-east ductile shear. Metamorphism occurred as a result of subduction of the North American margin into the TSZ subduction zone in early Jurassic time. Following metamorphism Cassiar tectonites cooled slowly from 500 to 300° C during the period middle Jurassic to middle Cretaceous. TSZ and Cassiar tectonites were deformed during changing P–T conditions. Data from each of these tectonite packages indicate that grain-scale strain partitioning may have allowed local recrystallization of individual minerals by the addition of mechanical energy. The composition of the new grains reflects the P–T conditions under which that particular grain was deformed.  相似文献   

10.
The landform evolution of the Klutlan moraines is described and explained primarily with respect to processes that cause voids in which debris is deposited. Morainal deposits of different ages provide examples of landforms at different stages of development, so that continuous ideal evolutionary sequences can be inferred. Specific features are classified as those on material of the same depositional age that develop mostly in a vertical direction with numerous topographic reversals, and those cross-cutting materials of different depositional age that develop primarily in a horizontal direction. The evolution of slopes is often terminated by their destruction as the underlying ice melts, but former slopes on morainal debris are traceable to ice-ridge slopes on the original glacier surface. The general process of evolution is one of downwasting by surficial icemelt, in which a grand topographic reversal takes place as the original ice mass with a gently convex surface melts to leave a basin floored by a concave mantle of morainal debris. The primary glacial process of melting differs from the primary karst process of solution, but many minor glacial processes and major glacial forms are similar to minor karst processes and major karst forms.  相似文献   

11.
The Blagoevgrad Basin, a graben filled with Neogene–Quaternary continental sedimentary successions, is one of the most prospective placer-gold bearing regions in southwestern Bulgaria. The Quaternary sediments have been well explored and economically prospective areas have been identified. Previous studies indicated very limited occurrences of placer gold in the Neogene sediments, the genesis of which is connected with resedimentation of Paleogene sediments from the adjacent Bobov dol Basin to the north. From these previous studies, a detailed allo- and lithostratigraphic scheme, and paleogeographic models were developed.The present study aimed to evaluate the plausibility of the existing stratigraphic schemes and paleogeographic models for the area, through detailed study of the heavy mineral fraction of the Neogene and part of the Quaternary sediments from the southern part of the Blagoevgrad Basin. Additional objectives were to determine the mode of occurrence and the stratigraphic position of the placer gold in the Neogene sediments, and to investigate possible source areas. Special attention was paid to the mineral composition and the structure of the opaque detrital Fe–Ti oxide minerals, and the typologic features of the zircons. The results obtained could be used as a provenance indicator and for determination of the nature of the source area and the processes that operated therein.A very important finding is the discovery of placer gold in an additional three Neogene units. The morphologic features of the gold grains indicate short transport or proximity to the primary source. This interpretation is inconsistent with existing hypotheses on the origin and presence of the gold in the sediments of the basin. The characteristics of the magnetic heavy mineral fraction, and the morphologic features of zircon grains in auriferous samples, indicate the diorites and gabbro-diorites from the Strouma Diorite Group, which outcrop along the eastern edge of the graben, as a possible source.The stratigraphic distribution of the heavy minerals fully supports the plausibility of the existing detailed allo- and lithostratigraphic subdivision, and the paleogeographic model for the development of the southern part of the basin. Also, the results provide support for the soundness of an allostratigraphic approach for the study and exploration of placer deposits in basins similar to the Blagoevgrad.  相似文献   

12.
We report the morphological, textural and chemical characteristics of gold grains in stream gravels from the Siruvani River in Attappadi Valley, southern India. The placer gold deposits contain both primary grains with jagged grain contours and secondary grains with smooth grain margins. The primary and secondary gold grains are also distinguished by marked contrast in microtextures with the latter displaying a range of corrosion textures including striations, etch pits and chemical corrosion cavities that coalesce to form honey-comb patterns. Some of these cavities are filled with fine clay derived from lateritic weathering front. While the primary grains are characterized by high silver content (up to 35.77 wt.%) with marginal overgrowths of high purity gold, the secondary grains show exceedingly high fineness (1000 Au/Au+Ag) levels (up to 984) with no marked compositional variation indicating selective extraction of Ag and/or reprecipitation of Au. From morphological and chemical characteristics, we propose that the high purity gold grains were not derived directly from primary sources, but underwent chemical refinement in the weathering front before they were transferred to the fluvial systems. Our findings have important implications for gold exploration in the Attappadi Valley.  相似文献   

13.
Lakes developed on progressively younger end moraines of the Klutlan Glacier were initially assumed to have originated shortly after moraine emplacement and to have persisted to the present. Limnological differences between lakes on old vs young moraines were thought to result from limnological maturation within the lakes and ponds themselves and in response to the development of soils and vegetation on moraine surfaces. This study represents a paleolimnological test of this hypothesis. If true, the first-formed sediments of lakes on old moraines should be comparable to sediments presently forming in lakes on young moraines. Geochemical and paleontological studies of surface sediment to a series of lakes on progressively older moraines provide baseline information for comparing successive levels of lake sediment cores from older moraines. Results indicate that the time of lake initiation seldom reflects moraine age. Even on the oldest moraine (Harris Creek), lake basins are presently forming. Their sediment character more closely relates to the rapidity of basin formation due to melting of buried ice than to age of the lake itself or of the moraine on which it is situated. Vegetation and soil development play an important but secondary role in determining the character of lake sediments; rapid subsidence can convert humic-water lakes surrounded by second-generation spruce forests into turbid-water lakes with unstable, slumping margins. A detailed paleolimnological study of two lakes, one on the unglaciated upland and another in an outwash channel penetrating the oldest moraine, revealed progressive limnologic changes through time, suggesting that their basins were stable for 1200 and 400 yr, respectively. The changes in diatom stratigraphy of these lakes appear to relate to natural limnological changes associated with lake maturation and accumulation of nutrients as well as to changes in the surrounding vegetation and soils.  相似文献   

14.
At least five Middle to Late Pleistocene advances of the northern Cordilleran Ice Sheet are preserved at Silver Creek, on the northeastern edge of the St Elias Mountains in southwest Yukon, Canada. Silver Creek is located 100 km up‐ice of the Marine Isotope Stage (MIS) 2 McConnell glacial limit of the St Elias lobe. This site contains ~3 km of nearly continuous lateral exposure of glacial and non‐glacial sediments, including multiple tills separated by thick gravel, loess and tilted lake beds. Infrared‐stimulated luminescence (IRSL) and AMS radiocarbon dating constrain the glacial deposits to MIS 2, 4, either MIS 6 or mid‐MIS 7, and two older Middle Pleistocene advances. This chronology and the tilt of the lake beds suggest Pleistocene uplift rates of up to 1.9 mm a?1 along the Denali Fault since MIS 7. The non‐glacial sediment consists of sand, gravel, loess and organic beds from MIS 7, MIS 3 and the early Holocene. The MIS 3 deposits date to between 30–36 14C ka BP, making Silver Creek one of the few well‐constrained MIS 3‐aged sites in Yukon. This confirms that ice receded close to modern limits in MIS 3. Pollen and macrofossil analyses show that a meadow‐tundra to steppe‐tundra mosaic with abundant herbs and forbs and few shrubs or trees, dominated the environment at this time. The stratigraphy at Silver Creek provides a palaeoclimatic record since at least MIS 8 and comprises the oldest direct record of Pleistocene glaciation in southwest Yukon.  相似文献   

15.
Gold mineralisation in the White River area, 80 km south of the highly productive Klondike alluvial goldfield, is hosted in amphibolite facies gneisses in the same Permian metamorphic pile as the basement for the Klondike goldfield. Hydrothermal fluid which introduced the gold was controlled by fracture systems associated with middle Cretaceous to early Tertiary extensional faults. Gold deposition occurred where highly fractured and chemically reactive rocks allowed intense water–rock interaction and hydrothermal alteration, with only minor development of quartz veins. Felsic gneisses were sericitised with recrystallisation of hematite and minor arsenic mobility, and extensively pyritised zones contain gold and minor arsenic (ca 10 ppm). Graphitic quartzites (up to 5 wt.% carbon) caused chemical reduction of mineralising fluids, with associated recrystallisation of metamorphic minerals (graphite, pyrrhotite, pyrite, chalcopyrite) in host rocks and veins, and introduction of arsenic (up to 1 wt.%) to form arsenopyrite in veins and disseminated through host rock. Veins have little or no hydrothermal quartz, and up to 19 wt.% carbon as graphite. Late-stage oxidation of arsenopyrite in some graphitic veins has formed pharmacosiderite. Gold is closely associated with disseminated and vein sulphides in these two rock types, with grades of up to 3 ppm on the metre scale. Other rock types in the White River basement rocks, including biotite gneiss, hornblende gneiss, pyroxenite, and serpentinite, have not developed through-going fracture systems because of their individual mineralogical and rheological characteristics, and hence have been little hydrothermally altered themselves, have little hydrothermal gold, and have restricted flow of fluids through the rock mass. Some small post-metamorphic quartz veins (metre scale) have been intensely fractured and contain abundant gold on fractures (up to 40 ppm), but these are volumetrically minor. The style of gold mineralisation in the White River area is younger than, and distinctly different from, that of the Klondike area. Some of the mineralised zones in the White River area resemble, mineralogically and geochemically, nearby coeval igneous-hosted gold deposits, but this resemblance is superficial only. The White River mineralisation is an entirely new style of Yukon gold deposit, in which host rocks control the mineralogy and geochemistry of disseminated gold, without quartz veins.  相似文献   

16.
A total of 138 samples of the Devonian sediments in the vicinity of the Tom stratiform Pb-Zn-Ba deposit were analysed for major elements and 16 minor and trace elements by X-ray fluorescence.The geochemistry of the footwall argillites is characterised by a concentration of elements that are typically associated with the detrital resistate minerals and feldspars (e.g. Al2O3, Na2O, K2O, TiO2, Ce, Nb, Zr), which are contained within the interbedded silty layers of probable distal turbidite origin.The hanging-wall shales are characterised by high V concentrations. The C-organic data and the V/Cr ratios suggest that sapropelic conditions may have been locally developed in the vicinity of the West zone mineralisation and in the hanging-wall shales. Very high concentrations of Ba were found to be present in the hanging-wall shales (>0.5% Ba).Zn is more widely dispersed than Pb in the sediments around the mineralisation. There is no marked enrichment of Fe, Mn or Cu in the sediments close to the mineralisation.  相似文献   

17.
The Bendigo and Castlemaine goldfields are classic examples of structurally controlled orogenic gold deposits in the Bendigo Zone of central Victoria, SE Australia. Detailed mapping and biostratigraphic interpretation has led to a better understanding of the regional structural controls of this type of gold-quartz mineralisation. Mineralised quartz veins are hosted by the Castlemaine Group, an Early-to-Middle Ordovician turbidite succession at least 3,000 m thick. Gold deposits are controlled by low-displacement faults that are clustered into several belts (the goldfields) indicating a regional structural control. The timing of mineralisation overlapped with that of the major period of deformation including folding, cleavage development and regional faulting. The Bendigo and Castlemaine goldfields are located in an area termed the Whitelaw thrust sheet bounded by two unmineralised, high-displacement, regional-scale faults. Mapping has revealed an interrelationship between the regional-scale faults, regional structural style and goldfield location. The goldfields lie immediately west of the boundary between the upper and lower portions of the thrust sheet and are characterised by symmetric folds with sub-horizontal to synclinal enveloping surfaces, relatively low co-axial strains and moderate cleavage development. The non-gold-bearing areas immediately east of each goldfield correspond with the lower part of the Whitelaw thrust sheet and are characterised by higher non-coaxial strains, stronger cleavage and folds with wide west-dipping limbs giving rise to easterly vergent sections and steeply west-dipping enveloping surfaces. That mineralisation was an integral part of the thin-skinned style of deformation in the central Bendigo Zone is indicated by timing relationships and the interrelationship between local-scale mineralised structures and regional-scale features such as large-displacement unmineralised faults, regional variations in fold style and overall thrust sheet geometry. The work supports previous models that suggest mineralised fluids were focussed along a linked system of deep-seated faults. The primary conduits may have been major regional-scale ‘intrazone’ faults, which are inferred to sole into detachments near the base of the Castlemaine Group. It is proposed that these structures linked with minor intrazone faults and then with networks of low-displacement mineralised faults that were strongly controlled by folds. The location of minor intrazone faults was probably controlled by internal thrust sheet geometry. The distribution of gold deposits and of gold production suggests that maximum fluid flow was concentrated along the eastern margins of networks of low-displacement faults.  相似文献   

18.
Textural relationships and the trace element chemistry of accessory minerals and garnet can provide the linkage between in situ SHRIMP ages and quantitative pressure–temperature data that is required to decipher complex polymetamorphic and polydeformational histories. Application of these methods to lower amphibolite facies rocks of the Stewart River area, Yukon (Canada) yields robust new constraints on the tectonic evolution of central Yukon Tanana Terrane (YTT).
A TIMS U/Pb titanite age of 365–350 Ma is interpreted to date low- P metamorphism (M1) and D1 deformation associated with arc plutonism above an east-dipping subduction zone. Monazite inclusions in garnet porphyroblasts record a transition from low to high pressure (∼9 kbar and 600 °C) at c . 239 Ma. These data help to establish a c . 260–240 Ma tectonometamorphic event (M2–D2) reflecting intra-arc thickening during west-dipping subduction of Slide Mountain Ocean. Another transition from low- to high- P (M3–D3; 7.8 kbar and 595 °C), dated by c . 195–187 Ma monazite, is interpreted to reflect the change from regional contact metamorphism during arc plutonism to internal duplication of YTT during initial collision of YTT with the North American craton.
The Mt Burnham (north-eastern) region records a different history because of its proximity to later plutons and its late exhumation via extensional faulting. Monazite growth at 146 Ma dates ∼9 kbar metamorphism (M4), interpreted to reflect a previously unrecognized period of plutonism associated with auriferous quartz veins in the Klondike region. Monazite growth at 114–107 Ma reflects low- P (<4.6 kbar) contact metamorphism (M5) accompanying regional plutonism and extension.  相似文献   

19.
An examination of soil thermal and hydrologic regimes at several sites near Mayo, Yukon Territory, and the ground-ice stratigraphy of a thaw-slump headwall close to these sites supports the hypothesis that an ice-rich zone, frequently observed at the base of the active layer, may be due to the annual water balance of permafrost. Observations demonstrate that ice lenses have grown at the top of permafrost in soil tubes installed in 1983. In addition, 90 cm of segregated ice are exposed in the thaw-slump headwall above a thaw unconformity, dated at 8870 ± 200 years BP, but below the base of the present active layer. These data suggest that the rate of water incorporation into permafrost over the last 8000 years in the Mayo area has been at least 0.1 mm yr?1.  相似文献   

20.
A large rock and ice avalanche occurred on the north face of Mount Steele, southwest Yukon Territory, Canada, on July 24, 2007. In the days and weeks preceding the landslide, several smaller avalanches initiated from the same slope. The ice and rock debris traveled a maximum horizontal distance 5.76 km with a maximum vertical descent of 2,160 m, leaving a deposit 3.66 km2 in area on Steele Glacier. The seismic magnitude estimated from long-period surface waves (M s) is 5.2. Modeling of the waveforms suggests an estimated duration of approximately 100 s and an average velocity of between 35 and 65 m/s. This landslide is one of 18 large rock avalanches known to have occurred since 1899 on slopes adjacent to glaciers in western Canada. We describe the setting, reconstruct the event chronology and present a preliminary characterization of the Mount Steele ice and rock avalanches based on field reconnaissance, analysis of seismic records and an airborne LiDAR survey. We also present the results of a successful dynamic simulation for the July 24 event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号