首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analysis of modern Metasequoia leaves revealed the presence of the structural polyester cutin, guaiacyl lignin units and polysaccharides. Analysis of environmentally decayed Metasequoia leaves revealed that guaiacyl lignin units and cellulose were degraded more than vinyl phenol (the last being the primary pyrolysis product of cutin and plant cuticles) suggesting that cutin is more stable than lignin and cellulose during degradation, contrary to some previous studies. This observation is supported by electron microscopy showing changes in the cellular structure and cuticle of modern, decayed and fossil Metasequoia leaves. Metasequoia fossils from the Eocene of Republic (Washington State) showed a significant aliphatic component, but biopolymeric lignin and polysaccharides were not detected. Fossils from the Eocene of Axel Heiberg revealed the presence of lignin and an aliphatic polymer up to C29 with cellulose, and fossils from the Miocene Clarkia deposit (Idaho) revealed lignin and an aliphatic polymer up to C27 without any polysaccharides. Modern Metasequoia needles heated experimentally in confined conditions generated a macromolecular composition with an aliphatic polymer up to C32 and additional phenolic compounds similar to those present in the fossils. Experimental heating of cutin is known to generate an aliphatic polymer with carbon chain length units <C20. Thus, the n-alkyl component with chain length units >C20 in the heated Metasequoia needles is a product of incorporation of longer chain plant waxes, indicated by the odd/even predominance of the >C27 n-alkanes. The resistant nature of cutin compared to lignin and polysaccharides explains the presence of an n-alkyl component (<C20) in fossil leaves even when polysaccharides are absent and lignin has decayed; cutin and its diagenetically altered products contribute significantly to the presence of aliphatic components in terrestrially derived sedimentary organic matter.  相似文献   

2.
A polymeric acid fraction has been isolated from Black Trona Water, a fossil water from the Green River Formation of Wyoming, by means of exhaustive dialysis. The polymeric acid is apparently of large molecular weight (>20,000) and constitutes 40–45% of the organic material in Black Trona Water from the DOE/LETC Black Water 1-A well. The fraction was investigated by means of 13C-NMR, FTIR, and fluorescence spectroscopy. Most of the carbon content is aliphatic (63%), with some aliphatic chains greater than 4 carbons in length. A substantial aromatic fraction exists consisting of condensed structures having 4–6 rings. The chemical nature of the polymeric acid fraction is compared to that of kerogen from the same formation.  相似文献   

3.
Studied samples include eight Gondwanan species of the Dicroidium flora: seed ferns (3), conifer (1), cycad-related (1), unknown affinity gymnosperms (2), and one undetermined axis from two Middle to Upper Triassic localities (Cacheuta, Mendoza, central western Argentina). Based on differing preservation states and sample treatments, four sample forms are established: (1) compressions, (2) cuticles, (3) cuticle-free coalified layers, and (4) associated coal samples. The purpose of the study is firstly to analyze the sample forms using Fourier transform infrared (FTIR) spectrometry, contributing to filling an existing gap of chemical information for Gondwanan pant fossil remains. Secondly, semi-quantitative chemical parameters, calculated by area integration of infrared spectra, are treated using principal component analysis to infer statistical groupings as a function of chemical structures (functional groups). From the initial two-component solution, based on the 8 × 41 data matrix, a subset matrix (4 × 29) could be isolated which also yielded a two-component solution (in each case, cumulative explained variance is at least 89%). Results include the distinction between the coaly forms (1) compressions and (3) cuticle-free coalified layers mainly based on the carbonyl contents and branching and length of the hydrocarbon side chains. The highly aliphatic nature of cuticles, which is indicative of biomacromolecules (cutin), is noted. Similarities in functional groups are recorded with types of kerogen and coal macerals. The result enables us to postulate that the functional groups characterizing the different modes of preservation of our fossil remains are likely related to the propensity to generate oil and gas/condensate from the kerogen. Our data have the potential for future studies with implications for chemotaxonomy, molecular taphonomy, and paleoclimatology.  相似文献   

4.
The chemical composition of Cretaceous leaf remains showing exceptionally well preserved cuticles was investigated using pyrolysis gas chromatography–mass spectrometry (Py-GC–MS) and thermally assisted hydrolysis methylation (THM)-GC–MS. Samples of Coniferales (Frenelopsis) and Ginkgoales (Nehvizdya penalveri) leaf remains were collected from freshwater and coastal marine depositional environments. Material for pyrolysis included (i) untreated leaves and cuticles obtained after extraction from mineral rock matrix and bleaching, (ii) kerogen fraction from both materials, (iii) non-hydrolysable fraction from kerogen. The THM-GC–MS data from untreated leaves and bleached cuticles show that the fossil cuticle geopolymer essentially released aliphatic components upon thermal treatment, with a dominance of fatty acids (FAs) and n-alkanes/n-alkenes. The FAs are essentially resistant to bleaching and remain after solvent extraction. They occur mainly as short chain compounds ranging from C6 to C16 and with maximum abundance at C8–C9. The n-alkanes/n-alkenes from kerogen and the non-hydrolysable residue occur mainly as short chain compounds in the range C10–C16, with the highest abundance at C9–C12. The THM-GC–MS pyrograms of the fossil cuticles differ from those of cutan from fresh living plants. They support the preservation model via polymerization of monomers derived from cutin or from unsaturated cell FAs.  相似文献   

5.
Molecular mechanics calculations of rearranged cholestenes revealed that diacholest-13(17)-enes with 10α stereochemistry are more stable than their 10β counterparts and that a partly rearranged sterene with a Δ8 double bond and 10β, 14β stereochemistry (compound 7) is relatively stable at thermodynamic equilibrium. The calculated data are in good agreement with sedimentary and experimental data and thus reinforce recent propositions for early-stage diagenesis of steroids.  相似文献   

6.
The cuticles and cuticle-free compressions of three Carboniferous medullosan seed-fern leaf species (Macroneuropteris scheuchzeri, Neuropteris ovata var. simonii and Alethopteris lesquereuxii) were analyzed by elemental, 13C nuclear magnetic resonance (NMR), micro-FTIR (Fourier transform infrared) and coal petrographic techniques. The 13C NMR spectra of the cuticle-free compressions and the associated whole coal (high volatile A/B bituminous coal rank) are generally similar and consist of a large aromatic carbon peak, a smaller aliphatic carbon peak and a shoulder on the aromatic peak, representing phenolic carbons. In contrast, the 13C NMR spectra of the cuticles from the same leaves have a predominant peak for aliphatic carbons and a much smaller aromatic carbon peak. This difference in aromaticity between the cuticles and the cuticle-free compressions is also reflected in the higher atomic H/C ratios of the cuticles. Micro-FTIR spectra of the cuticles show oxygenated functional groups (carboxyl and ketone) similar to those in modern cuticles but their most characteristic feature is very strong bands in the aliphatic stretching region. The cuticle-free compressions (mainly vitrinite), in turn, show the absence or significant reduction in oxygenated functional groups, reduction in aliphatic stretching bands and, usually, increased absorbance of aromatic out-of-plane deformation in the 700–900 cm−1 region. Fluorescence spectra for the cuticles from all three species show a great similarity with a λmax at 580–590 nm, probably reflecting a similardegree of coalification, which is consistent with the similar vitrinite reflectance (Rr) and H/C and O/C ratios of the cuticlefree compressions.These results indicate that leaf cuticle-free compressions, which were initially cellulose rich ( 90% cellulose and hemicellulose, < 10% lignin), can alter, during peatification and coalification, to a macromolecular structure similar to that of coalified wood (initially 50% cellulose and hemicellulose, 30%–50% lignin). Thus, a lignin-enriched structure is not a prerequisite for the formation of the macromolecular structure of vitrinite. In addition, the micro-FTIR spectra reveal the complexity of the molecular structure in coalified seed-fern leaves. The micro-FFIR data reveal some significant differences among the cuticles that may be of chemotaxonomic value. Clearly, a combination of macro- and micro-techniques offers a better basis for the interpretation of the molecular structure of pre-macerals and their alteration during peatification and coalification. Also, the data presented in this paper provide important new information that extends the data from morphological and cuticular taxonomic studies of some seed ferns. The data are encouraging preliminary advances in the chemotaxonomy of medullosan seed fern species.Pyrolysis-gas chromatography (PY-GC) data for the cuticles of three seed-fern leaves indicate distinct chemical signatures for the two neuropterid leaves as compared to the Alethopteris leaf. This perhaps indicates a chemotaxomic factor, or it could be related to the greater thickness of the cuticle of Alethopteris. Mass spectrometric data are needed to identify individual components in the PY-GC chromatograms.  相似文献   

7.
通过对甘肃窑街中侏罗统窑街组化石银杏以及现代银杏角质层有机质组分和碳同位素组成分析.表明银杏角质层有较强的抗风化能力.化石和现代银杏角质层有机质烷烃和甾萜类化合物组成十分相似。可以通过角质层的碳同位素组成等参数进行古环境重建,结果表明中侏罗世早期古环境较为温湿.到了中期后古气候逐渐变得干旱少雨,后期降雨量又逐渐增加,温度升高,植被发育。  相似文献   

8.
Simultaneous mass spectral detection and stable carbon isotope analysis was performed on individual indigenous n-alkanes isolated from single C4 and C3 plant species and on a series of aliphatic and polycyclic aromatic hydrocarbons (PAH) produced from the combustion of these same biomass materials. The analysis technique used a combined gas chromatograph-mass spectrometer/combustion/isotope ratio mass spectrometer (GC-MS/C/IRMS). Precision (2σ) for replicate measurements of individual compounds in standard solutions using this novel configuration ranged between 0.2 and 0.5‰ for n-alkanes and 0.3 and 0.8‰ for PAH. Accuracy of the n-alkane measurements ranged between 0.1 and 0.4‰ and that of the PAH measurements ranged between 0.2 and 0.9‰. Replicate GC-MS/C/IRMS measurements on the combustion-derived n-alkene/alkane pairs were performed to within a precision of between 0.1 and 1.1‰ and the precision for the combustion PAH was similar to the standard PAH solution. No notable isotopic effects were observed when altering the temperature of the combustion process from 900 to 700°C, or as a result of the individual n-alkenes/alkanes partitioning between the gaseous and condensate fractions. Combustion-derived n-alkenes/alkanes ranged from C11 to C31, and the C4-derived n-alkenes/alkanes were approx. 8‰ more enriched in 13C than the C3-derived compounds. Both the C4 and C3-derived n-alkenes/alkanes (C20-C30) were isotopically similar to the indigenous n-alkanes and were 2-3‰ more depleted in 13C than the lower mol. wt (C1111-C19) n-alkenes/alkanes, suggesting an independent origin for the lower mol. wt compounds. Combustion-generated C4 and C3-derived 2-, 3-, and 4-ring PAH were also isotopically distinct (Δδ = 10‰). Unlike the n-alkenes/alkanes, no compound-to-compound variations were observed between the low and high mol. wt PAH. This study demonstrates that the isotopic composition of original plant biomass material is mainly preserved in the aliphatic hydrocarbons and PAH generated by its combustion. Consequently, analyses of these compounds in sediments impacted by fire occurrences may provide useful information about paleo-fire activity that may help elucidate the impact biomass burning may have had and could have on climate-biosphere interactions.  相似文献   

9.
Petrographic and megascopic criteria have traditionally been used as the basis for the classification of torbanite and cannel coal. For this study, it was hypothesized that modern analytical organic geochemical and multivariate statistical techniques could provide an alternative approach. Towards this end, the demineralized residues of 14 torbanite (rich in Botryococcus-related alginite) and cannel (essentially, rich in organic groundmass and/or sporinite) coal samples were analyzed by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Cluster analysis performed on the Py-GC/MS data clearly distinguished the torbanite from the cannel coal, demonstrating a consistency between the chemical properties and the petrographic composition. All the torbanite samples group into one cluster, their pyrolyzates having an overwhelming predominance of straight chain hydrocarbons, a characteristic typical of Botryococcus. The presence of the C9–C26 n-α,ω-alkadiene series is the key feature distinguishing the torbanites from the other samples. The cannel coals exhibit more chemical diversity, reflecting their greater variability in petrographic composition. The Breckinridge cannel, dominated by a highly aliphatic lamalginitic groundmass, chemically fits the torbanite category. The bituminitic groundmass-dominated cannel coals fall into a cannel sub-cluster, their pyrolyzates having a characteristic predominance of n-alk-1-enes and n-alkanes (particularly the long-chain homologues), with no detectable alkadienes. The vitrinitic groundmass-dominated Ohio Linton cannel and the sporinite-rich Canadian Melville Island cannel are readily distinguishable from the other cannels by the relatively abundant aromatic and phenolic compounds in their pyrolyzates. The internal distribution patterns of alkylaromatic and alkylphenolic isomers are shown to be less significant in the classification of this sample set. Multivariate statistical analysis of the pyrolysis data not only successfully discriminated torbanites from cannel coals, but recognized subtler differences between the examples of these two coal types, in substantial agreement with the petrographic characterization. As such, these methods can substitute for or supplement the traditional microscope-based approach.  相似文献   

10.
Macromolecular analysis of fossil fish scales from the Cretaceous Las Hoyas Formation (using pyrolysis-gas chromatography-mass spectrometry) revealed a dominant aliphatic composition (C8 to C22) whereas modern fish scale is proteinaceous (largely collagenous). Structural analysis of the aliphatic polymer using thermochemolysis revealed the importance of ester linkages; saturated fatty acids C14 to C18 (particularly C16) are the most abundant. These acid components and their unsaturated counterparts are evident in the lipid composition of modern fish scales. Thus, the aliphatic composition of the fossil scales is probably a result of the incorporation of lipids (including a C19 aromatic hydrocarbon) from the original indicating preservation by in situ polymerization of labile aliphatic components. Fossil arthropods and plants from the same deposit also show a dominant aliphatic macromolecular component, likely derived predominantly by crosslinking of free lipid precursors. Differences in the relative distribution of molecular components indicate likely chemosystematic differences between different fossil groups.  相似文献   

11.
The geothermal regime beneath the Barramiya-Red Sea coast area of the Central Eastern Desert of Egypt has been determined by using the Curie point depth, which is temperature dependent. This study is based on the analysis of aeromagnetic data. The depth to the tops and centroid of the magnetic anomalies are calculated by power spectrum method for the whole area. The result of this investigation indicates, two new maps of the Curie point depth (CPD) and the surface heat flow (q) maps of the study area. The coastal regions are characterized by high heat flow (83.6 mW/m2), due to the geothermic nature of the region, and shallow Curie depth (22.5 km), where (CPD) depends on the tectonic regime and morphology in the eastern part of the area. The western portion of the studied area has a lower heat flow (<50 mW/m2) and deeper Curie depth (∼40 km), due to the existence of a large areal extent of negative Bouguer anomaly in the NE-SW direction. In addition to its bordering to the Red Sea margin, such high heat flow anomaly is associated with the increased earthquake swarms activity in the Abu Dabbab area.  相似文献   

12.
Previous studies of the Green River kerogen only provide apparently contradictory conclusions about the size of the straight-chain aliphatic structures as well as the manner in which these structures form part of the kerogen matrix.The present investigation is an attempt to resolve this contradiction. A mild stepwise oxidation procedure was followed so that extensive degradation of kerogen-derived intermediates could be prevented. Products isolated from each oxidation step were analyzed by conventional GLC techniques, GC-MS, and proton-NMR measurements in order to ascertain the significance of the straight-chain aliphatic structures present in the Green River kerogen.The following results were obtained: (a) Green River kerogen contains a substantial portion (ca 2–4 carbons out of every 10) of straight-chain aliphatic structures which are longer than C4, (b) the kerogen matrix forms a three-dimensional network of non-straight-chain clusters interconnected by long polymethylene cross-links, (c) the ‘core’, in comparison with the ‘periphery’ of the kerogen matrix, contains a greater proportion of straight-chain and branched aliphatic structures which are attached to the kerogen matrix at one terminus, (d) some of the straight-chain structures may exist as physically entrapped components in the kerogen matrix.  相似文献   

13.
《Organic Geochemistry》1986,9(5):265-273
The structural relationship between the kerogen, humic acid and solvent extractable acid fractions in a Victorian brown coal pale lithotype have been examined by IR, solid state 13C-NMR, elemental analysis and pyrolysis-gas chromatography. The solvent extractable acids and the kerogen fractions are highly aliphatic which is somewhat unusual, whereas the humic acids are composed substantially of phenolic constituents of probable lignin origin. This coal lithotype is an unusual low rank coal because of its high humic acid content. Its repeated occurrence over the limited depth profile examined here precludes a variation in coalification effects. The data suggest independent biological origins for the humic acid and kerogen fractions, and at the current level of maturation, the humic acid to kerogen transformation is little advanced in the pale lithotype. The kerogen is surprisingly aliphatic which suggests a more open marine (or lacustrine) environment than previously supposed.  相似文献   

14.
Cuticle — the decay-resistant outer layer of leaves and young stems — provides a reliable means of identifying fossil plant remains and reflects the vegetative adaptations of plants to climate and other environmental parameters. The study of dispersed angiosperm cuticles originated prior to World War II and has focused on the origin and paleoecology of coal. Activity in dispersed cuticles reached a high point during the 1950s and 1960s with the study of Tertiary lignites in central Europe, then subsided in central Europe as workers from other regions expanded the technique to other time-periods and geographic regions. Data from dispersed cuticles augment data from palynomorphs because dispersed cuticles originate from a different generation of the vascular plant life cycle and have different taphonomic histories. Because the analysis of dispersed angiosperm cuticles is unfamiliar to many geologists, methods for the analysis and preparation of dispersed angiosperm cuticles are detailed in an appendix.Dispersed cuticle assemblages from coals in the upper Albian Longford Member of the Kiowa Formation and the Maastrichtian-Paleocene Raton Formation of the Southern Western Interior provide new constraints on the times that angiosperms entered coal swamps and rose to dominance. The Kiowa assemblages indicate that angiosperms first entered coal swamp environments by the late Albian, while the Raton assemblages indicate that angiosperms dominated primary productivity in some subtropical coal swamps by the late Maastrichtian. Angiosperms in Kiowa coals probably comprised pioneer species in conifer-dominated vegetation; the most common family of angiosperms was Chloranthaceae. Angiosperms in upper Maastrichtian Raton coals comprised the dominant seed plants to the exclusion of conifers; magnoliid dicots and monocots were the dominant taxa and comprised diverse genera and families. Evidence from palynology and types of preserved cuticle indicates that ferns were subordinate to seed plants in biomass in Raton coals, in contrast to some described assemblages from the Northern Western Interior. Paleocene coals from the Raton Basin show the loss of many Cretaceous angiosperm taxa as well as the appearance of new taxa, including conifers belonging to Taxodiaceae. However, these Taxodiaceae were evergreen and subordinate in abundance to angiosperms. Vegetational patterns shown by Cretaceous-Paleocene coals of the Southern Western Interior contrast with those of more northerly regions and indicate a poleward gradient in the timing of angiosperm dominance in coal swamps.  相似文献   

15.
We examined four dispersed, coalified ovules, Trigonocarpus grandis, of medullosalean seed-fern affinity from the Late Pennsylvanian age Sydney Coalfield, Canada, which represent the larger type of the 7–8 cm trigonocarpalean form species. At first glance it appears that the ovules are preserved like the usual Carboniferous foliar compressions, i.e. one coalified layer with one preserved anatomical tissue, the cuticle. However, careful sample preparation uncovered at least three coalified layers, and Schulze’s oxidative maceration process, which dissolves the coalified material, revealed several tissue layers. Altogether, eight sample forms were defined: (i) coalified layer, (ii) cuticle A, (iii) cupric + vitrain, (iv) vitrain, (v) cupric, (vi) cuticle B, (vii) alkaline solution and (viii) added coal seam material. The purpose of the study was twofold: first, to systematically analyze the forms by way of Fourier transform infrared (FTIR) spectrometry to fill a gap in chemical information that exits for coalified trigonocarpalean ovules of Carboniferous seed ferns; second, to use principal component analysis to focus on groupings as a function of chemical structure (functional groups) and to assess the different fossil forms in terms of FTIR chemical parameters, based on a 8 × 49 data matrix.Results include distinction among the three coaly sample forms, coalified layer (i), cupric + vitrain (iii) and cupric (v), based mainly, but not exclusively, on differences in carbonyl content, as well as length and branching of the polymethylenic chains. Important to note is the high aliphatic content of the cuticles as a signature of the biomacromolecules cutan/cutin. In particular, new insights into the structure of the original ovule are presented, and differences in chemistry are mainly a result of the complex structure of the precursor plant organ.  相似文献   

16.
Vegetative remains of three coalified Lower Devonian vascular plants (Zosterophyllum, Psilophyton, Renalia) were analyzed using flash pyrolysis-gas chromatography-mass spectrometry. The distributions of pyrolysis products are compared with those from younger vascular plant fossil xylem (Cordaixylon, Callixylon) and cuticle (Pachypteris). The likelihood of the chemical preservation of characteristic higher plant macromolecules (e.g., lignin and cutan) in the Lower Devonian plant fossils is considered in light of this comparison and associated thermal maturity assessments. Reflectance values from vitrinite-like macerals, which may not be vitrinite sensu stricto in the Lower Devonian host rocks for the fossils selected for this study, are shown to provide a reasonable assessment of the thermal maturity of these early vascular plant fossils. Although lignin altered through burial maturation is the most likely source of the prominent alkylphenols and aromatic hydrocarbons in the Lower Devonian tracheophyte flash pyrolysates, a contribution from thermally modified tannins cannot be ruled out. Comparison of the highly aliphatic pyrolysates from the Zosterophyllum and Psilophyton axes with that of a thermally mature fossil gymnosperm leaf revealed that cutan was an important component in the Devonian plant remains. This is the earliest chemical evidence for the presence of cutan in vascular plants.  相似文献   

17.
Suberinite, and subereous components of amorphous nature, comprise largely unrecognized, proficient sources of liquid hydrocarbons. Due to difficulties in recognizing the presence of subereous components and suberinite in organic sediments, the contributions of these liptinitic components to the organic input of source rocks are easily underestimated. Severe chemical alterations of suberinite in the vitrinite reflectance range of Ro = 0.35–0.60% are demonstrated. Organic geochemical data, obtained from samples subjected to natural maturation, reveal that subereous components/suberinite undergoes early thermal degradation to generate large amounts of hydrocarbons below Ro = 0.60%. Data obtained from laboratory maturation of immature, suberinite-rich coals indicate that about 50% of the potential of suberinite for generating C12+ hydrocarbons has already been exhausted during natural maturation of the samples, prior to the onset of the traditionally defined “oil window”. The present data (a) contradict the assumption that suberinite is mainly sourced by selective preservation/enrichment of a stable, highly aliphatic biopolymer, i.e. “suberan” and (b) suggest that suberinite contains appreciable amounts of aliphatic and aromatic moieties which are released at low thermal stress.  相似文献   

18.
西沙群岛石岛根管石特征、成因及地质意义   总被引:2,自引:0,他引:2  
魏喜  贾承造  孟卫工  祝永军 《岩石学报》2008,24(10):2415-2422
西沙群岛石岛由第四纪地层构成,包括4个风成生物砂屑灰岩层和3个化石土壤层,生物砂屑灰岩层和化石土壤层相间分布,在化石土壤层中发育根管石。研究表明,根管石在结构构造、成分和沉积成岩变化方面具有三层分带性。其中,内带由泥晶碳酸盐组成,具有泥晶结构,环形纹层或纤维状构造,是原始植物根系交代和石化的结果; 中带和外带均为细粒砂屑结构,块状或层理构造,砂屑颗粒由珊瑚、珊瑚藻、有孔虫、软体动物、棘皮类等古生物化石和砂屑组成,中带钙质胶结较强,中带、外带及寄主岩石多为过渡关系。根管石的中带和外带是植物根系附近微化学成岩环境和后期差异风化作用的产物。西沙群岛石岛存在3个根管石发育层,标志着三期成土作用和植被化作用的存在,反映了气候条件的重大变化。西沙群岛石岛风成生物砂屑灰岩层和化石土壤层的相间分布特征,及CaO/MgO比值、锶元素和有机质含量变化,记录了4个气候演变和风成沉积演化旋回。  相似文献   

19.
Chuaria circularis (Walcott 1899) from the Suket Shale of the Vindhyan Supergroup (central India) has been reinvestigated for its morphology and chemical composition using biostatistics, electron microscopy and pyrolysis-gas chromatography. Morphology and microscopic investigations provide little clues on the specific biological affinity ofChuaria as numerous preservational artifacts seem to be incorporated. On the contrary, the predominance of η aliphatic pyrolysates of presently studiedChuaria from India rather supports an algal affinity. Moreover, the reflectance ofC circularis can be used to obtain a comparative maturity parameter of the Precambrian sediments. The review of the age and geographical distribution ofC circularis constrains that this species cannot be considered as an index fossil for the Proterozoic time.  相似文献   

20.
A 10 m sediment core from Academician Ridge in Lake Baikal was analyzed for its molecular composition using on-line TMAH (tetramethylammomium hydroxide) thermochemolysis. Major products are lignin phenols, n-C14 to C30 fatty acids (alkanoic acids), cutin acids, hydroxy acids and aliphatic dicarboxylic acids. Lignin phenols are abundant in warmer periods (the interglacial: marine isotope stage (MIS) 5e and MIS 1), but extremely low in the other (colder) periods. This result coincides well with pollen records reported for a core near the present site, where an expansion of coniferous forests in sub-stage 5e and MIS 1 was implied. Normal C24–C30 alkanoic acids, important components of plant wax esters, are abundant in 5e and MIS 1 and are present in significant amounts in the other (colder) periods, unlike the lignin phenols. A high abundance of n-C24 to C30 alkanoic acids relative to lignin phenols in the Bølling–Allerød warm period suggests an enhanced development of herbs.It is implied from comparison of the sedimentary lignin phenol record with fossil pollen records and lignin phenol analysis of modern pollen that the ratio of cinnamyl phenols to vanillyl phenols may serve as an indicator of pollen contribution to sedimentary organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号