首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A thick Maastrichtian‐Ypresian succession, dominated by marine siliciclastic and carbonate deposits of the regionally recognized Nile Valley and Garra El‐Arbain facies associations, is exposed along the eastern escarpment face of Kharga Oasis, located in the Western Desert of Egypt. The main objectives of the present study are: (i) to establish a detailed biostratigraphic framework; (ii) to interpret the depositional environments; and (iii) to propose a sequence stratigraphic framework in order to constrain the palaeogeographic evolution of the Kharga sub‐basin during the Maastrichtian‐Ypresian time interval. The biostratigraphic analysis suggests the occurrence of 10 planktonic zones; two in the Early Maastrichtian (CF8b and CF7), four in the Palaeocene (P2, P3, P4c and P5) and four in the Early Eocene (E1, E2, E3 and E4). Recorded zonal boundaries and biostratigraphic zones generally match with those proposed elsewhere in the region. The stratigraphic succession comprises seven third‐order depositional sequences which are bounded by unconformities and their correlative conformities which can be correlated within and outside Egypt. These depositional sequences are interpreted as the result of eustatic sea‐level changes coupled with local tectonic activities. Each sequence contains a lower retrogradational parasequence set bounded above by a marine‐flooding surface and an upper progradational parasequence set bounded above by a sequence boundary. Parasequences within parasequence sets are stacked in landward‐stepping and seaward‐stepping patterns indicative of transgressive and highstand systems tracts, respectively. Lowstand systems tracts were not developed in the studied sections, presumably due to the low‐relief ramp setting. The irregular palaeotopography of the Dakhla Basin, which was caused by north‐east to south‐west trending submerged palaeo‐highs and lows, together with the eustatic sea‐level fluctuations, controlled the development and location of the two facies associations in the Kharga Oasis, the Nile Valley (open marine) and Garra El‐Arbain (marginal marine).  相似文献   

2.
The Lower Cretaceous sections in northern Sinai are composed of the Risan Aneiza (upper Barremian-middle Albian) and the Halal (middle Albian-lower Cenomanian) formations. The facies reflect subtle paleobathymetry from inner to outer ramp facies. The inner ramp facies are peritidal, protected to open marine lagoons, shoals and rudist biostrome facies. The inner ramp facies grade northward into outer ramp deposits. The upper Barremian-lower Cenomanian succession is subdivided into nine depositional sequences correlated with those recognized in the neighbouring Tethyan areas. These sequences are subdivided into 19 medium-scale sequences based on the facies evolution, the recorded hardgrounds and flooding surfaces, interpreted as the result of eustatic sea level changes and local tectonic activities of the early Syrian Arc rifting stage. Each sequence contains a lower retrogradational parasequence set that constituted the transgressive systems tracts and an upper progradational parasequence set that formed the highstand systems tracts. Nine rudist levels are recorded in the upper Barremian through lower Cenomanian succession at Gabal Raghawi. At Gabal Yelleg two rudist levels are found in the Albian. The rudist levels are associated with the highstand systems tract deposits because of the suitability of the trophic conditions in the rudist-dominated ramp.  相似文献   

3.
The study area is located in the east Tabas Block in Central Iran. Facies analysis of the Qal’eh Dokhtar Formation (middle Callovian to late Oxfordian) was carried out on two stratigraphic sections and applied to depositional environment and sequence stratigraphy interpretation. This formation conformably overlies and underlies the marly-silty Baghamshah and the calcareous Esfandiar formations, respectively. Lateral and vertical facies changes documents low- to high energy environments, including tidal-flat, beach to intertidal, lagoon, barrier, and open-marine. According to these facies associations and absence of resedimentation deposits a depositional model of a mixed carbonate–siliciclastic ramp was proposed for the Qal’eh Dokhtar Formation. Seven third-order depositional sequences were identified in each two measured stratigraphic sections. Transgressive systems tracts (TSTs) show deepening upward trends, i.e. shallow water beach to intertidal and lagoonal facies, while highstand systems tracts (HST) show shallowing upward trends in which deep water facies are overlain by shallow water facies. All sequence boundaries (except at the base of the stratigraphic column) are of the no erosional (SB2) types. We conclude eustatic rather than tectonic factors played a dominant role in controlling carbonate depositional environments in the study area.  相似文献   

4.
The Late Neoproterozoic Buah Formation (Nafun Group, Oman) is a carbonate unit outcropping in the Jabal Akhdar and Huqf areas. It is composed mostly of shallow‐water carbonates deposited on a distally steepened carbonate ramp. Correlation of two δ13C isotope shifts shows that in the Jabal Akhdar ramp differentiation into fast and slow subsiding areas was followed by lateral progradation. In the Huqf area, however, a uniform scenario of upward shallowing of the facies and lateral progradation is demonstrated by chemostratigraphic timelines cross‐cutting the facies belts. The chemostratigraphic profiles show that the Buah Formation was deposited during sea‐level highstand conditions and that ramp differentiation was due to synsedimentary tectonics. High‐resolution correlation of δ13C profiles from the same lithostratigraphic unit (whether Precambrian or Phanerozoic in age) lacking biostratigraphic data can shed light on carbonate systems dynamics, tectonic vs. eustatic controls on depositional sequences and basin subsidence.  相似文献   

5.
Cenomanian–Turonian strata of the south‐central Pyrenees in northern Spain contain three prograding carbonate sequences that record interactions among tectonics, sea level, environment and sediment fabric in controlling sequence development. Sequence UK‐1 (Lower to Upper Cenomanian) contains distinct lagoonal, back‐margin, margin, slope and basin facies, and was deposited on a broad, flat shelf adjacent to a deep basin. The lack of reef‐constructing organisms resulted in a gently dipping ramp morphology for the margin and slope. Sequence UK‐2 (Upper Cenomanian) contains similar shallow‐water facies belts, but syndepositional tectonic modification of the margin resulted in a steep slope and deposition of carbonate megabreccias. Sequence UK‐3 (Lower to Middle Turonian) records a shift from benthic to pelagic deposition, as the shallow platform was drowned in response to a eustatic sea‐level rise, coupled with increased organic productivity. Sequences UK‐1 to UK‐3 are subdivided into lowstand, transgressive and highstand systems tracts based on stratal geometries and facies distribution patterns. The same lithologies (e.g. megabreccias) commonly occur in more than one systems tract, indicating that: (1) the depositional system responded to more than just sea‐level fluctuations; and (2) similar processes occurred during different times throughout sequence development. These sequences illustrate the complexity of carbonate platform dynamics that influence sequence architecture. Rift tectonics and flexural subsidence played a major role in controlling the location of the platform margin, maintaining a steep slope gradient through syndepositional faulting, enhancing slope instability and erosion, and influencing depositional processes, stratal relationships and lithofacies distribution on the slope. Sea‐level variations (eustatic and relative) strongly influenced the timing of sequence and parasequence boundary formation, controlled changes in accommodation and promoted platform drowning (in conjunction with other factors). Physico‐chemical and climatic conditions were responsible for reducing carbonate production rates and inducing platform drowning. Finally, a mud‐rich sediment fabric affected platform morphology, growth geometries (aggradation vs. progradation) and facies distribution patterns.  相似文献   

6.
Abstract Relative sea‐level changes on the mixed carbonate–siliciclastic platform of Sinai are manifested in shifts of distinct facies belts (deep‐water facies, high‐energy subtidal, shallow subtidal, lagoon, shallow shoreface siliciclastics, supratidal) and are interpreted in terms of sequence stratigraphy. Eight sedimentary sequences are recognized for the Upper Cenomanian to Santonian. Their correlation along a north–south transect reveals distinct changes in lithofacies and progradation/retrogradation patterns within the individual systems tracts. The number and stratigraphy of the sequence boundaries of Sinai correlate well with those from adjacent areas. Patterns of increased subsidence are documented for the Central Sinai Basin since the Late Cenomanian by increased thickness of the stratal packages (post‐CeSin 7 HST, post‐TuSin 1 LST and HST, post‐TuSin 2 LST) and are balanced by varying accumulation rates. Based on new sedimentological and biostratigraphic data, large‐scale palaeogeographic maps and cross‐sections show the: (1) temporal and spatial evolution of the Central Sinai Basin, e.g. its latest Cenomanian initial formation, Lower Turonian deep‐water facies, Middle Turonian to Coniacian synsedimentary subsidence; (2) drowning of the Cenomanian platform coinciding with the latest Cenomanian to Early Turonian relative sea‐level rise; (3) re‐establishment of the platform in Middle–Late Turonian times; and (4) a Coniacian basin and swell morphology.  相似文献   

7.
The Quilalar Formation and correlative Mary Kathleen Group in the Mount Isa Inlier, Australia, conformably overlie rift-related volcanics and sediments and non-conformably overlie basement rocks. They represent a thermal-relaxation phase of sedimentation between 1780 and 1740 Ma. Facies analysis of the lower siliciclastic member of the Quilalar Formation and the coeval Ballara Quartzite permits discrimination of depositional systems that were restricted areally to either N-S-trending marginal platform or central trough palaeogeographic settings. Four depositional systems, each consisting of several facies, are represented in the lower Quilalar Formation-Ballara Quartzite; these are categorized broadly as storm-dominated shelf (SDS), continental (C), tide-dominated shelf (TDS) and wave-dominated shoreline (WDS). SDS facies consist either of black pyritic mudstone intervals up to 10 m thick, or mudstone and sandstone associated in 6–12-m-thick, coarsening-upward parasequences. Black mudstones are interpreted as condensed sections that developed as a result of slow sedimentation in an outer-shelf setting starved of siliciclastic influx. Vertical transition of facies in parasequences reflects flooding followed by shoaling of different shelf subenvironments; the shoreface contains evidence of subaerial exposure. Continental facies consist of fining-upward parasequences of fluvial origin and tabular, 0·4–4-m-thick, aeolian parasequences. TDS facies are represented by stacked, tabular parasequences between 0·5 and 5 m thick. Vertical arrangement of facies in parasequences reflects flooding and establishment of a tidal shelf followed by shoaling to intertidal conditions. WDS facies are preserved in 0·5–3-m-thick, stacked, tabular parasequences. Vertical transition of facies reflects initial flooding with wave reworking of underlying arenites along a ravinement surface, followed by shoaling from lower shoreface to foreshore conditions. Parasequences are stacked in retrogradational and progradational parasequence sets. Retrogradational sets consist of thin SDS parasequences in the trough, and C, TDS and probably WDS parasequences on the platforms. Thick SDS parasequences in the trough, and TDS, subordinate C and probably WDS parasequences on the platforms make up progradational parasequence sets. Depositional systems are associated in systems tracts that make up 40–140-m-thick sequences bounded by type-2 sequence boundaries that are disconformities. Transgressive systems tracts consist of C, TDS and probably WDS depositional systems on the platforms and the SDS depositional system and suspension mudstone deposits in the trough. The transgressive systems tract is characterized by retrogradational parasequence sets and developed in response to accelerating rates of sea-level rise following lowstand. Condensed-section deposits in the trough, and the thickest TDS parasequences on the platforms reflect maximum rates of sea-level rise and define maximum flooding surfaces. Highstand systems tract deposits are progradational. Early highstand systems tracts are represented by TDS and probably WDS depositional systems on the platforms and suspension mudstone deposits in the trough and reflect decreasing rates of sea-level rise. Later highstand systems tracts consist of the progradational SDS depositional system in the trough and, possibly, thin continental facies on the platforms. This stage of sequence development is related to slow rates of sea-level rise, stillstand and slow rates of fall. Lowstand deposits of shelf-margin systems tracts are not recognized but may be represented by shoreface deposits at the top of progradational SDS parasequence sets.  相似文献   

8.
The Bridport Sand Formation is an intensely bioturbated sandstone that represents part of a mixed siliciclastic‐carbonate shallow‐marine depositional system. At outcrop and in subsurface cores, conventional facies analysis was combined with ichnofabric analysis to identify facies successions bounded by a hierarchy of key stratigraphic surfaces. The geometry of these surfaces and the lateral relationships between the facies successions that they bound have been constrained locally using 3D seismic data. Facies analysis suggests that the Bridport Sand Formation represents progradation of a low‐energy, siliciclastic shoreface dominated by storm‐event beds reworked by bioturbation. The shoreface sandstones form the upper part of a thick (up to 200 m), steep (2–3°), mud‐dominated slope that extends into the underlying Down Cliff Clay. Clinoform surfaces representing the shoreface‐slope system are grouped into progradational sets. Each set contains clinoform surfaces arranged in a downstepping, offlapping manner that indicates forced‐regressive progradation, which was punctuated by flooding surfaces that are expressed in core and well‐log data. In proximal locations, progradational shoreface sandstones (corresponding to a clinoform set) are truncated by conglomerate lags containing clasts of bored, reworked shoreface sandstones, which are interpreted as marking sequence boundaries. In medial locations, progradational clinoform sets are overlain across an erosion surface by thin (<5 m) bioclastic limestones that record siliciclastic‐sediment starvation during transgression. Near the basin margins, these limestones are locally thick (>10 m) and overlie conglomerate lags at sequence boundaries. Sequence boundaries are thus interpreted as being amalgamated with overlying transgressive surfaces, to form composite erosion surfaces. In distal locations, oolitic ironstones that formed under conditions of extended physical reworking overlie composite sequence boundaries and transgressive surfaces. Over most of the Wessex Basin, clinoform sets (corresponding to high‐frequency sequences) are laterally offset, thus defining a low‐frequency sequence architecture characterized by high net siliciclastic sediment input and low net accommodation. Aggradational stacking of high‐frequency sequences occurs in fault‐bounded depocentres which had higher rates of localized tectonic subsidence.  相似文献   

9.
Well‐cuttings, wireline logs and limited core and outcrop data were used to generate a regional, three‐dimensional sequence framework for Upper Mississippian (Chesterian), Greenbrier Group carbonates in the Appalachian foreland basin, West Virginia, USA. The resulting maps were used to document the stratigraphic response of the basin to tectonics and to glacio‐eustasy during the transition into ice‐house conditions. The ramp facies include inner ramp red beds and aeolianites, lagoonal muddy carbonates, mid‐ramp ooid and skeletal grainstone shoal complexes, and outer ramp wackestone–mudstone, that grades downslope into laminated silty lime mudstone. The facies make up fourth‐order sequences, a few metres to over 90 m (300 ft) thick. The sequences are bounded along the ramp margin by lowstand sandstones and calcareous siltstones. On the ramp, sequence boundaries are overlain by thin transgressive siliciclastics and aeolianites, and only a few are calichified. Maximum flooding surfaces on the outer ramp lie beneath deeper water facies that overlie lowstand to transgressive siliciclastic or carbonate units. On the shallow ramp, maximum flooding surfaces overlie siliciclastic‐prone transgressive systems tracts, that are overlain by highstand carbonates with significant grainstone units interlayered with lagoonal lime mudstones. The fourth‐order sequences are the major mappable subsurface units; they are bundled into weak composite sequences which are bounded by red beds. In spite of differential subsidence rates across the foreland basin (1 to 3 cm/k.y. up to 25 cm/k.y.), eustatic sea‐level changes controlled regional sequence development. Thrust‐load induced differential subsidence of fault‐blocks, coupled with in‐plane stress, controlled the rapid basinward thickening of the depositional wedge, whose thickness and facies were influenced by subtle structures such as arches trending at high angles as well as parallel to the margin.  相似文献   

10.
Abstract Physical stratigraphy within shoreface‐shelf parasequences contains a detailed, but virtually unstudied, record of shallow‐marine processes over a range of historical and geological timescales. Using high‐quality outcrop data sets, it is possible to reconstruct ancient shoreface‐shelf morphology from clinoform surfaces, and to track the evolving morphology of the ancient shoreface‐shelf. Our results suggest that shoreface‐shelf morphology varied considerably in response to processes that operate over a range of timescales. (1) Individual clinoform surfaces form as a result of enhanced wave scour and/or sediment starvation, which may be driven by minor fluctuations in relative sea level, sediment supply and/or wave climate over short timescales (101?103 years). These external controls cannot be distinguished in vertical facies successions, but may potentially be differentiated by the resulting clinoform geometries. (2) Clinoform geometry and distribution changes systematically within a single parasequence, reflecting the cycle in sea level and/or sediment supply that produced the parasequence (102?105 years). These changes record steepening of the shoreface‐shelf profile during early progradation and maintenance of a relatively uniform profile during late progradation. Modern shorefaces are not representative of this stratigraphic variability. (3) Clinoform geometries vary greatly between different parasequences as a result of variations in parasequence stacking pattern and relict shelf morphology during shoreface progradation (105?108 years). These controls determine the external dimensions of the parasequence.  相似文献   

11.
The mixed carbonate-siliciclastic Weißenegg (Allo-) Formation records three depositional sequences corresponding approximately to the TB 2.3, TB 2.4 and TB 2.5 global cycles. Sea-level fluctuations were of the order of at least 30 m. Siliciclastic lowstand systems tracts comprise lignite deposits, reworked basement and tidal siltstones (above a tectonically enhanced sequence boundary) as well as coastal sand bars. Coastal sands of the transgressive systems tract contain distinct layers of well cemented nodules. They are interpreted as the first stage in hardground formation and record superimposed minor sea-level fluctuations. Coral patch reefs and rhodolith platforms developed during transgressive phases and were subsequently drowned and/or suffocated by siliciclastics during early highstand. Shallowing upwards siliciclastic parasequences, each terminated by a bank of rhodolith limestone, form the (late) highstand systems tract. The limestone beds record superimposed fourth-order transgressive pulses. Occasionally a carbonate highstand wedge developed. Lowstand carbonate shedding occurred where the top of a platform which suffered incipient drowning during highstand was near sealevel again during the following lowstand. Late highstand delta progradation is common.  相似文献   

12.
This paper reports on the structural and sedimentary evolution of the middle to late Eocene of the Prepyrenean External Sierras (southern Pyrenees, Spain). The initiation, duration and kinematics of a set of growth structures that developed in a shallow marine depositional setting is documented. The detailed analysis of the syntectonic marine sediments not only confirms the already known east to west progression of deformation, but also reveals the continued growth of the early formed structures as later ones propagate towards the foreland. The sedimentary units coevally deposited with these growth structures are arranged in four depositional sequences. Their boundaries correspond to flooding surfaces which grade basinwards into correlative conformities. They are also indicated by the presence of both angular unconformities and onlap geometries. Each depositional sequence generally consists of two systems tracts. The lower one, or transgressive systems tract, is formed by up to 400 m of azoic marls deposited in outer ramp areas. The upper one, or highstand systems tract, mainly consists of shallow siliciclastic and carbonate facies, up to 200 m thick, deposited in middle to inner ramp areas. These depositional sequences are interpreted to be controlled by regional tectonic pulses. An increase of tectonic activity resulted in the flooding of the basin and in the subsequent deposition of a thick succession of nearly azoic blue marls (i.e. transgressive systems tract). The overlying highstand systems tract developed following periods of diminished tectonism, with the consequent growth and progradation of shallow carbonate platform facies.  相似文献   

13.
Upper Callovian to Tithonian (late Jurassic) sediments represent an important hydrocarbon reservoir in the Kopet‐Dagh Basin, NE Iran. These deposits consist mainly of limestone, dolostone, and calcareous mudstone with subordinate siliciclastic interbeds. Detailed field surveys, lithofacies and facies analyses at three outcrop sections were used to investigate the depositional environments and sequence stratigraphy of the Middle to Upper Jurassic interval in the central and western areas of the basin. Vertical and lateral facies changes, sedimentary fabrics and structures, and geometry of carbonate bodies resulted in recognition of various carbonate facies related to tidal flats, back‐barrier lagoon, shelf‐margin/shelf‐margin reef, slope and deep‐marine facies belts. These facies were accompanied by interbedded beach and deep marine siliciclastic petrofacies. Field surveys, facies analysis, parasequences stacking patterns, discontinuity surfaces, and geometries coupled with relative depth variation, led to the recognition of six third‐order depositional sequences. The depositional history of the study areas can be divided into two main phases. These indicate platform evolution from a rimmed‐shelf to a carbonate ramp during the late Callovian–Oxfordian and Kimmeridgian–Tithonian intervals, respectively. Significant lateral and vertical facies and thickness changes, and results obtained from regional correlation of the depositional sequences, can be attributed to the combined effect of antecedent topography and differential subsidence related to local tectonics. Moreover, sea‐level changes must be regarded as a major factor during the late Callovian–Tithonian interval. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Although modern wave‐dominated shorelines exhibit complex geomorphologies, their ancient counterparts are typically described in terms of shoreface‐shelf parasequences with a simple internal architecture. This discrepancy can lead to poor discrimination between, and incorrect identification of, different types of wave‐dominated shoreline in the stratigraphic record. Documented in this paper are the variability in facies characteristics, high‐resolution stratigraphic architecture and interpreted palaeo‐geomorphology within a single parasequence that is interpreted to record the advance of an ancient asymmetrical wave‐dominated delta. The Standardville (Ab1) parasequence of the Aberdeen Member, Blackhawk Formation is exposed in the Book Cliffs of central Utah, USA. This parasequence, and four others in the Aberdeen Member, record the eastward progradation of north/south‐trending, wave‐dominated shorelines. Within the Standardville (Ab1) parasequence, distal wave‐dominated shoreface‐shelf deposits in the eastern part of the study area are overlain across a downlap surface by southward prograding fluvial‐dominated delta‐front deposits, which have previously been assigned to a separate ‘stranded lowstand parasequence’ formed by a significant, allogenic change in relative sea‐level. High‐resolution stratigraphic analysis of these deposits reveals that they are instead more likely to record a single episode of shoreline progradation characterized by alternating periods of normal regressive and forced regressive shoreline trajectory because of minor cyclical fluctuations in relative sea‐level. Interpreted normal regressive shoreline trajectories within the wave‐dominated shoreface‐shelf deposits are marked by aggradational stacking of bedsets bounded by non‐depositional discontinuity surfaces. Interpreted forced regressive shoreline trajectories in the same deposits are characterized by shallow incision of fluvial distributary channels and strongly progradational stacking of bedsets bounded by erosional discontinuity surfaces that record enhanced wave‐base scour. Fluvial‐dominated delta‐front deposits most probably record the regression of a lobate delta parallel to the regional shoreline into an embayment that was sheltered from wave influence. Wave‐dominated shoreface‐shelf and fluvial‐dominated delta‐front deposits occur within the same parasequence, and their interpretation as the respective updrift and downdrift flanks of a single asymmetrical wave‐dominated delta that periodically shifted its position provides the most straightforward explanation of the distribution and relative orientation of these two deposit types.  相似文献   

15.
This study highlights three‐dimensional variability of stratigraphic geometries in the ramp crest to basin of mixed carbonate–siliciclastic clinoforms in the Permian San Andres Formation. Standard field techniques and mapping using ground‐based lidar reveal a high degree of architectural complexity in channellized, scoured and mounded outer ramp stratigraphy. Development of these features was a function of location along the ramp profile and fluctuations in relative sea‐level. Deposition of coarse‐grained and fine‐grained turbidites in the distal outer ramp occurred through dilute and high‐density turbidity flows and was the result of highstand carbonate shedding within individual cycles. In this setting, high‐frequency cycles of relative sea‐level are interpreted on the basis of turbidite frequency, lateral extent and composition. Submarine siliciclastic sediment bypass during lowstand cycles resulted in variable degrees of siliciclastic preservation. Abundant siliciclastic material is preserved in the basin and distal outer ramp as point‐sourced lowstand wedges and line‐sourced early transgressive blankets. In mounded topography of the outer ramp, siliciclastic preservation is minimal to absent, and rare incised channels offer the best opportunity for recognition of a sequence boundary. Growth of mounded topography in the outer ramp began with scouring, followed by a combination of bioherm construction, fusulinid mound construction and isopachous draping. Intermound areas were then filled with sediment and continued mound growth was prevented by an accommodation limit. Mound growth was independent of high‐frequency cycles in relative sea‐level but was dependent on available accommodation dictated by low‐frequency cyclicity. Low‐angle ramp clinoforms with mounded topography in the outer ramp developed during the transgressive part of a composite sequence. Mound growth terminated as the ramp transformed into a shelf with oblique clinoform geometries during the highstand of the composite sequence. This example represents a ramp‐to‐shelf transition that is the result of forcing by relative sea‐level fluctuations rather than ecologic or tectonic controls.  相似文献   

16.
TThe Roper Group is a cyclic, predominantly marine, siliciclastic succession of Calymmian (Early Mesoproterozoic) age. It has a distribution of at least 145 000 km2 and a maximum known thickness of ~5000 m. In the Roper River district the middle part of the Roper Group (~1300 m thick) is characterised by the cyclical alternation of mudstone and sandstone units, and can be divided into six third‐order depositional sequences. A typical sequence is broadly progradational in aspect, and comprises a lower, mudstone‐rich, storm‐dominated shelf succession (up to 330 m thick), and a sequence‐capping unit dominated by tidal‐platform cross‐bedded sandstone (up to 80 m thick); both are interpreted as highstand systems tracts. Transgressive strata are poorly represented but where present are characterised by paralic to fluvial redbed assemblages that include ooidal ironstone. Roper Group sequences lack a distinct condensed section and sequence boundaries are mostly conformable. Erosional contacts separate mud‐rich shelf facies from sequence‐capping sandstones. We infer that these erosion surfaces were generated by episodic flexural tectonism, which also generated the accommodation and sediment supply for Roper sequences.  相似文献   

17.
华北石炭-二叠纪层序地层格架及其特征   总被引:18,自引:3,他引:15  
华北石炭二叠纪沉积建造由两部分组成,下部为碳酸盐岩与硅质碎屑岩构成的含煤建造,上部为硅质碎屑岩红色建造。根据不整合面及其它识别层序界面的标志,该沉积建造可划分为5个沉积层序。DS、DS、DS层序属陆表海型层序,其底界面为Ⅰ型层序界面,层序内仅发育海侵体系域和高位体系域;DS层序为过渡型层序,由低位体系域、海侵体系域和高位体系域构成;DS层序为湖泊型层序,包括低水位体系域、水进体系域和高位体系域。盆地充填超层序(DS-DS)的发育受控于全球二级相对海平面变化,而沉积层序的发育则与区域性造山作用引起的三级海平面变化有关。  相似文献   

18.
The Lower Permian (Artinskian to Sakmarian) Pebbley Beach Formation (PBF) of the southernmost Sydney Basin in New South Wales, Australia, records sediment accumulation in shallow marine to coastal environments at the close of the Late Palaeozoic Gondwanan ice age. This paper presents a sequence stratigraphic re‐evaluation of the upper half of the unit based on the integration of sedimentology and ichnology. Ten facies are recognized, separated into two facies associations. Facies Association A (seven facies) comprises variably bioturbated siltstones and sandstones with marine body fossils, interpreted as recording sediment accumulation in open marine environments ranging from lower offshore to middle shoreface water depths. Evidence of deltaic influence is seen in several Association A facies. Facies Association B (three facies) comprises mainly heterolithic, interlaminated and thinly interbedded sandstone and siltstone with some thicker intervals of dark grey, organic‐rich mudstone, some units clearly filling incised channel forms. These facies are interpreted as the deposits of estuarine channels and basins. Throughout the upper half of the formation, erosion surfaces with several metres relief abruptly separate open marine facies of Association A (below) from estuarine facies of Association B (above). Vertical facies changes imply significant basinward shift of environment across these surfaces, and lowering of relative sea level in the order of 50 m. These surfaces can be traced over several kilometres along depositional strike, and are defined as sequence boundaries. On this basis, at least nine sequences have been recognized in the upper half of the formation, each of which is < 10 m thick, condensed, incomplete and top‐truncated. Sequences contain little if any record of the lowstand systems tract, a more substantial transgressive systems tract and a highstand systems tract that is erosionally truncated (or in some cases, missing). This distinctive stacking pattern (which suggests a dominance of retrogradation and progradation over aggradation) and the implied relative sea‐level drop across sequence boundaries of tens of metres are remarkably similar to some other studies of continental margin successions formed under the Neogene icehouse climatic regime. Accordingly, it is suggested that the stratigraphic architecture of the PBF was a result of an Icehouse climate regime characterized by repeated, high‐amplitude cycles of relative sea‐level change.  相似文献   

19.
The Upper Cretaceous Twentymile Sandstone of the Mesaverde Group in NW Colorado, USA, has been analysed with respect to its pinch‐out style and the stratigraphic position of tidally influenced facies within the sandstone tongue. Detailed sedimentological analysis has revealed that the Twentymile Sandstone as a whole is a deltaic shoreface sandstone tongue up to 50 m thick proximally. Facies change character vertically from very fine‐grained, storm wave‐dominated shelf sandstones and mudstones to fine‐grained, wave‐dominated sandstones and, finally, to fine‐ to coarse‐grained tidally dominated sandstones. The pinch‐out style is characterized by a basinward splitting of the massive proximal sandbody into seven coarsening‐upward fourth‐order sequences consisting of a lower shaly part and an upper sandy part (sandstone tongue). These are stacked overall to reflect the regressive‐to‐transgressive development of the tongue. Each of the lower sandstone tongues 1–3 are gradationally based, very fine‐grained and dominated by hummocky cross‐stratification and were deposited on the lower to upper shoreface. Sandstone tongues 4 and 5 prograded further basinwards than the underlying tongues, are erosively based, fine‐ to coarse‐grained and mainly hummocky, herringbone and trough cross‐stratified. Especially in tongue 5, tidal indicators, such as bipolar foresets and double mud drapes, are common. These tongues were deposited as upper shoreface and tidal channel sandstones respectively. Sandstone tongues 6 and 7 retrograded in relation to tongue 5, are very fine‐ to fine‐grained and hummocky cross‐stratified. These tongues were deposited in lower shoreface to offshore transition environments. The two lower fourth‐order sequences were deposited during normal regressions during slowly rising or stable relative sea level and represent the highstand systems tract. The three succeeding fourth‐order sequences, which show succeedingly increasing evidence of tidal influence, were deposited during falling and lowstand of relative sea level and represent the falling stage (forced regressive) and lowstand systems tracts. The uppermost two fourth‐order sequences were deposited during rapidly rising sea level in the transgressive systems tract. The maximum tidal influence occurred during lowstand progradation, in contrast to most other published examples reporting maximum tidal influence during transgression.  相似文献   

20.
《Sedimentology》2018,65(5):1558-1589
Most of the present knowledge of shallow‐marine, mixed carbonate–siliciclastic systems relies on examples from the carbonate‐dominated end of the carbonate–siliciclastic spectrum. This contribution provides a detailed reconstruction of a siliciclastic‐dominated mixed system (Pilmatué Member of the Agrio Formation, Neuquén Basin, Argentina) that explores the variability of depositional models and resulting stratigraphic units within these systems. The Pilmatué Member regressive system comprises a storm‐dominated, shoreface to basinal setting with three subparallel zones: a distal mixed zone, a middle siliciclastic zone and a proximal mixed zone. In the latter, a significant proportion of ooids and bioclasts were mixed with terrigenous sediment, supplied mostly via along‐shore currents. Storm‐generated flows were the primary processes exporting fine sand and mud to the middle zone, but were ineffective to remove coarser sediment. The distal zone received low volumes of siliciclastic mud, which mixed with planktonic‐derived carbonate material. Successive events of shoreline progradation and retrogradation of the Pilmatué system generated up to 17 parasequences, which are bounded by shell beds associated with transgressive surfaces. The facies distribution and resulting genetic units of this siliciclastic‐dominated mixed system are markedly different to the ones observed in present and ancient carbonate‐dominated mixed systems, but they show strong similarities with the products of storm‐dominated, pure siliciclastic shoreface–shelf systems. Basin‐scale depositional controls, such as arid climatic conditions and shallow epeiric seas might aid in the development of mixed systems across the full spectrum (i.e. from carbonate‐dominated to siliciclastic‐dominated end members), but the interplay of processes supplying sand to the system, as well as processes transporting sediment across the marine environment, are key controls in shaping the tridimensional facies distribution and the genetic units of siliciclastic‐dominated mixed systems. Thus, the identification of different combinations of basin‐scale factors and depositional processes is key for a better prediction of conventional and unconventional reservoirs within mixed, carbonate–siliciclastic successions worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号